Skip to main content
Log in

Biofilm formation by the human pathogen Neisseria meningitidis

  • Review
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

The past decade has seen an increasing interest in biofilm formation by Neisseria meningitidis, a human facultative pathogen causing life-threatening childhood disease commencing from asymptomatic nasopharyngeal colonization. Studying the biology of in vitro biofilm formation improves the understanding of inter-bacterial processes in asymptomatic carriage, of bacterial aggregate formation on host cells, and of meningococcal population biology. This paper reviews publications referring to meningococcal biofilm formation with an emphasis on the role of motility and of extracellular DNA. The theory of sub-dividing the meningococcal population in settler and spreader lineages is discussed, which provides a mechanistic framework for the assumed balance of colonization efficacy and transmission frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rosenstein NE, Perkins BA, Stephens DS, Popovic T, Hughes JM (2001) Meningococcal disease. N Engl J Med 344(18):1378–1388

    PubMed  CAS  Google Scholar 

  2. Claus H, Maiden MC, Wilson DJ, McCarthy ND, Jolley KA, Urwin R, Hessler F, Frosch M, Vogel U (2005) Genetic analysis of meningococci carried by children and young adults. J Infect Dis 191(8):1263–1271

    PubMed  Google Scholar 

  3. Caugant DA, Kristiansen BE, Froholm LO, Bovre K, Selander RK (1988) Clonal diversity of Neisseria meningitidis from a population of asymptomatic carriers. Infect Immun 56(8):2060–2068

    PubMed  CAS  Google Scholar 

  4. Jolley KA, Kalmusova J, Feil EJ, Gupta S, Musilek M, Kriz P, Maiden MC (2000) Carried meningococci in the Czech Republic: a diverse recombining population. J Clin Microbiol 38(12):4492–4498

    PubMed  CAS  Google Scholar 

  5. Caugant DA, Mocca LF, Frasch CE, Froholm LO, Zollinger WD, Selander RK (1987) Genetic structure of Neisseria meningitidis populations in relation to serogroup, serotype, and outer membrane protein pattern. J Bacteriol 169(6):2781–2792

    PubMed  CAS  Google Scholar 

  6. Maiden MC, Bygraves JA, Feil E, Morelli G, Russell JE, Urwin R, Zhang Q, Zhou J, Zurth K, Caugant DA, Feavers IM, Achtman M, Spratt BG (1998) Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A 95(6):3140–3145

    PubMed  CAS  Google Scholar 

  7. Maiden MC, Ibarz-Pavon AB, Urwin R, Gray SJ, Andrews NJ, Clarke SC, Walker AM, Evans MR, Kroll JS, Neal KR, Ala’aldeen DA, Crook DW, Cann K, Harrison S, Cunningham R, Baxter D, Kaczmarski E, Maclennan J, Cameron JC, Stuart JM (2008) Impact of meningococcal serogroup C conjugate vaccines on carriage and herd immunity. J Infect Dis 197(5):737–743

    PubMed  Google Scholar 

  8. Brehony C, Jolley KA, Maiden MC (2007) Multilocus sequence typing for global surveillance of meningococcal disease. FEMS Microbiol Rev 31(1):15–26

    PubMed  CAS  Google Scholar 

  9. Vogel U, Weinberger A, Frank R, Muller A, Kohl J, Atkinson JP, Frosch M (1997) Complement factor C3 deposition and serum resistance in isogenic capsule and lipooligosaccharide sialic acid mutants of serogroup B Neisseria meningitidis. Infect Immun 65(10):4022–4029

    PubMed  CAS  Google Scholar 

  10. Frosch M, Vogel U (2006) Structure and genetics of the meningococcal capsule. In: Frosch M, Maiden MCJ (eds) Handbook of meningococcal disease. Wiley-VCH, Weinheim (GER), pp 145–162

    Google Scholar 

  11. Stephens DS (2007) Conquering the meningococcus. FEMS Microbiol Rev 31(1):3–14

    PubMed  CAS  Google Scholar 

  12. Trotter CL, Chandra M, Cano R, Larrauri A, Ramsay ME, Brehony C, Jolley KA, Maiden MC, Heuberger S, Frosch M (2007) A surveillance network for meningococcal disease in Europe. FEMS Microbiol Rev 31(1):27–36

    PubMed  CAS  Google Scholar 

  13. Harrison LH, Trotter CL, Ramsay ME (2009) Global epidemiology of meningococcal disease. Vaccine 27(Suppl 2):B51–B63

    PubMed  Google Scholar 

  14. Claus H, Maiden MC, Maag R, Frosch M, Vogel U (2002) Many carried meningococci lack the genes required for capsule synthesis and transport. Microbiology 148(Pt 6):1813–1819

    PubMed  CAS  Google Scholar 

  15. Goldschneider I, Gotschlich EC, Artenstein MS (1969) Human immunity to the meningococcus. II. Development of natural immunity. J Exp Med 129(6):1327–1348

    PubMed  CAS  Google Scholar 

  16. Dolan-Livengood JM, Miller YK, Martin LE, Urwin R, Stephens DS (2003) Genetic basis for nongroupable Neisseria meningitidis. J Infect Dis 187(10):1616–1628

    PubMed  CAS  Google Scholar 

  17. Sadler F, Fox A, Neal K, Dawson M, Cartwright K, Borrow R (2003) Genetic analysis of capsular status of meningococcal carrier isolates. Epidemiol Infect 130(1):59–70

    PubMed  CAS  Google Scholar 

  18. Yazdankhah SP, Kriz P, Tzanakaki G, Kremastinou J, Kalmusova J, Musilek M, Alvestad T, Jolley KA, Wilson DJ, McCarthy ND, Caugant DA, Maiden MC (2004) Distribution of serogroups and genotypes among disease-associated and carried isolates of Neisseria meningitidis from the Czech Republic, Greece, and Norway. J Clin Microbiol 42(11):5146–5153

    PubMed  Google Scholar 

  19. Davenport V, Groves E, Hobbs CG, Williams NA, Heyderman RS (2007) Regulation of Th-1 T cell-dominated immunity to Neisseria meningitidis within the human mucosa. Cell Microbiol 9(4):1050–1061

    PubMed  CAS  Google Scholar 

  20. Jordens JZ, Williams JN, Jones GR, Christodoulides M, Heckels JE (2004) Development of immunity to serogroup B meningococci during carriage of Neisseria meningitidis in a cohort of university students. Infect Immun 72(11):6503–6510

    PubMed  CAS  Google Scholar 

  21. Schneider MC, Exley RM, Ram S, Sim RB, Tang CM (2007) Interactions between Neisseria meningitidis and the complement system. Trends Microbiol 15(5):233–240

    PubMed  CAS  Google Scholar 

  22. Sim RJ, Harrison MM, Moxon ER, Tang CM (2000) Underestimation of meningococci in tonsillar tissue by nasopharyngeal swabbing. Lancet 356(9242):1653–1654

    PubMed  CAS  Google Scholar 

  23. Stephens DS, Hoffman LH, McGee ZA (1983) Interaction of Neisseria meningitidis with human nasopharyngeal mucosa: attachment and entry into columnar epithelial cells. J Infect Dis 148(3):369–376

    PubMed  CAS  Google Scholar 

  24. Hammerschmidt S, Hilse R, van Putten JP, Gerardy-Schahn R, Unkmeir A, Frosch M (1996) Modulation of cell surface sialic acid expression in Neisseria meningitidis via a transposable genetic element. EMBO J 15(1):192–198

    PubMed  CAS  Google Scholar 

  25. Virji M, Makepeace K, Ferguson DJ, Achtman M, Sarkari J, Moxon ER (1992) Expression of the Opc protein correlates with invasion of epithelial and endothelial cells by Neisseria meningitidis. Mol Microbiol 6(19):2785–2795

    PubMed  CAS  Google Scholar 

  26. Findlow H, Vogel U, Mueller JE, Curry A, Njanpop-Lafourcade BM, Claus H, Gray SJ, Yaro S, Traore Y, Sangare L, Nicolas P, Gessner BD, Borrow R (2007) Three cases of invasive meningococcal disease caused by a capsule null locus strain circulating among healthy carriers in Burkina Faso. J Infect Dis 195(7):1071–1077

    PubMed  Google Scholar 

  27. Vogel U, Claus H, von Muller L, Bunjes D, Elias J, Frosch M (2004) Bacteremia in an immunocompromised patient caused by a commensal Neisseria meningitidis strain harboring the capsule null locus (cnl). J Clin Microbiol 42(7):2898–2901

    PubMed  Google Scholar 

  28. Weber MV, Claus H, Maiden MC, Frosch M, Vogel U (2006) Genetic mechanisms for loss of encapsulation in polysialyltransferase-gene-positive meningococci isolated from healthy carriers. Int J Med Microbiol 296(7):475–484

    PubMed  CAS  Google Scholar 

  29. Caugant DA, Tzanakaki G, Kriz P (2007) Lessons from meningococcal carriage studies. FEMS Microbiol Rev 31(1):52–63

    PubMed  CAS  Google Scholar 

  30. Feil EJ, Maiden MC, Achtman M, Spratt BG (1999) The relative contributions of recombination and mutation to the divergence of clones of Neisseria meningitidis. Mol Biol Evol 16(11):1496–1502

    PubMed  CAS  Google Scholar 

  31. Jolley KA, Wilson DJ, Kriz P, McVean G, Maiden MC (2005) The influence of mutation, recombination, population history, and selection on patterns of genetic diversity in Neisseria meningitidis. Mol Biol Evol 22(3):562–569

    PubMed  CAS  Google Scholar 

  32. Schoen C, Blom J, Claus H, Schramm-Gluck A, Brandt P, Muller T, Goesmann A, Joseph B, Konietzny S, Kurzai O, Schmitt C, Friedrich T, Linke B, Vogel U, Frosch M (2008) Whole-genome comparison of disease and carriage strains provides insights into virulence evolution in Neisseria meningitidis. Proc Natl Acad Sci U S A 105(9):3473–3478

    PubMed  CAS  Google Scholar 

  33. Schoen C, Tettelin H, Parkhill J, Frosch M (2009) Genome flexibility in Neisseria meningitidis. Vaccine 27(2 Suppl):B103–B111

    PubMed  CAS  Google Scholar 

  34. Bronsdon MA, O’Brien KL, Facklam RR, Whitney CG, Schwartz B, Carlone GM (2004) Immunoblot method to detect Streptococcus pneumoniae and identify multiple serotypes from nasopharyngeal secretions. J Clin Microbiol 42(4):1596–1600

    PubMed  CAS  Google Scholar 

  35. Vogel U, Frosch M (1999) Infant rat model of acute meningitis. In: Zak O, Sande M (eds) Handbook of animal models of infection. Academic Press, London, pp 619–626

    Google Scholar 

  36. Schryvers AB, Stojiljkovic I (1999) Iron acquisition systems in the pathogenic Neisseria. Mol Microbiol 32(6):1117–1123

    PubMed  CAS  Google Scholar 

  37. Zarantonelli ML, Szatanik M, Giorgini D, Hong E, Huerre M, Guillou F, Alonso JM, Taha MK (2007) Transgenic mice expressing human transferrin as a model for meningococcal infection. Infect Immun 75(12):5609–5614

    PubMed  CAS  Google Scholar 

  38. Carbonnelle E, Hill DJ, Morand P, Griffiths NJ, Bourdoulous S, Murillo I, Nassif X, Virji M (2009) Meningococcal interactions with the host. Vaccine 27(2 Suppl):B78–B89

    PubMed  CAS  Google Scholar 

  39. Yi K, Stephens DS, Stojiljkovic I (2003) Development and evaluation of an improved mouse model of meningococcal colonization. Infect Immun 71(4):1849–1855

    PubMed  CAS  Google Scholar 

  40. Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15(2):167–193

    PubMed  CAS  Google Scholar 

  41. Stoodley P, Wilson S, Hall-Stoodley L, Boyle JD, Lappin-Scott HM, Costerton JW (2001) Growth and detachment of cell clusters from mature mixed-species biofilms. Appl Environ Microbiol 67(12):5608–5613

    PubMed  CAS  Google Scholar 

  42. Beloin C, Valle J, Latour-Lambert P, Faure P, Kzreminski M, Balestrino D, Haagensen JA, Molin S, Prensier G, Arbeille B, Ghigo JM (2004) Global impact of mature biofilm lifestyle on Escherichia coli K-12 gene expression. Mol Microbiol 51(3):659–674

    PubMed  CAS  Google Scholar 

  43. Prigent-Combaret C, Vidal O, Dorel C, Lejeune P (1999) Abiotic surface sensing and biofilm-dependent regulation of gene expression in Escherichia coli. J Bacteriol 181(19):5993–6002

    PubMed  CAS  Google Scholar 

  44. Stanley NR, Lazazzera BA (2004) Environmental signals and regulatory pathways that influence biofilm formation. Mol Microbiol 52(4):917–924

    PubMed  CAS  Google Scholar 

  45. Sauer K, Camper AK (2001) Characterization of phenotypic changes in Pseudomonas putida in response to surface-associated growth. J Bacteriol 183(22):6579–6589

    PubMed  CAS  Google Scholar 

  46. Lappann M, Haagensen JA, Claus H, Vogel U, Molin S (2006) Meningococcal biofilm formation: structure, development and phenotypes in a standardized continuous flow system. Mol Microbiol 62(5):1292–1309

    PubMed  CAS  Google Scholar 

  47. Davey ME, O’Toole GA (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64(4):847–867

    PubMed  CAS  Google Scholar 

  48. Makin SA, Beveridge TJ (1996) The influence of A-band and B-band lipopolysaccharide on the surface characteristics and adhesion of Pseudomonas aeruginosa to surfaces. Microbiology 142(Pt 2):299–307

    PubMed  CAS  Google Scholar 

  49. Pratt LA, Kolter R (1998) Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 30(2):285–293

    PubMed  CAS  Google Scholar 

  50. O’Toole GA, Kolter R (1998) Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30(2):295–304

    PubMed  Google Scholar 

  51. Watnick PI, Kolter R (1999) Steps in the development of a Vibrio cholerae El Tor biofilm. Mol Microbiol 34(3):586–595

    PubMed  CAS  Google Scholar 

  52. Klausen M, Aaes-Jorgensen A, Molin S, Tolker-Nielsen T (2003) Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms. Mol Microbiol 50(1):61–68

    PubMed  CAS  Google Scholar 

  53. Klausen M, Heydorn A, Ragas P, Lambertsen L, Aaes-Jorgensen A, Molin S, Tolker-Nielsen T (2003) Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol 48(6):1511–1524

    PubMed  CAS  Google Scholar 

  54. Shrout JD, Chopp DL, Just CL, Hentzer M, Givskov M, Parsek MR (2006) The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional. Mol Microbiol 62(5):1264–1277

    PubMed  CAS  Google Scholar 

  55. Caiazza NC, Merritt JH, Brothers KM, O’Toole GA (2007) Inverse regulation of biofilm formation and swarming motility by Pseudomonas aeruginosa PA14. J Bacteriol 189(9):3603–3612

    PubMed  CAS  Google Scholar 

  56. Patriquin GM, Banin E, Gilmour C, Tuchman R, Greenberg EP, Poole K (2008) Influence of quorum sensing and iron on twitching motility and biofilm formation in Pseudomonas aeruginosa. J Bacteriol 190(2):662–671

    PubMed  CAS  Google Scholar 

  57. Heydorn A, Ersboll B, Kato J, Hentzer M, Parsek MR, Tolker-Nielsen T, Givskov M, Molin S (2002) Statistical analysis of Pseudomonas aeruginosa biofilm development: impact of mutations in genes involved in twitching motility, cell-to-cell signaling, and stationary-phase sigma factor expression. Appl Environ Microbiol 68(4):2008–2017

    PubMed  CAS  Google Scholar 

  58. Banin E, Brady KM, Greenberg EP (2006) Chelator-induced dispersal and killing of Pseudomonas aeruginosa cells in a biofilm. Appl Environ Microbiol 72(3):2064–2069

    PubMed  CAS  Google Scholar 

  59. Hunt SM, Werner EM, Huang B, Hamilton MA, Stewart PS (2004) Hypothesis for the role of nutrient starvation in biofilm detachment. Appl Environ Microbiol 70(12):7418–7425

    PubMed  CAS  Google Scholar 

  60. Thormann KM, Saville RM, Shukla S, Spormann AM (2005) Induction of rapid detachment in Shewanella oneidensis MR-1 biofilms. J Bacteriol 187(3):1014–1021

    PubMed  CAS  Google Scholar 

  61. Overhage J, Campisano A, Bains M, Torfs EC, Rehm BH, Hancock RE (2008) Human host defense peptide LL-37 prevents bacterial biofilm formation. Infect Immun 76(9):4176–4182

    PubMed  CAS  Google Scholar 

  62. Branda SS, Vik S, Friedman L, Kolter R (2005) Biofilms: the matrix revisited. Trends Microbiol 13(1):20–26

    PubMed  CAS  Google Scholar 

  63. Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS (2002) Extracellular DNA required for bacterial biofilm formation. Science 295(5559):1487

    PubMed  CAS  Google Scholar 

  64. Izano EA, Shah SM, Kaplan JB (2009) Intercellular adhesion and biocide resistance in nontypeable Haemophilus influenzae biofilms. Microb Pathog 46(4):207–213

    PubMed  CAS  Google Scholar 

  65. Lappann M, Claus H, van Alen T, Harmsen M, Elias J, Molin S, Vogel U (2010) A dual role of extracellular DNA during biofilm formation of Neisseria meningitidis. Mole Microbiol Accepted 8 January, 2010

  66. Moscoso M, Garcia E, Lopez R (2006) Biofilm formation by Streptococcus pneumoniae: role of choline, extracellular DNA, and capsular polysaccharide in microbial accretion. J Bacteriol 188(22):7785–7795

    PubMed  CAS  Google Scholar 

  67. Qin Z, Ou Y, Yang L, Zhu Y, Tolker-Nielsen T, Molin S, Qu D (2007) Role of autolysin-mediated DNA release in biofilm formation of Staphylococcus epidermidis. Microbiology 153(Pt 7):2083–2092

    PubMed  CAS  Google Scholar 

  68. Rice KC, Mann EE, Endres JL, Weiss EC, Cassat JE, Smeltzer MS, Bayles KW (2007) The cidA murein hydrolase regulator contributes to DNA release and biofilm development in Staphylococcus aureus. Proc Natl Acad Sci U S A 104(19):8113–8118

    PubMed  CAS  Google Scholar 

  69. Thomas VC, Thurlow LR, Boyle D, Hancock LE (2008) Regulation of autolysis-dependent extracellular DNA release by Enterococcus faecalis extracellular proteases influences biofilm development. J Bacteriol 190(16):5690–5698

    PubMed  CAS  Google Scholar 

  70. Allesen-Holm M, Barken KB, Yang L, Klausen M, Webb JS, Kjelleberg S, Molin S, Givskov M, Tolker-Nielsen T (2006) A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol Microbiol 59(4):1114–1128

    PubMed  CAS  Google Scholar 

  71. Thomas VC, Hiromasa Y, Harms N, Thurlow L, Tomich J, Hancock LE (2009) A fratricidal mechanism is responsible for eDNA release and contributes to biofilm development of Enterococcus faecalis. Mol Microbiol 72(4):1022–1036

    PubMed  CAS  Google Scholar 

  72. Yi K, Rasmussen AW, Gudlavalleti SK, Stephens DS, Stojiljkovic I (2004) Biofilm formation by Neisseria meningitidis. Infect Immun 72(10):6132–6138

    PubMed  CAS  Google Scholar 

  73. Brock Neil R, Shao JQ, Apicella MA (2009) Biofilm formation on human airway epithelia by encapsulated Neisseria meningitidis serogroup B. Microbes Infect 11(2):281–287

    PubMed  CAS  Google Scholar 

  74. Neil RB, Apicella MA (2009) Clinical and laboratory evidence for Neisseria meningitidis biofilms. Future Microbiol 4:555–563

    PubMed  CAS  Google Scholar 

  75. O’Dwyer CA, Li MS, Langford PR, Kroll JS (2009) Meningococcal biofilm growth on an abiotic surface—a model for epithelial colonization? Microbiology 155(Pt 6):1940–1952

    PubMed  Google Scholar 

  76. Beenken KE, Dunman PM, McAleese F, Macapagal D, Murphy E, Projan SJ, Blevins JS, Smeltzer MS (2004) Global gene expression in Staphylococcus aureus biofilms. J Bacteriol 186(14):4665–4684

    PubMed  CAS  Google Scholar 

  77. Moorthy S, Watnick PI (2005) Identification of novel stage-specific genetic requirements through whole genome transcription profiling of Vibrio cholerae biofilm development. Mol Microbiol 57(6):1623–1635

    PubMed  CAS  Google Scholar 

  78. Ren D, Bedzyk LA, Thomas SM, Ye RW, Wood TK (2004) Gene expression in Escherichia coli biofilms. Appl Microbiol Biotechnol 64(4):515–524

    PubMed  CAS  Google Scholar 

  79. Resch A, Rosenstein R, Nerz C, Gotz F (2005) Differential gene expression profiling of Staphylococcus aureus cultivated under biofilm and planktonic conditions. Appl Environ Microbiol 71(5):2663–2676

    PubMed  CAS  Google Scholar 

  80. Sauer K, Cullen MC, Rickard AH, Zeef LA, Davies DG, Gilbert P (2004) Characterization of nutrient-induced dispersion in Pseudomonas aeruginosa PAO1 biofilm. J Bacteriol 186(21):7312–7326

    PubMed  CAS  Google Scholar 

  81. Waite RD, Papakonstantinopoulou A, Littler E, Curtis MA (2005) Transcriptome analysis of Pseudomonas aeruginosa growth: comparison of gene expression in planktonic cultures and developing and mature biofilms. J Bacteriol 187(18):6571–6576

    PubMed  CAS  Google Scholar 

  82. Deghmane AE, Giorgini D, Larribe M, Alonso JM, Taha MK (2002) Down-regulation of pili and capsule of Neisseria meningitidis upon contact with epithelial cells is mediated by CrgA regulatory protein. Mol Microbiol 43(6):1555–1564

    PubMed  CAS  Google Scholar 

  83. Heilmann C, Hussain M, Peters G, Gotz F (1997) Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Mol Microbiol 24(5):1013–1024

    PubMed  CAS  Google Scholar 

  84. Hell W, Meyer HG, Gatermann SG (1998) Cloning of aas, a gene encoding a Staphylococcus saprophyticus surface protein with adhesive and autolytic properties. Mol Microbiol 29(3):871–881

    PubMed  CAS  Google Scholar 

  85. Heilmann C, Thumm G, Chhatwal GS, Hartleib J, Uekotter A, Peters G (2003) Identification and characterization of a novel autolysin (Aae) with adhesive properties from Staphylococcus epidermidis. Microbiology 149(Pt 10):2769–2778

    PubMed  CAS  Google Scholar 

  86. Sun YH, Bakshi S, Chalmers R, Tang CM (2000) Functional genomics of Neisseria meningitidis pathogenesis. Nat Med 6(11):1269–1273

    PubMed  CAS  Google Scholar 

  87. Bos MP, Tefsen B, Voet P, Weynants V, van Putten JP, Tommassen J (2005) Function of neisserial outer membrane phospholipase a in autolysis and assessment of its vaccine potential. Infect Immun 73(4):2222–2231

    PubMed  CAS  Google Scholar 

  88. Dorrell N, Martino MC, Stabler RA, Ward SJ, Zhang ZW, McColm AA, Farthing MJ, Wren BW (1999) Characterization of Helicobacter pylori PldA, a phospholipase with a role in colonization of the gastric mucosa. Gastroenterology 117(5):1098–1104

    PubMed  CAS  Google Scholar 

  89. Karlyshev AV, Oyston PC, Williams K, Clark GC, Titball RW, Winzeler EA, Wren BW (2001) Application of high-density array-based signature-tagged mutagenesis to discover novel Yersinia virulence-associated genes. Infect Immun 69(12):7810–7819

    PubMed  CAS  Google Scholar 

  90. Munoz-Elias EJ, Marcano J, Camilli A (2008) Isolation of Streptococcus pneumoniae biofilm mutants and their characterization during nasopharyngeal colonization. Infect Immun 76(11):5049–5061

    PubMed  CAS  Google Scholar 

  91. Jurcisek JA, Bakaletz LO (2007) Biofilms formed by nontypeable Haemophilus influenzae in vivo contain both double-stranded DNA and type IV pilin protein. J Bacteriol 189(10):3868–3875

    PubMed  CAS  Google Scholar 

  92. Vilain S, Pretorius JM, Theron J, Brozel VS (2009) DNA as an adhesin: Bacillus cereus requires extracellular DNA to form biofilms. Appl Environ Microbiol 75(9):2861–2868

    PubMed  CAS  Google Scholar 

  93. Barken KB, Pamp SJ, Yang L, Gjermansen M, Bertrand JJ, Klausen M, Givskov M, Whitchurch CB, Engel JN, Tolker-Nielsen T (2008) Roles of type IV pili, flagellum-mediated motility and extracellular DNA in the formation of mature multicellular structures in Pseudomonas aeruginosa biofilms. Environ Microbiol 10(9):2331–2343

    PubMed  CAS  Google Scholar 

  94. Mulcahy H, Charron-Mazenod L, Lewenza S (2008) Extracellular DNA chelates cations and induces antibiotic resistance in Pseudomonas aeruginosa biofilms. PLoS Pathog 4(11):e1000213

    PubMed  Google Scholar 

  95. Xavier JB, Foster KR (2007) Cooperation and conflict in microbial biofilms. Proc Natl Acad Sci U S A 104(3):876–881

    PubMed  CAS  Google Scholar 

  96. Ma L, Conover M, Lu H, Parsek MR, Bayles K, Wozniak DJ (2009) Assembly and development of the Pseudomonas aeruginosa biofilm matrix. PLoS Pathog 5(3):e1000354

    PubMed  Google Scholar 

  97. Helaine S, Carbonnelle E, Prouvensier L, Beretti JL, Nassif X, Pelicic V (2005) PilX, a pilus-associated protein essential for bacterial aggregation, is a key to pilus-facilitated attachment of Neisseria meningitidis to human cells. Mol Microbiol 55(1):65–77

    PubMed  CAS  Google Scholar 

  98. Tetz GV, Artemenko NK, Tetz VV (2009) Effect of DNase and antibiotics on biofilm characteristics. Antimicrob Agents Chemother 53(3):1204–1209

    PubMed  CAS  Google Scholar 

  99. Harrison OB, Robertson BD, Faust SN, Jepson MA, Goldin RD, Levin M, Heyderman RS (2002) Analysis of pathogen-host cell interactions in purpura fulminans: expression of capsule, type IV pili, and PorA by Neisseria meningitidis in vivo. Infect Immun 70(9):5193–5201

    PubMed  CAS  Google Scholar 

  100. Merz AJ, So M (2000) Interactions of pathogenic neisseriae with epithelial cell membranes. Annu Rev Cell Dev Biol 16:423–457

    PubMed  CAS  Google Scholar 

  101. Carbonnelle E, Helaine S, Prouvensier L, Nassif X, Pelicic V (2005) Type IV pilus biogenesis in Neisseria meningitidis: PilW is involved in a step occurring after pilus assembly, essential for fibre stability and function. Mol Microbiol 55(1):54–64

    PubMed  CAS  Google Scholar 

  102. Allegrucci M, Sauer K (2007) Characterization of colony morphology variants isolated from Streptococcus pneumoniae biofilms. J Bacteriol 189(5):2030–2038

    PubMed  CAS  Google Scholar 

  103. Davey ME, Duncan MJ (2006) Enhanced biofilm formation and loss of capsule synthesis: deletion of a putative glycosyltransferase in Porphyromonas gingivalis. J Bacteriol 188(15):5510–5523

    PubMed  CAS  Google Scholar 

  104. Joseph LA, Wright AC (2004) Expression of Vibrio vulnificus capsular polysaccharide inhibits biofilm formation. J Bacteriol 186(3):889–893

    PubMed  CAS  Google Scholar 

  105. Schembri MA, Dalsgaard D, Klemm P (2004) Capsule shields the function of short bacterial adhesins. J Bacteriol 186(5):1249–1257

    PubMed  CAS  Google Scholar 

  106. Boddicker JD, Anderson RA, Jagnow J, Clegg S (2006) Signature-tagged mutagenesis of Klebsiella pneumoniae to identify genes that influence biofilm formation on extracellular matrix material. Infect Immun 74(8):4590–4597

    PubMed  CAS  Google Scholar 

  107. McKenney D, Hubner J, Muller E, Wang Y, Goldmann DA, Pier GB (1998) The ica locus of Staphylococcus epidermidis encodes production of the capsular polysaccharide/adhesin. Infect Immun 66(10):4711–4720

    PubMed  CAS  Google Scholar 

  108. Yildiz FH, Schoolnik GK (1999) Vibrio cholerae O1 El Tor: identification of a gene cluster required for the rugose colony type, exopolysaccharide production, chlorine resistance, and biofilm formation. Proc Natl Acad Sci U S A 96(7):4028–4033

    PubMed  CAS  Google Scholar 

  109. Hall-Stoodley L, Nistico L, Sambanthamoorthy K, Dice B, Nguyen D, Mershon WJ, Johnson C, Hu FZ, Stoodley P, Ehrlich GD, Post JC (2008) Characterization of biofilm matrix, degradation by DNase treatment and evidence of capsule downregulation in Streptococcus pneumoniae clinical isolates. BMC Microbiol 8:173

    PubMed  Google Scholar 

  110. Claus H, Borrow R, Achtman M, Morelli G, Kantelberg C, Longworth E, Frosch M, Vogel U (2004) Genetics of capsule O-acetylation in serogroup C, W-135 and Y meningococci. Mol Microbiol 51(1):227–239

    PubMed  CAS  Google Scholar 

  111. Mordhorst IL, Claus H, Ewers C, Lappann M, Schoen C, Elias J, Batzilla J, Dobrindt U, Wieler LH, Bergfeld AK, Muhlenhoff M, Vogel U (2009) O-acetyltransferase gene neuO is segregated according to phylogenetic background and contributes to environmental desiccation resistance in Escherichia coli K1. Environ Microbiol 11(12):3154–3165

    PubMed  CAS  Google Scholar 

  112. Luppens SB, Reij MW, van der Heijden RW, Rombouts FM, Abee T (2002) Development of a standard test to assess the resistance of Staphylococcus aureus biofilm cells to disinfectants. Appl Environ Microbiol 68(9):4194–4200

    PubMed  CAS  Google Scholar 

  113. Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358(9276):135–138

    PubMed  CAS  Google Scholar 

  114. Stewart PS (2002) Mechanisms of antibiotic resistance in bacterial biofilms. Int J Med Microbiol 292(2):107–113

    PubMed  CAS  Google Scholar 

  115. Davies D (2003) Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov 2(2):114–122

    PubMed  CAS  Google Scholar 

  116. Nichols WW, Dorrington SM, Slack MP, Walmsley HL (1988) Inhibition of tobramycin diffusion by binding to alginate. Antimicrob Agents Chemother 32(4):518–523

    PubMed  CAS  Google Scholar 

  117. Huang CT, Yu FP, McFeters GA, Stewart PS (1995) Nonuniform spatial patterns of respiratory activity within biofilms during disinfection. Appl Environ Microbiol 61(6):2252–2256

    PubMed  CAS  Google Scholar 

  118. Spoering AL, Lewis K (2001) Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials. J Bacteriol 183(23):6746–6751

    PubMed  CAS  Google Scholar 

  119. Anderl JN, Zahller J, Roe F, Stewart PS (2003) Role of nutrient limitation and stationary-phase existence in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob Agents Chemother 47(4):1251–1256

    PubMed  CAS  Google Scholar 

  120. Sufya N, Allison DG, Gilbert P (2003) Clonal variation in maximum specific growth rate and susceptibility towards antimicrobials. J Appl Microbiol 95(6):1261–1267

    PubMed  CAS  Google Scholar 

  121. Fux CA, Wilson S, Stoodley P (2004) Detachment characteristics and oxacillin resistance of Staphyloccocus aureus biofilm emboli in an in vitro catheter infection model. J Bacteriol 186(14):4486–4491

    PubMed  CAS  Google Scholar 

  122. Keren I, Kaldalu N, Spoering A, Wang Y, Lewis K (2004) Persister cells and tolerance to antimicrobials. FEMS Microbiol Lett 230(1):13–18

    PubMed  CAS  Google Scholar 

  123. Stuart J (2006) Guidance for public health management of meningococcal disease in the UK. 1-28. 2006. Health Protection Agency. Ref Type: Pamphlet

  124. Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745

    PubMed  CAS  Google Scholar 

  125. Buckee CO, Jolley KA, Recker M, Penman B, Kriz P, Gupta S, Maiden MC (2008) Role of selection in the emergence of lineages and the evolution of virulence in Neisseria meningitidis. Proc Natl Acad Sci U S A 105(39):15082–15087

    PubMed  CAS  Google Scholar 

  126. Johansson L, Rytkonen A, Bergman P, Albiger B, Kallstrom H, Hokfelt T, Agerberth B, Cattaneo R, Jonsson AB (2003) CD46 in meningococcal disease. Science 301(5631):373–375

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Boehringer Ingelheim Fonds for two travel grants to M. L. We are indebted to Søren Molin and his team for continuous support and helpful discussions. Heike Claus and Matthias Frosch are acknowledged for constant contribution to and support of the biofilm work. Work of the authors was supported by the Deutsche Forschungsgemeinschaft through Sonderforschungsbereich 479 and graduate college Immunomodulation at the University of Würzburg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Vogel.

Additional information

This article is published as part of a Special Issue on Pathogen Variation and Host Response in Infectious Disease.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lappann, M., Vogel, U. Biofilm formation by the human pathogen Neisseria meningitidis . Med Microbiol Immunol 199, 173–183 (2010). https://doi.org/10.1007/s00430-010-0149-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-010-0149-y

Keywords

Navigation