Skip to main content
Log in

Network-based statistics distinguish anomic and Broca’s aphasia

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Introduction

Aphasia is a speech-language impairment commonly caused by damage to the left hemisphere. The neural mechanisms that underpin different types of aphasia and their symptoms are still not fully understood. This study aims to identify differences in resting-state functional connectivity between anomic and Broca’s aphasia measured through resting-state functional magnetic resonance imaging (rs-fMRI).

Methods

We used the network-based statistic (NBS) method, as well as voxel- and connectome-based lesion symptom mapping (V-, CLSM), to identify distinct neural correlates of the anomic and Broca’s groups. To control for lesion effect, we included lesion volume as a covariate in both the NBS method and LSM.

Results

NBS identified a subnetwork located in the dorsal language stream bilaterally, including supramarginal gyrus, primary sensory, motor, and auditory cortices, and insula. The connections in the subnetwork were weaker in the Broca’s group than the anomic group. The properties of the subnetwork were examined through complex network measures, which indicated that regions in right inferior frontal sulcus, right paracentral lobule, and bilateral superior temporal gyrus exhibit intensive interaction. Left superior temporal gyrus, right postcentral gyrus, and left supramarginal gyrus play an important role in information flow and overall communication efficiency. Disruption of this network underlies the constellation of symptoms associated with Broca’s aphasia. Whole-brain CLSM did not detect any significant connections, suggesting an advantage of NBS when thousands of connections are considered. However, CLSM identified connections that differentiated Broca’s from anomic aphasia when analysis was restricted to a hypothesized network of interest.

Discussion

We identified novel signatures of resting-state brain network differences between groups of individuals with anomic and Broca’s aphasia. We identified a subnetwork of connections that statistically differentiated the resting-state brain networks of the two groups, in comparison with standard CLSM results that yielded isolated connections. Network-level analyses are useful tools for the investigation of the neural correlates of language deficits post-stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Ahuja RK, Magnanti TL, Orlin JB (1993) Network flows: theory, algorithms, and applications. Prentice Hall, New Jersey

    Google Scholar 

  • Ardila A, Bernal B, Rosselli M (2016) Why broca’s area damage does not result in classical broca’s aphasia. Front Human Neurosci 10:249

    Article  Google Scholar 

  • Baldo J, Ivanova M, Herron T, Wilson S, Dronkers N (2022) Voxel-based lesion symptom mapping. In: Lesion-to-symptom mapping (pp. 95 - 118)

  • Bates E, Wilson S, Saygin A, Dick F, Sereno M, Knight R, Dronkers N (2003) Voxel-based lesion-symptom mapping. Nat Neurosci 6:448–450

    Article  PubMed  CAS  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: A practical and powerful approach to multiple testing. J R Stat Soc Ser 57(1):289–300

    Google Scholar 

  • Blackett DS, Varkey J, Wilmskoetter J, Roth R, Andrews K, Busby N et al (2022) Neural network bases of thematic semantic processing in language production. Cortex 156:126–143

    Article  PubMed Central  Google Scholar 

  • Bonferroni CE (1936) Teoria statistica delle classi e calcolo delle probabilità. Libreria Internazionale Seeber

  • Broca P (1861) Remarques sur le siège de la faculté du langage articulé, suivies d’une observation d’aphémie (perte de la parole). Bulletin et Memoires de la Societe anatomique de Paris 6:330–357

    Google Scholar 

  • Caplan D, Alpert N, Waters G, Olivieri A (2000) Activation of broca’s area by syntactic processing under conditions of concurrent articulation. Human Brain Mapping 9(2):65–71

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Caramazza A, Berndt RS (1978) Semantic and syntactic processes in aphasia: A review of the literature. Psychol Bull 85(4):898–918

    Article  PubMed  CAS  Google Scholar 

  • Carrera E, Tononi G (2014) Diaschisis: past, present, future. Brain 137(9):2408–2422

    Article  PubMed  Google Scholar 

  • Casilio M, Rising K, Beeson PM, Bunton K, Wilson SM (2019) Auditory-perceptual rating of connected speech in aphasia. Am J Speech Lang Pathol 28(2):550–568

    Article  PubMed  PubMed Central  Google Scholar 

  • Cotelli M, Manenti R, Ferrari C, Gobbi E, Macis A, Cappa SF (2020) Effectiveness of language training and non-invasive brain stimulation on oral and written naming performance in primary progressive aphasia: A meta-analysis and systematic review. Neurosci Biobehav Rev 108:498–525

    Article  PubMed  Google Scholar 

  • Den Ouden DB, Malyutina S, Basilakos A, Bonilha L, Gleichgerrcht E, Yourganov G, Fridriksson J (2019) Cortical and structural-connectivity damage correlated with impaired syntactic processing in aphasia. Human Brain Mapping 40(7):2153–2173

    Article  Google Scholar 

  • Desai, R. H. , Riccardi, N. (2021). Cognitive neuroscience of language. The Routledge handbook of cognitive linguistics 615–642

  • Deschamps I, Baum SR, Gracco VL (2014) On the role of the supramarginal gyrus in phonological processing and verbal working memory: evidence from rtms studies. Neuropsychologia 53:39–46

    Article  PubMed  Google Scholar 

  • Desowska A, Turner DL (2019) Dynamics of brain connectivity after stroke. Rev Neurosci 30(6):605–623

    Article  PubMed  Google Scholar 

  • Ding, X. , Zhang, S. , Huang, W. , Zhang, S. , Zhang, L. , Hu, J. et al. (2022). Comparative efficacy of non-invasive brain stimulation for post-stroke aphasia: a network meta-analysis and meta-regression of moderators. Neuroscience & Biobehavioral Reviews 104804

  • Dronkers NF, Baldo JV (2009) Language: Aphasia. In: Squire LR (ed) Encyclopedia of neuroscience. Academic Press, Oxford, pp 343–348

    Chapter  Google Scholar 

  • Dronkers NF, Plaisant O, Iba-Zizen MT, Cabanis EA (2007) Paul broca’s historic cases: high resolution mr imaging of the brains of leborgne and lelong. Brain 130(5):1432–1441

    Article  PubMed  CAS  Google Scholar 

  • Dronkers NF, Wilkins DP, Valin RV, Redfern BB, Jaeger J (2004) Lesion analysis of the brain areas involved in language comprehension. Cognition 92:145–177

    Article  PubMed  Google Scholar 

  • Fadiga L, Craighero L, D’Ausilio A (2009) Broca’s area in language, action, and music. Ann N Y Acad Sci 1169(1):448–458

    Article  PubMed  Google Scholar 

  • Fedorenko E, Blank IA (2020) Broca’s area is not a natural kind. Trends Cognitiv Sci 24(4):270–284

    Article  Google Scholar 

  • Fiebach CJ, Schubotz RI (2006) Dynamic anticipatory processing of hierarchical sequential events: a common role for broca’s area and ventral premotor cortex across domains? Cortex 42(4):499–502

    Article  PubMed  Google Scholar 

  • Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8:700–711

    Article  PubMed  CAS  Google Scholar 

  • Freedman D, Lane D (1983) A nonstochastic interpretation of reported significance levels. J Bus Econ Stat 1(4):292–298

    Google Scholar 

  • Fridriksson J, Bonilha L, Rorden C (2007) Severe broca’s aphasia without broca’s area damage. Behavioural neurology 18(4):237–238

    Article  PubMed  Google Scholar 

  • Fridriksson J, den Ouden DB, Hillis AE, Hickok G, Rorden C, Basilakos A, Bonilha L (2018) Anatomy of aphasia revisited. Brain 141(3):848–862

    Article  PubMed  PubMed Central  Google Scholar 

  • Fridriksson J, Den Ouden DB, Hillis AE, Hickok G, Rorden C, Basilakos A, Bonilha L (2018) Anatomy of aphasia revisited. Brain 141(3):848–862

    Article  PubMed  PubMed Central  Google Scholar 

  • Fridriksson J, Fillmore P, Guo D, Rorden C (2015) Chronic broca’s aphasia is caused by damage to broca’s and wernicke’s areas. Cerebral Cortex 25(12):4689–4696

    Article  PubMed  Google Scholar 

  • Fridriksson J, Yourganov G, Bonilha L, Basilakos A, den Ouden DB, Rorden C (2016) Revealing the dual streams of speech processing. Proceedings of the National Academy of Sciences 113:15108–15113

    Article  CAS  Google Scholar 

  • Friedmann N (2009) Speech production in broca’s agrammatic: aphasia Syntactic tree pruning. In: Grodzinsky Y, Amunts K (eds) Broca’s region, 3rd edn. Oxford University Press, United Kingdom, pp 63–82

    Google Scholar 

  • Gleichgerrcht E, Fridriksson J, Rorden C, Bonilha L (2017) Connectome-based lesion-symptom mapping (clsm): A novel approach to map neurological function. NeuroImage: Clinical 16:461–467

    Article  PubMed  Google Scholar 

  • Gleichgerrcht E, Fridriksson J, Rorden C, Bonilha L (2017) Connectome-based lesion-symptom mapping (clsm): A novel approach to map neurological function. NeuroImage: Clinical 16:461–467

    Article  PubMed  Google Scholar 

  • Goodglass H, Barresi B, Kaplan E (2001) The assessment of aphasia and related disorders. In, 3rd edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Grodzinsky Y, Santi A (2008) The battle for broca’s region. Trends in cognitive sciences 12(12):474–480

    Article  PubMed  Google Scholar 

  • Guo J, Yang M, Biswal BB, Yang P, Liao W, Chen H (2019) Abnormal functional connectivity density in post-stroke aphasia. Brain Topography 32(2):271–282

    Article  PubMed  Google Scholar 

  • Hartwigsen G, Saur D (2019) Neuroimaging of stroke recovery from aphasia-insights into plasticity of the human language network. Neuroimage 190:14–31

    Article  PubMed  Google Scholar 

  • Heiss, W. D. (2020). Mapping of recovery from poststroke aphasia: comparison of pet and fmri. fMRI: Basics and Clinical Applications 225–239

  • Hickok G (2009) The functional neuroanatomy of language. Physics of life reviews 6(3):121–143

    Article  PubMed  PubMed Central  Google Scholar 

  • Hickok G (2012) Computational neuroanatomy of speech production. Nature reviews neuroscience 13(2):135–145

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hickok G, Okada K, Serences JT (2009) Area spt in the human planum temporale supports sensory-motor integration for speech processing. Journal of neurophysiology 101(5):2725–2732

    Article  PubMed  Google Scholar 

  • Hillis AE (2007) Aphasia: progress in the last quarter of a century. Neurology 69(2):200–213

    Article  PubMed  Google Scholar 

  • Hjelmervik H, Hausmann M, Osnes B, Westerhausen R, Specht K (2014) Resting states are resting traits - an fmri study of sex differences and menstrual cycle effects in resting state cognitive control networks. PLOS ONE 9(7):1–10

    Article  Google Scholar 

  • Holm S (1979) A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics 6(2):65–70 (http://www.jstor.org/stable/4615733)

    Google Scholar 

  • Hopcroft J, Tarjan R (1973) Algorithm 447: Efficient algorithms for graph manipulation. Commun. ACM 16(6):372–378

    Article  Google Scholar 

  • Ivanova MV, Herron TJ, Dronkers NF, Baldo JV (2021) An empirical comparison of univariate versus multivariate methods for the analysis of brain-behavior mapping. Human Brain Mapping 42(4):1070–1101

    Article  PubMed  Google Scholar 

  • Joliot, M. , Jobard, G. , Naveau, M. , Delcroix, N. , Petit, L. , Zago, L., Tzourio-Mazoyer, N. (2015). Aicha: An atlas of intrinsic connectivity of homotopic areas. Journal of neuroscience methods 254

  • Karnath HO, Sperber C, Rorden C (2018) Mapping human brain lesions and their functional consequences. Neuroimage 165:180–189

    Article  PubMed  CAS  Google Scholar 

  • Keller SS, Crow T, Foundas A, Amunts K, Roberts N (2009) Broca’s area: nomenclature, anatomy, typology and asymmetry. Brain and language 109(1):29–48

    Article  PubMed  Google Scholar 

  • Kertesz A (2007) Wab-r : Western aphasia battery-revised. PsychCorp, San Antonio, TX

    Google Scholar 

  • Kimberg DY, Coslett HB, Schwartz MF (2007) Power in voxel-based lesion-symptom mapping. Journal of cognitive neuroscience 19(7):1067–1080

    Article  PubMed  Google Scholar 

  • Lee MH, Smyser CD, Shimony JS (2013) Resting-state fmri: a review of methods and clinical applications. American Journal of neuroradiology 34(10):1866–1872

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luo H, Poeppel D (2007) Phase patterns of neuronal responses reliably discriminate speech in human auditory cortex. Neuron 54(6):1001–1010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ma L, Narayana S, Robin DA, Fox PT, Xiong J (2011) Changes occur in resting state network of motor system during 4 weeks of motor skill learning. Neuroimage 58(1):226–233

    Article  PubMed  Google Scholar 

  • Maas MB, Lev MH, Ay H, Singhal AB, Greer DM, Smith WS, Furie KL (2012) The prognosis for aphasia in stroke. Journal of Stroke and Cerebrovascular Diseases 21(5):350–357

    Article  PubMed  Google Scholar 

  • Mah YH, Husain M, Rees G, Nachev P (2014) Human brain lesion-deficit inference remapped. Brain 137(9):2522–2531

    Article  PubMed  PubMed Central  Google Scholar 

  • Manan HA, Franz EA, Yahya N (2020) Functional connectivity changes in patients with brain tumours-a systematic review on resting state-fmri. Neurology, Psychiatry and Brain Research 36:73–82

    Article  Google Scholar 

  • Matchin W, Hickok G (2020) The Cortical Organization of Syntax. Cerebral Cortex 30(3):1481–1498

    Article  PubMed  Google Scholar 

  • Miceli G, Silveri M, Nocetini U, Caramazza A (1988) Patterns of dissociation in comprehension and production of nouns and verbs. Aphasiology 2:351–358

    Article  Google Scholar 

  • Mirman D, Landrigan JF, Kokolis S, Verillo S, Ferrara C, Pustina D (2018) Corrections for multiple comparisons in voxel-based lesion-symptom mapping. Neuropsychologia 115:112–123

    Article  PubMed  Google Scholar 

  • Mohr B, Difrancesco S, Harrington K, Evans S, Pulvermüller F (2014) Changes of right-hemispheric activation after constraint-induced, intensive language action therapy in chronic aphasia: fmri evidence from auditory semantic processing. Frontiers in Human Neuroscience 8:919

    Article  PubMed  PubMed Central  Google Scholar 

  • Mohr JP, Pessin MS, Finkelstein S, Funkenstein HH, Duncan GW, Davis KR (1978) Broca aphasia. Neurology 28(4):311–311

    Article  PubMed  CAS  Google Scholar 

  • Naeser MA, Palumbo CL, Helm-Estabrooks N, Stiassny-Eder D, Albert ML (1989) Severe nonfluency in aphasia: Role of the medial subcallosal fasciculus and other white matter pathways in recovery of spontaneous speech. Brain 112(1):1–38

    Article  PubMed  Google Scholar 

  • Oberhuber M, Hope T, Seghier ML, Parker Jones O, Prejawa S, Green DW, Price CJ (2016) Four functionally distinct regions in the left supramarginal gyrus support word processing. Cerebral Cortex 26(11):4212–4226

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ogawa S, Tank DW, Menon R, Ellermann JM, Kim SG, Merkle H, Ugurbil K (1992) Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging. Proceedings of the National Academy of Sciences of the United States of America 89(13):5951–5955

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Riccardi N, Rorden C, Fridriksson J, Desai RH (2022) Canonical sentence processing and the inferior frontal cortex: Is there a connection? Neurobiology of Language 3(2):318–344

    Article  PubMed  PubMed Central  Google Scholar 

  • Riccardi N, Yourganov G, Rorden C, Fridriksson J, Desai R (2020) Degradation of praxis brain networks and impaired comprehension of manipulable nouns in stroke. Journal of Cognitive Neuroscience 32(3):467–483

    Article  PubMed  Google Scholar 

  • Riccardi N, Yourganov G, Rorden C, Fridriksson J, Desai RH (2019) Dissociating action and abstract verb comprehension post-stroke. Cortex 120:131–146

    Article  PubMed  PubMed Central  Google Scholar 

  • Robson H, Zahn R, Keidel JL, Binney RJ, Sage K, Lambon Ralph MA (2014) The anterior temporal lobes support residual comprehension in wernicke’s aphasia. Brain 137(3):931–943

    Article  PubMed  PubMed Central  Google Scholar 

  • Rogalsky C, Hickok G (2011) The role of broca’s area in sentence comprehension. Journal of Cognitive Neuroscience 23(7):1664–1680

    Article  PubMed  Google Scholar 

  • Rogers BP, Morgan VL, Newton AT, Gore JC (2001) Assessing functional connectivity in the human brain by fmri. Magnetic resonance imaging 25(10):1347–1357

    Article  Google Scholar 

  • Rolls ET, Rauschecker JP, Deco G, Huang CC, Feng J (2023) Auditory cortical connectivity in humans. Cerebral Cortex 33(10):6207–6227

    Article  PubMed  Google Scholar 

  • Roux FE, Niare M, Charni S, Giussani C, Durand JB (2020) Functional architecture of the motor homunculus detected by electrostimulation. The Journal of physiology 598(23):5487–5504

    Article  PubMed  CAS  Google Scholar 

  • Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: Uses and interpretations. NeuroImage 52(3):1059–1069

    Article  PubMed  Google Scholar 

  • Schlaug G, Marchina S, Wan CY (2011) The use of non-invasive brain stimulation techniques to facilitate recovery from post-stroke aphasia. Neuropsychology review 21:288–301

    Article  PubMed  PubMed Central  Google Scholar 

  • Schneider DM (2020) Reflections of action in sensory cortex. Current opinion in neurobiology 64:53–59

    Article  PubMed  CAS  Google Scholar 

  • Schneider HR, Wawrzyniak M, Stockert A, Klingbeil J, Saur D (2022) fmri informed voxel-based lesion analysis to identify lesions associated with right-hemispheric activation in aphasia recovery. NeuroImage: Clinical 36:103169

    Article  PubMed  Google Scholar 

  • Serin E, Zalesky A, Matory A, Walter H, Kruschwitz JD (2021) Nbs-predict: A prediction-based extension of the network-based statistic. NeuroImage 244:118625

    Article  PubMed  Google Scholar 

  • Siegel JS, Ramsey LE, Snyder AZ, Metcalf NV, Chacko RV, Weinberger K, Corbetta M (2016) Disruptions of network connectivity predict impairment in multiple behavioral domains after stroke. Proceedings of the National Academy of Sciences of the United States of America 113:E4367–E4376

    PubMed  PubMed Central  CAS  Google Scholar 

  • Smitha K, Akhil Raja K, Arun K, Rajesh P, Thomas B, Kapilamoorthy T, Kesavadas C (2017) Resting state fmri: A review on methods in resting state connectivity analysis and resting state networks. The neuroradiology journal 30(4):305–317

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spell LA, Richardson JD, Basilakos A, Stark BC, Teklehaimanot A, Hillis AE, Fridriksson J (2020) Developing, implementing, and improving assessment and treatment fidelity in clinical aphasia research. American Journal of Speech-Language Pathology 29(1):286–298

    Article  PubMed  PubMed Central  Google Scholar 

  • Sperber, C. , Wiesen, D. , Karnath, H. O. (2019). An empirical evaluation of multivariate lesion behaviour mapping using support vector regression (Tech. Rep.). Wiley Online Library

  • Stefaniak JD, Geranmayeh F, Lambon Ralph MA (2022) The multidimensional nature of aphasia recovery post-stroke. Brain 145(4):1354–1367

    Article  PubMed  PubMed Central  Google Scholar 

  • Stockert A, Wawrzyniak M, Klingbeil J, Wrede K, Kümmerer D, Hartwigsen G, Saur D (2020) Dynamics of language reorganization after left temporo-parietal and frontal stroke. Brain 143(3):844–861

    Article  PubMed  Google Scholar 

  • Stumme J, Krämer C, Miller T, Schreiber J, Caspers S, Jockwitz C (2022) Interrelating differences in structural and functional connectivity in the older adult’s brain. Human Brain Mapping 43(18):5543–5561

    Article  PubMed  PubMed Central  Google Scholar 

  • Tomasi D, Volkow ND (2012) Resting functional connectivity of language networks: characterization and reproducibility. Mol. Psychiatry 17:841–854

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tremblay P, Dick A (2016) Broca and wernicke are dead, or moving past the classic model of language neurobiology. Brain and Language 162:60–71

    Article  PubMed  Google Scholar 

  • Turken A, Dronkers NF (2011) The neural architecture of the language comprehension network: converging evidence from lesion and connectivity analyses. Frontiers in systems neuroscience 5:1

    Article  PubMed  PubMed Central  Google Scholar 

  • van den Heuvel MP, Sporns O (2013) Network hubs in the human brain. Trends in cognitive sciences 17(12):683–696

    Article  PubMed  Google Scholar 

  • Vettore M, De Marco M, Pallucca C, Bendini M, Gallucci M, Venneri A (2021) White-matter hyperintensity load and differences in resting-state network connectivity based on mild cognitive impairment subtype. Frontiers in Aging Neuroscience 13:737359

    Article  PubMed  PubMed Central  Google Scholar 

  • Walker, G. M. , Hickok, G. (2023). Are recovery of fluency and recovery of phonology antagonistic? Brain awad026

  • Wang, Y. , Chung, M. , Fridriksson, J. (2022). Spectral permutation test on persistence diagrams. Proceedings of the IEEE 47th International Conference on Acoustics, Speech and Signal Processing (ICASSP) 1461 – 1465

  • Watson CE, Gotts SJ, Martin A, Buxbaum LJ (2019) Bilateral functional connectivity at rest predicts apraxic symptoms after left hemisphere stroke. NeuroImage: Clinical 21:101526

    Article  PubMed  Google Scholar 

  • Wen, T. , Hsieh, S. (2016). Network-based analysis reveals functional connectivity related to internet addiction tendency. Frontiers in Human Neuroscience 6

  • Wertz, R. T. , Deal, J. L. , Robinson, A. J. (1984). Classifying the aphasias: a comparison of the boston diagnostic aphasia examination and the western aphasia battery. In: Clinical aphasiology: Proceedings of the conference 1984 (pp. 40–47)

  • Whitaker, H. (2007). Language disorders: Aphasia. In: Encyclopedia of gerontology (second edition) (Second Edition edn, pp. 9-16). New York: Elsevier

  • Wilmskoetter J, Busby N, He X, Caciagli L, Roth R, Kristinsson S et al (2023) Dynamic network properties of the superior temporal gyrus mediate the impact of brain age gap on chronic aphasia severity. Communications Biology 6(1):727

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilson SM, Schneck SM (2020) Neuroplasticity in post-stroke aphasia: A systematic review and meta-analysis of functional imaging studies of reorganization of language processing. Neurobiology of Language 2(1):22–82

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu T, Cullen R, Mueller B, Schreiner WM, K., L. O., Schulz, S. C., Parhi, K. K. (2016) Network analysis of functional brain connectivity in borderline personality disorder using resting-state fmri. NeuroImage: Clinical 11:302–315

  • Yang M, Li J, Li Z, Yao D, Liao W, Chen H (2017) Whole-brain functional connectome-based multivariate classification of post-stroke aphasia. Neurocomputing 269:199–205

    Article  Google Scholar 

  • Yang M, Li Y, Li J, Li R, Pang Y, Yao D, Liao W, Chen H (2016) Altered intrinsic regional activity and interregional functional connectivity in post-stroke aphasia. Scientific reports 6:24803

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yourganov G, Fridriksson J, Stark B, Rorden C (2018) Removal of artifacts from resting-state fmri data in stroke. NeuroImage: Clinical 17:297–305

    Article  PubMed  Google Scholar 

  • Yourganov G, Smith KG, Fridriksson J, Rorden C (2015) Predicting aphasia type from brain damage measured with structural mri. Cortex 73:203–215

    Article  PubMed  PubMed Central  Google Scholar 

  • Yourganov G, Smith KG, Fridriksson J, Rorden C (2015) Predicting aphasia type from brain damage measured with structural mri. Cortex 73:203–215

    Article  PubMed  PubMed Central  Google Scholar 

  • Yourganov G, Stark BC, Fridriksson J, Bonilha L, Rorden C (2021) Effect of stroke on contralateral functional connectivity. Brain Connectivity 11(7):543–552

    Article  PubMed  PubMed Central  Google Scholar 

  • Zaidel D, Zaidel E, Oxbury S, Oxbury J (1995) The interpretation of sentence ambiguity in patients with unilateral focal brain surgery. Brain and language 51(3):458–468

    Article  PubMed  CAS  Google Scholar 

  • Zalesky A, Fornito A, Bullmore ET (2010) Network-based statistic: identifying differences in brain networks. NeuroImage 53(4):1197–1207

    Article  PubMed  Google Scholar 

  • Zhan Y, Yao H, Wang P, Zhou B, Zhang Z, Guo Y, Liu Y (2016) Network-based statistic show aberrant functional connectivity in alzheimer’s disease. IEEE Journal of Selected Topics in Signal Processing 10(7):1182–1188

    Article  Google Scholar 

  • Zhang B, Hua R, Qing Z, Ni L, Zhang X, Zhao H et al (2019) Abnormal brain functional connectivity coupled with hypoperfusion measured by resting-state fmri: An additional contributing factor for cognitive impairment in patients with alzheimer’s disease. Psychiatry Research: Neuroimaging 289:18–25

    Article  PubMed  Google Scholar 

  • Zhu D, Chang J, Freeman S, Tan Z, Xiao J, Gao Y, Kong J (2014) Changes of functional connectivity in the left frontoparietal network following aphasic stroke. Frontiers in behavioral neuroscience 8:167

    Article  PubMed  PubMed Central  Google Scholar 

  • Zingeser LB, Berndt RS (1990) Retrieval of nouns and verbs in agrammatism and anomia. Brain and language 39(1):14–32

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Makayla Gibson at the University of South Carolina for facilitating access to the dataset used in this study.

Funding

RHD: NIH R01DC017162 and R01DC01716202S1. JF: NIH R21-DC014170 and P50-DC014664.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization (XZ, YW, JF). Study design and data acquisition (JF). Statistical analysis (XZ, NR). Interpretation of results (XZ, YW, NR, DdO, RHD). Writing and editing (All).

Corresponding author

Correspondence to Yuan Wang.

Ethics declarations

Conflict of interest

None.

Ethical approval

The research was approved by the Institutional Review Board (IRB) at the University of South Carolina.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix. Performance evaluation of NBS

Appendix. Performance evaluation of NBS

For baseline comparison with the NBS method, mass univariate permutation testing with multiple comparison was performed. The p-value for comparing the jth edge weight was calculated by \(Pr\left( |t^{*}_j| \ge |t_j|\right)\), where \(t^{*}_j\) and \(t_j\) were the test statistics computed from permuted data and original data respectively. This p-value describes how likely the absolute value of test statistic from permuted data exceeds the absolute value of test statistic from original data. Then, the following multiple comparison procedures were applied to correct multiple p-values and control the FWER: Bonferroni correction (Bonferroni 1936), Holm’s Bonferroni correction (Holm 1979), and false discovery rate (FDR) control (Benjamini and Hochberg 1995).

We used three simulation studies to evaluate the empirical performance of the NBS method against mass univariate testing with multiple comparison. We assessed two aspects of the performance: (1) sensitivity or true positive rate (TPR): the proportion of connections or edges containing group differences that are correctly identified; (2) \(1-\) specificity or false positive rate (FPR): the proportion of edges without differences that are misclassified. Ideally, TPR \(=1\) (all edges that differ between the two groups are identified), and FPR \(=0\) (all edges that do not differ between the two groups are not identified). Suppose H is the set of edges that differ between the groups, R is the set of edges that do not differ between the groups, and \(\hat{h}\) is the set of edges comprising the subnetwork identified by a specific method (NBS, baseline mass univariate testing with multiple comparison). The TPR was then calculated by \(|H\cap \hat{h}|/|H|\) and the FPR by \(|R\cap \hat{h}|/|R|\).

Fig. 9
figure 9

Simulation setup: The white blocks in the left side’s matrices represent contrast edges, whose weights differ between the two groups. The white blocks in the right side’s matrices are the subnetwork or connected component identified by the NBS method or the edges declared significant by multiple comparison

In each of the three studies, we generated two groups of p-node networks. The group sizes are \(n_1=n_2=10\) for all three studies. In each network, the weight of the edge between node i and j was generated by \(w_{ij} \sim N(arctanh(r_{ij}), \sigma _{w}^2)\) with \(r_{ij} \sim U(-1,1)\) and \(\sigma _{w} = 1/\sqrt{p(p-1)/2-3}\). We randomly chose \(C_r \%\) of \(p(p-1)/2\) edges to differ in weights between Group 1 and 2, and refer to these edges as contrast edges. The weights of contrast edges were generated independently with

$$\begin{aligned} w_{ij}^{*}=\left\{ \begin{array}{ll} w_{ij} + w^*, \text {for } w_{ij} \ge 0\\ w_{ij} - w^*, \text {for } w_{ij} < 0 \text {,} \end{array} \right. \end{aligned}$$

where \(w^{*}\sim N(0.03, 0.01)\). We compared the performance of the methods via different p and \(C_r\) values in the three studies.

Study 1.:

\(p=20\) and \(C_r \% = 10\%\).

Study 2.:

\(p=40\) and \(C_r \% = 10\%\).

Study 3.:

\(p=40\) and \(C_r \% = 5\%\).

After the networks were generated, NBS with threshold 2.5 and mass univariate testing with multiple comparison were performed (Fig. 9). We repeated the simulation process 5,000 times for each study. Average TPR and FPP were computed respectively.

Table 3 The average TPR and FPR of the NBS with threshold 2.5 and mass univariate testing with multiple comparison, in 5,000 simulations

Simulation results

Table 3 summarizes results of the three simulation studies. In Study 1, the NBS method has the largest TPR and FPR, while the mass univariate testing with FDR detects a desirable proportion of contrast edges and contains a small number of false discoveries. In Study 2, as the network size expands, the TPRs by the NBS and mass univariate testing methods increase, whereas the FPRs increase by the NBS and FDR methods and decrease by the Bonferroni and Holm’s Bonferroni methods. In Study 3, when fewer contrast edges are placed in either of the two groups, the TPRs by the NBS and FDR methods decrease and the FPRs by the NBS and the two Bonferroni corrections stay similar to Study 2.

In summary, compared with mass univariate testing, the NBS method detects small group differences well under various network sizes and proportions of contrast edges. For the mass univariate testing, the FDR has the highest power and a favorable FPR; Bonferroni and Holm’s Bonferroni corrections are highly conservative in detecting contrast edges. Additionally, we find that the computation speed is mainly affected by network size.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riccardi, N., Zhao, X., den Ouden, DB. et al. Network-based statistics distinguish anomic and Broca’s aphasia. Brain Struct Funct (2023). https://doi.org/10.1007/s00429-023-02738-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00429-023-02738-4

Keywords

Navigation