Skip to main content
Log in

A new causal centrality measure reveals the prominent role of subcortical structures in the causal architecture of the extended default mode network

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Network representation has been an incredibly useful concept for understanding the behavior of complex systems in social sciences, biology, neuroscience, and beyond. Network science is mathematically founded on graph theory, where nodal importance is gauged using measures of centrality. Notably, recent work suggests that the topological centrality of a node should not be over-interpreted as its dynamical or causal importance in the network. Hence, identifying the influential nodes in dynamic causal models (DCM) remains an open question. This paper introduces causal centrality for DCM, a dynamics-sensitive and causally-founded centrality measure based on the notion of intervention in graphical models. Operationally, this measure simplifies to an identifiable expression using Bayesian model reduction. As a proof of concept, the average DCM of the extended default mode network (eDMN) was computed in 74 healthy subjects. Next, causal centralities of different regions were computed for this causal graph, and compared against several graph-theoretical centralities. The results showed that the subcortical structures of the eDMN were more causally central than the cortical regions, even though the graph-theoretical centralities unanimously favored the latter. Importantly, model comparison revealed that only the pattern of causal centrality was causally relevant. These results are consistent with the crucial role of the subcortical structures in the neuromodulatory systems of the brain, and highlight their contribution to the organization of large-scale networks. Potential applications of causal centrality—to study causal models of other neurotypical and pathological functional networks—are discussed, and some future lines of research are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data analyzed in this study were obtained from the COllaborative Informatics and Neuroimaging Suite Data Exchange tool (COINS; https://coins.trendscenter.org). Data collection was performed at the Mind Research Network, and funded by a Center of Biomedical Research Excellence (COBRE) grant 5P20RR021938/P20GM103472 from the NIH to Dr. Vince Calhoun. The improved parcellation map of the DMN (Alves et al. 2019) has been publicly shared by the authors on the NeuroVault repository: https://identifiers.org/neurovault.image:568084.

Code availability

A demo code for the computation of causal centrality is available at: https://github.com/tszarghami/CausalCentrality. SC-ICA is part of the Group ICA of fMRI Toolbox (GIFT): http://trendscenter.org/software/gift/. Spectral DCM, PEB and BMR have been implemented in SPM12: https://www.fil.ion.ucl.ac.uk/spm/. Graph-theoretical measures can be computed using the centrality function in MATLAB.

Notes

  1. A graph consists of nodes and edges, which represent the network elements and their interrelations, respectively (Barabási 2014).

  2. In principle, a DCG can be converted to a succession of time-dependent DAGs (as noted by the Reviewer). This leads to an SEM with time-lagged data, like the autoregression models typically used in Granger causality analysis. As shown in Friston (2011), these models can be regarded as discrete-time formulations of DCM in continuous-time.

  3. More precisely, after the distributions over the causal strengths have been estimated.

  4. Generally, \(\theta\) encompasses all the unobservable variables of the model, including the hidden states, parameters and hyperparameters. In this work, we only intervene on the causal influences (i.e., the effective connectivity parameters) of DCM, which shape the causal architecture of the graph.

  5. Free energy is a lower bound on log model evidence, hence known as evidence lower bound (ELBO) in machine learning. In variational Bayesian inference, the optimized free energy serves as a proxy for log model evidence. Note that this variational free energy is the negative of free energy in statistical physics.

  6. Here we make sure that the full model has been structurally optimized (using exploratory BMR); hence, intervention decreases the model evidence. Note that, for an over-parametrized model, edge (parameter) removal can increase the model evidence, which is the foundation of structure learning and optimization using Bayesian model reduction (Beckers et al. 2022; Friston and Penny 2011; Jafarian et al. 2019; Neacsu et al. 2022).

  7. In this context, a functional network refers to an intrinsic/large-scale brain network, which is a collection of brain regions showing functional connectivity (Friston 2011). This is not to be confused with the specialized functional network term in network neuroscience: i.e., a network in which the links depict statistical dependence between the nodes' time series (typically correlation). The two definitions can be reconciled by noting that the former (i.e., an intrinsic brain network) can be detected as a community/cluster in the latter (i.e., the whole-brain functional network)—as noted by the Reviewer.

  8. http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html.

  9. https://www.fil.ion.ucl.ac.uk/spm/.

  10. Previous studies have reported that spatial smoothing can affect (functional) network construction and subsequent network analysis in nontrivial ways (Alakörkkö et al. 2017; Fornito et al. 2013; Stanley et al. 2013; Triana et al. 2020; Wu et al. 2011). Note that these concerns are more pronounced for higher-resolution (e.g. voxel-wise) networks (Stanley et al. 2013; van den Heuvel et al. 2008; Zalesky et al. 2012). Also note that, the generative model of DCM is designed to separate the observation noise from the underlying causal effects; as such, effective connectivity might be less prone to spurious (observation-level) correlations, than functional connectivity.

  11. The choice of a small kernel size was based on recent research (Chen and Calhoun 2018), which recommends minimal spatial smoothing of fMRI data (with kernels spanning 2–3 voxels) before ICA analysis at the subject level.

  12. Recent work has revealed the implication of DMN subsystems in the execution of certain external activities as well (see Mancuso et al. 2022 and the references therein).

  13. https://identifiers.org/neurovault.image:568084.

  14. http://trendscenter.org/software/gift/.

  15. Note that vanilla spectral DCM is typically used for causal networks with less than 15 regions. For larger networks, further linearized variants of DCM can be used (Frässle et al. 2021; Friston et al. 2021).

  16. Ventro-median prefrontal cortex (VMPFC).

  17. Antero-median prefrontal cortex (AMPFC).

  18. Dorsal prefrontal cortex (DPFC).

  19. Temporal pole (TP).

  20. Middle temporal gyrus (MTG).

  21. Cerebellar hemisphere (CbH).

  22. Cerebellar tonsil (CbT).

  23. Since cross-spectra are the Fourier counterparts of cross-correlations, spectral DCM is essentially a causal model of how fMRI functional connectivity is generated.

  24. Hence, the effective connections encoded in matrix \(A\) have units of Hertz. For more intuition, note that a differential equation of the form \(\dot{x}\left( t \right) = A*x(t)\), has a solution of the form \(x\left( t \right) \propto \exp \left( {A*t} \right)\). As such, \(A\) admits units of 1/s = Hz.

  25. Blood oxygenation level dependent (BOLD).

  26. For more information on the validity and identifiability of this DCM for fMRI, the interested reader may refer to (Friston et al. 2014; Razi et al. 2015). Note that, model fitting can be assessed post-hoc using the coefficient of determination, \(R^2\), as elaborated in Footnote 30.

  27. Self-connections control the region's excitatory-inhibitory balance, or equivalently its gain or sensitivity to inputs.

  28. In general, graph theoretical measures of centrality may be applied to structural, functional, or effective connectivity networks (Bullmore and Sporns 2009; Iturria-Medina et al. 2008; Prando et al. 2020; Stam and Reijneveld 2007). However, causal centrality has been specifically designed for the latter.

  29. In Bayesian statistics, model evidence is the gold standard for model comparison/selection. In this sense, causal relevance of a centrality measure is just shorthand for the ability of that centrality information to improve the causal model evidence. Other (indirect) methods to assess the dynamical and causal relevance of the centrality information (such as comparison with other measures of nodal importance in control theory and accordance with etiological information) have been elaborated in the Discussion.

  30. \(R^2 = \frac{{\text{Predicted sum of squares}}}{{\text{Total sum of squares}}} = \frac{{{\text{PSS}}}}{{{\text{TSS}}}},\) where PSS denotes the sum of squares of cross-spectra predicted/modeled by spectral DCM, and TSS denotes the total sum of squares of cross-spectra estimated from empirical data. The summations (of cross-spectra squared) are performed over frequency bins and pairs of regions for which the cross-spectra are computed. In SPM12, \(R^2\) for any fitted DCM can be calculated using spm_dcm_fmri_check.m.

  31. Note that, the optimized model structure does not necessarily match the ground truth/true model. Because, by design, DCM offers the most accurate and least complex explanation for the given data, which may not match the more complex ground truth that has generated the data (Litvak et al. 2019). As such, the modeling results and their interpretations are bound to the model assumptions and the model space.

  32. Bayes factor (BF) is the ratio of model evidences (aka marginal likelihoods, ML) of two competing models explaining the same data \(y\). That is, BF ≜ P(y|M1)/P(y|M2) = ML1/ML2. In the log space, log BF = log (ML1) − log (ML2) ≈ F1 − F2 = ΔF. So, when ΔF = 3 nats, model 1 is deemed \(e^3 \approx 20\) times more plausible than model 2, reminiscent of the conventional 0.05 threshold in classical statistics.

  33. The complexity term is the KL-divergence between the approximate posteriors and the priors. For the derivations of the group-level free energy of PEB, please refer to Friston et al. (2015, 2016).

  34. Of course, what constitutes the right dynamics is application- and model-dependent.

  35. Recent approaches in network neuroscience have proposed models of communication dynamics as potential generative models of effective connectivity in the brain (Avena-Koenigsberger et al. 2018), to explain how patterns of functional connectivity can be generated from the interplay between (anatomical) network topology and specific communication dynamics that unfold on the network. Note that, these dynamics are mostly route-based or diffusion-based (Avena-Koenigsberger et al. 2018)—although several biophysically grounded extensions exist (Cabral et al. 2014; Deco et al. 2017). More importantly, models of communication dynamics are forward generative models, often not accompanied by model inversion. As such, adapting causal centrality to these models is not straightforward and requires further study.

  36. In this sense, BMR for DCM is similar to counterfactual analysis for SEM (Glymour et al. 2016; Pearl 2010).

  37. Note that, an inhibitory (excitatory) causal effect is not necessarily analogous to an inhibitory (excitatory) projection in the brain. Because, long range excitatory and inhibitory projections originating from one brain region (Urrutia-Piñones et al. 2022) can land on excitatory or inhibitory neural subpopulations in the target region; these subpopulations have their own interconnected dynamics. To separately model the activity and connectivity of excitatory and inhibitory neural ensembles, two-state DCMs and their extensions can be used (Marreiros et al. 2008; Sadeghi et al. 2020).

  38. Future research can investigate whether the causal and GT centrality results would diverge further as the size of the causal network increases and the dynamics get more complex.

  39. Controllability quantifies the capability of a node/module to drive the dynamical system towards a desired state, using external input. Higher controllability reflects lower average control energy needed to drive the network from that node or set of nodes (Cai et al. 2021; Gu et al. 2022; Liu and Barabási 2016; Pasqualetti et al. 2014).

  40. Dynamical flexibility refers to the brain’s propensity to transition between multiple functional states (Gu et al. 2022).

  41. Causal outflow has been defined as the absolute weighted out-degree of a node on a causal graph (Cai et al. 2021).

References

  • Alakörkkö T, Saarimäki H, Glerean E, Saramäki J, Korhonen O (2017) Effects of spatial smoothing on functional brain networks. Eur J Neurosci 46:2471–2480

    Article  PubMed  PubMed Central  Google Scholar 

  • Allen EA, Damaraju E, Plis SM, Erhardt EB, Eichele T, Calhoun VD (2014) Tracking whole-brain connectivity dynamics in the resting state. Cereb Cortex 24:663–676. https://doi.org/10.1093/cercor/bhs352

    Article  PubMed  Google Scholar 

  • Alosaimi F, Boonstra JT, Tan S, Temel Y, Jahanshahi A (2022) The role of neurotransmitter systems in mediating deep brain stimulation effects in Parkinson’s disease. Front Neurosci 2022:1

    Google Scholar 

  • Alves PN, Foulon C, Karolis V, Bzdok D, Margulies DS, Volle E, Thiebaut de Schotten M (2019) An improved neuroanatomical model of the default-mode network reconciles previous neuroimaging and neuropathological findings. Commun Biol 2:370

    Article  PubMed  PubMed Central  Google Scholar 

  • Alves PN, Forkel SJ, Corbetta M, Thiebaut de Schotten M (2022) The subcortical and neurochemical organization of the ventral and dorsal attention networks. Commun Biol 5:1343

    Article  PubMed  PubMed Central  Google Scholar 

  • Andrews-Hanna JR, Reidler JS, Sepulcre J, Poulin R, Buckner RL (2010) Functional-anatomic fractionation of the brain’s default network. Neuron 65:550–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anticevic A, Hu X, Xiao Y, Hu J, Li F, Bi F, Cole MW, Savic A, Yang GJ, Repovs G (2015) Early-course unmedicated schizophrenia patients exhibit elevated prefrontal connectivity associated with longitudinal change. J Neurosci 35:267–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avena-Koenigsberger A, Misic B, Sporns O (2018) Communication dynamics in complex brain networks. Nat Rev Neurosci 19:17–33

    Article  CAS  Google Scholar 

  • Avery MC, Krichmar JL (2017) Neuromodulatory systems and their interactions: a review of models, theories, and experiments. Front Neural Circ 108:1

    Google Scholar 

  • Bär K-J, de La Cruz F, Schumann A, Koehler S, Sauer H, Critchley H, Wagner G (2016) Functional connectivity and network analysis of midbrain and brainstem nuclei. Neuroimage 134:53–63. https://doi.org/10.1016/j.neuroimage.2016.03.071

    Article  PubMed  Google Scholar 

  • Barabási A-L (2014) Network science book. Netw Sci 625:1

    Google Scholar 

  • Bassett DS, Sporns O (2017) Network neuroscience. Nat Neurosci 20:353–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bell PT, Shine JM (2016) Subcortical contributions to large-scale network communication. Neurosci Biobehav Rev 71:313–322. https://doi.org/10.1016/j.neubiorev.2016.08.036

    Article  PubMed  Google Scholar 

  • Bocchetta M, Malpetti M, Todd EG, Rowe JB, Rohrer JD (2021) Looking beneath the surface: the importance of subcortical structures in frontotemporal dementia. Brain Commun 3:fcab158. https://doi.org/10.1093/braincomms/fcab158

    Article  PubMed  PubMed Central  Google Scholar 

  • Bonacich P (2007) Some unique properties of eigenvector centrality. Soc Netw 29:555–564

    Article  Google Scholar 

  • Bonacich P, Lloyd P (2001) Eigenvector-like measures of centrality for asymmetric relations. Soc Netw 23:191–201

    Article  Google Scholar 

  • Borgatti SP (2005) Centrality and network flow. Soc Netw 27:55–71. https://doi.org/10.1016/j.socnet.2004.11.008

    Article  Google Scholar 

  • Borgatti SP, Everett MG (2006) A graph-theoretic perspective on centrality. Soc Netw 28:466–484. https://doi.org/10.1016/j.socnet.2005.11.005

    Article  Google Scholar 

  • Borsboom D, Cramer AOJ (2013) Network analysis: an integrative approach to the structure of psychopathology. Annu Rev Clin Psychol 9:91–121

    Article  PubMed  Google Scholar 

  • Braak H, Del Tredici K, Rüb U, de Vos RAI, Steur ENJ, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211

    Article  PubMed  Google Scholar 

  • Bringmann LF, Elmer T, Epskamp S, Krause RW, Schoch D, Wichers M, Wigman JTW, Snippe E (2019) What do centrality measures measure in psychological networks? J Abnorm Psychol 128:892

    Article  PubMed  Google Scholar 

  • Buckner RL, DiNicola LM (2019) The brain’s default network: updated anatomy, physiology and evolving insights. Nat Rev Neurosci 20:593–608

    Article  CAS  PubMed  Google Scholar 

  • Buckner RL, Krienen FM, Castellanos A, Diaz JC, Yeo BTT (2011) The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol 106:2322–2345. https://doi.org/10.1152/jn.00339.2011

    Article  PubMed  PubMed Central  Google Scholar 

  • Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:186–198. https://doi.org/10.1038/nrn2575

    Article  CAS  PubMed  Google Scholar 

  • Bzdok D, Laird AR, Zilles K, Fox PT, Eickhoff SB (2013) An investigation of the structural, connectional, and functional subspecialization in the human amygdala. Hum Brain Mapp 34:3247–3266. https://doi.org/10.1002/hbm.22138

    Article  PubMed  Google Scholar 

  • Cabral J, Kringelbach ML, Deco G (2014) Exploring the network dynamics underlying brain activity during rest. Prog Neurobiol 114:102–131. https://doi.org/10.1016/j.pneurobio.2013.12.005

    Article  PubMed  Google Scholar 

  • Cai W, Ryali S, Pasumarthy R, Talasila V, Menon V (2021) Dynamic causal brain circuits during working memory and their functional controllability. Nat Commun 12:3314. https://doi.org/10.1038/s41467-021-23509-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cain JA, Visagan S, Johnson MA, Crone J, Blades R, Spivak NM, Shattuck DW, Monti MM (2021a) Real time and delayed effects of subcortical low intensity focused ultrasound. Sci Rep 11:1–14

    Article  Google Scholar 

  • Cain JA, Spivak NM, Coetzee JP, Crone JS, Johnson MA, Lutkenhoff ES, Real C, Buitrago-Blanco M, Vespa PM, Schnakers C (2021b) Ultrasonic thalamic stimulation in chronic disorders of consciousness. Brain Stimul Basic Transl Clin Res Neuromodul 14:301–303

    Google Scholar 

  • Carhart-Harris RL, Leech R, Erritzoe D, Williams TM, Stone JM, Evans J, Sharp DJ, Feilding A, Wise RG, Nutt DJ (2013) Functional connectivity measures after psilocybin inform a novel hypothesis of early psychosis. Schizophr Bull 39:1343–1351

    Article  PubMed  Google Scholar 

  • Çetin MS, Christensen F, Abbott CC, Stephen JM, Mayer AR, Cañive JM, Bustillo JR, Pearlson GD, Calhoun VD (2014) Thalamus and posterior temporal lobe show greater inter-network connectivity at rest and across sensory paradigms in schizophrenia. Neuroimage 97:117–126. https://doi.org/10.1016/j.neuroimage.2014.04.009

    Article  PubMed  Google Scholar 

  • Chen Z, Calhoun V (2018) Effect of spatial smoothing on task fMRI ICA and functional connectivity. Front Neurosci 12:15

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng H-J, Ng KK, Qian X, Ji F, Lu ZK, Teo WP, Hong X, Nasrallah FA, Ang KK, Chuang K-H, Guan C, Yu H, Chew E, Zhou JH (2021) Task-related brain functional network reconfigurations relate to motor recovery in chronic subcortical stroke. Sci Rep 11:8442. https://doi.org/10.1038/s41598-021-87789-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi EY, Yeo BT, Buckner RL (2012) The organization of the human striatum estimated by intrinsic functional connectivity. J Neurophysiol 108:2242–2263

    Article  PubMed  PubMed Central  Google Scholar 

  • Collins DL, Zijdenbos AP, Kollokian V, Sled JG, Kabani NJ, Holmes CJ, Evans AC (1998) Design and construction of a realistic digital brain phantom. IEEE Trans Med Imaging 17:463–468. https://doi.org/10.1109/42.712135

    Article  CAS  PubMed  Google Scholar 

  • Corbetta M, Siegel JS, Shulman GL (2018) On the low dimensionality of behavioral deficits and alterations of brain network connectivity after focal injury. Cortex 107:229–237. https://doi.org/10.1016/j.cortex.2017.12.017

    Article  PubMed  PubMed Central  Google Scholar 

  • Cunningham SI, Tomasi D, Volkow ND (2017) Structural and functional connectivity of the precuneus and thalamus to the default mode network. Hum Brain Mapp 38:938–956

    Article  PubMed  Google Scholar 

  • Dablander F, Hinne M (2019) Node centrality measures are a poor substitute for causal inference. Sci Rep 9:6846

    Article  PubMed  PubMed Central  Google Scholar 

  • Damaraju E, Allen EA, Belger A, Ford JM, McEwen S, Mathalon DH, Mueller BA, Pearlson GD, Potkin SG, Preda A, Turner JA, Vaidya JG, van Erp TG, Calhoun VD (2014) Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia. NeuroImage Clin 5:298–308. https://doi.org/10.1016/j.nicl.2014.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dandash O, Fornito A, Lee J, Keefe RSE, Chee MWL, Adcock RA, Pantelis C, Wood SJ, Harrison BJ (2014) Altered striatal functional connectivity in subjects with an at-risk mental state for psychosis. Schizophr Bull 40:904–913. https://doi.org/10.1093/schbul/sbt093

    Article  PubMed  Google Scholar 

  • de La Cruz F, Wagner G, Schumann A, Suttkus S, Güllmar D, Reichenbach JR, Bär K (2021) Interrelations between dopamine and serotonin producing sites and regions of the default mode network. Hum Brain Mapp 42:811–823

    Article  PubMed  Google Scholar 

  • Deco G, van Hartevelt TJ, Fernandes HM, Stevner A, Kringelbach ML (2017) The most relevant human brain regions for functional connectivity: evidence for a dynamical workspace of binding nodes from whole-brain computational modelling. Neuroimage 146:197–210. https://doi.org/10.1016/j.neuroimage.2016.10.047

    Article  PubMed  Google Scholar 

  • Deco G, Cruzat J, Cabral J, Tagliazucchi E, Laufs H, Logothetis NK, Kringelbach ML (2019) Awakening: predicting external stimulation to force transitions between different brain states. Proc Natl Acad Sci U S A 116:18088–18097. https://doi.org/10.1073/pnas.1905534116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Martino A, Scheres A, Margulies DS, Kelly AM, Uddin LQ, Shehzad Z, Biswal B, Walters JR, Castellanos FX, Milham MP (2008) Functional connectivity of human striatum: a resting state FMRI study. Cereb Cortex 18:2735–2747

    Article  PubMed  Google Scholar 

  • Elias GJB, Loh A, Gwun D, Pancholi A, Boutet A, Neudorfer C, Germann J, Namasivayam A, Gramer R, Paff M (2021) Deep brain stimulation of the brainstem. Brain 144:712–723

    Article  PubMed  Google Scholar 

  • Eraifej J, Cabral J, Fernandes HM, Kahan J, He S, Mancini L, Thornton J, White M, Yousry T, Zrinzo L, Akram H, Limousin P, Foltynie T, Aziz TZ, Deco G, Kringelbach M, Green AL (2023) Modulation of limbic resting-state networks by subthalamic nucleus deep brain stimulation. Netw Neurosci. https://doi.org/10.1162/netn_a_00297

    Article  PubMed  PubMed Central  Google Scholar 

  • Ezzyat Y, Wanda PA, Levy DF, Kadel A, Aka A, Pedisich I, Sperling MR, Sharan AD, Lega BC, Burks A (2018) Closed-loop stimulation of temporal cortex rescues functional networks and improves memory. Nat Commun 9:365

    Article  PubMed  PubMed Central  Google Scholar 

  • Faskowitz J, Esfahlani FZ, Jo Y, Sporns O, Betzel RF (2020) Edge-centric functional network representations of human cerebral cortex reveal overlapping system-level architecture. Nat Neurosci 23:1644–1654

    Article  CAS  PubMed  Google Scholar 

  • Favaretto C, Allegra M, Deco G, Metcalf NV, Griffis JC, Shulman GL, Brovelli A, Corbetta M (2022) Subcortical-cortical dynamical states of the human brain and their breakdown in stroke. Nat Commun 13:5069. https://doi.org/10.1038/s41467-022-32304-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fornito A, Zalesky A, Breakspear M (2013) Graph analysis of the human connectome: promise, progress, and pitfalls. Neuroimage 80:426–444

    Article  PubMed  Google Scholar 

  • Fransson P (2005) Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis. Hum Brain Mapp 26:15–29

    Article  PubMed  PubMed Central  Google Scholar 

  • Frässle S, Harrison SJ, Heinzle J, Clementz BA, Tamminga CA, Sweeney JA, Gershon ES, Keshavan MS, Pearlson GD, Powers A (2021) Regression dynamic causal modeling for resting-state fMRI. Hum Brain Mapp 42:2159–2180

    Article  PubMed  PubMed Central  Google Scholar 

  • Freeman LC (1979) Centrality in social networks conceptual clarification. Soc Netw 1(3):215–239

    Article  Google Scholar 

  • Friston KJ (2011) Functional and effective connectivity: a review. Brain Connect 1:13–36. https://doi.org/10.1089/brain.2011.0008

    Article  PubMed  Google Scholar 

  • Friston K, Penny W (2011) Post hoc Bayesian model selection. Neuroimage 56:2089–2099. https://doi.org/10.1016/j.neuroimage.2011.03.062

    Article  PubMed  Google Scholar 

  • Friston KJ, Harrison L, Penny W (2003) Dynamic causal modelling. Neuroimage 19:1273–1302. https://doi.org/10.1016/s1053-8119(03)00202-7

    Article  CAS  PubMed  Google Scholar 

  • Friston K, Mattout J, Trujillo-Barreto N, Ashburner J, Penny W (2007) Variational free energy and the Laplace approximation. Neuroimage 34:220–234

    Article  PubMed  Google Scholar 

  • Friston KJ, Kahan J, Biswal B, Razi A (2014) A DCM for resting state fMRI. Neuroimage 94:396–407. https://doi.org/10.1016/j.neuroimage.2013.12.009

    Article  PubMed  Google Scholar 

  • Friston K, Zeidman P, Litvak V (2015) Empirical Bayes for DCM: a group inversion scheme. Front Syst Neurosci 9:164. https://doi.org/10.3389/fnsys.2015.00164

    Article  PubMed  PubMed Central  Google Scholar 

  • Friston KJ, Litvak V, Oswal A, Razi A, Stephan KE, van Wijk BCM, Ziegler G, Zeidman P (2016) Bayesian model reduction and empirical Bayes for group (DCM) studies. Neuroimage 128:413–431. https://doi.org/10.1016/j.neuroimage.2015.11.015

    Article  PubMed  Google Scholar 

  • Friston K, Parr T, Zeidman P (2018) Bayesian model reduction. Preprint arXiv:1805.07092

  • Friston KJ, Parr T, Zeidman P, Razi A, Flandin G, Daunizeau J, Hulme OJ, Billig AJ, Litvak V, Price CJ, Moran RJ, Lambert C (2020) Second waves, social distancing, and the spread of COVID-19 across America. Wellcome Open Res 5:103. https://doi.org/10.12688/wellcomeopenres.15986.1

    Article  CAS  PubMed  Google Scholar 

  • Friston KJ, Fagerholm ED, Zarghami TS, Parr T, Hipólito I, Magrou L, Razi A (2021) Parcels and particles: Markov blankets in the brain. Netw Neurosci 5:211–251

    Article  PubMed  PubMed Central  Google Scholar 

  • Ganos C, Al-Fatly B, Fischer J-F, Baldermann J-C, Hennen C, Visser-Vandewalle V, Neudorfer C, Martino D, Li J, Bouwens T (2022) A neural network for tics: insights from causal brain lesions and deep brain stimulation. Brain 145:4385–4397

    Article  PubMed  PubMed Central  Google Scholar 

  • Georgiev D, Akram H, Jahanshahi M (2021) Deep brain stimulation for psychiatric disorders: Role of imaging in identifying/confirming DBS targets, predicting, and optimizing outcome and unravelling mechanisms of action. Psychoradiology 1:118–151. https://doi.org/10.1093/psyrad/kkab012

    Article  Google Scholar 

  • Gessell B, Stanley M, Geib B, de Brigard F (2021) Prediction and topological models in neuroscience. In: Calzavarini F, Viola M (eds) Neural mechanisms: new challenges in the philosophy of neuroscience. Springer, Cham, pp 35–55

    Chapter  Google Scholar 

  • Ghassami A, Yang A, Kiyavash N, Zhang K (2020) Characterizing distribution equivalence and structure learning for cyclic and acyclic directed graphs. In: Proceedings of the 37th international conference on machine learning, vol 119. PMLR, pp 3494–3504

  • Glymour M, Pearl J, Jewell NP (2016) Causal inference in statistics: a primer. Wiley, London

    Google Scholar 

  • Gratwicke J, Kahan J, Zrinzo L, Hariz M, Limousin P, Foltynie T, Jahanshahi M (2013) The nucleus basalis of Meynert: a new target for deep brain stimulation in dementia? Neurosci Biobehav Rev 37:2676–2688

    Article  PubMed  Google Scholar 

  • Grefkes C, Nowak DA, Eickhoff SB, Dafotakis M, Küst J, Karbe H, Fink GR (2008) Cortical connectivity after subcortical stroke assessed with functional magnetic resonance imaging. Ann Neurol 63:236–246

    Article  PubMed  Google Scholar 

  • Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci 100:253–258

    Article  CAS  PubMed  Google Scholar 

  • Gu S, Betzel RF, Mattar MG, Cieslak M, Delio PR, Grafton ST, Pasqualetti F, Bassett DS (2017) Optimal trajectories of brain state transitions. Neuroimage 148:305–317

    Article  PubMed  Google Scholar 

  • Gu S, Fotiadis P, Parkes L, Xia CH, Gur RC, Gur RE, Roalf DR, Satterthwaite TD, Bassett DS (2022) Network controllability mediates the relationship between rigid structure and flexible dynamics. Netw Neurosci 6:275–297

    Article  PubMed  PubMed Central  Google Scholar 

  • Hadley JA, Kraguljac NV, White DM, Ver Hoef L, Tabora J, Lahti AC (2016) Change in brain network topology as a function of treatment response in schizophrenia: a longitudinal resting-state fMRI study using graph theory. NPJ Schizophr 2:1–7

    Article  Google Scholar 

  • Harrington DL, Rubinov M, Durgerian S, Mourany L, Reece C, Koenig K, Bullmore E, Long JD, Paulsen JS, Rao SM (2015) Network topology and functional connectivity disturbances precede the onset of Huntington’s disease. Brain 138:2332–2346. https://doi.org/10.1093/brain/awv145

    Article  PubMed  PubMed Central  Google Scholar 

  • Harrison BJ, Davey CG, Savage HS, Jamieson AJ, Leonards CA, Moffat BA, Glarin RK, Steward T (2022) Dynamic subcortical modulators of human default mode network function. Cereb Cortex 32:4345–4355. https://doi.org/10.1093/cercor/bhab487

    Article  PubMed  Google Scholar 

  • Horn A, Fox MD (2020) Opportunities of connectomic neuromodulation. Neuroimage 221:117180

    Article  PubMed  Google Scholar 

  • Horn A, Reich M, Vorwerk J, Li N, Wenzel G, Fang Q, Schmitz-Hübsch T, Nickl R, Kupsch A, Volkmann J (2017) Connectivity predicts deep brain stimulation outcome in Parkinson disease. Ann Neurol 82:67–78

    Article  PubMed  PubMed Central  Google Scholar 

  • Horn A, Wenzel G, Irmen F, Huebl J, Li N, Neumann W-J, Krause P, Bohner G, Scheel M, Kühn AA (2019) Deep brain stimulation induced normalization of the human functional connectome in Parkinson’s disease. Brain 142:3129–3143. https://doi.org/10.1093/brain/awz239

    Article  PubMed  Google Scholar 

  • Huang D-W, Yu Z-G (2017) Dynamic-sensitive centrality of nodes in temporal networks. Sci Rep 7:41454. https://doi.org/10.1038/srep41454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iraji A, Faghiri A, Fu Z, Rachakonda S, Kochunov P, Belger A, Ford JM, McEwen S, Mathalon DH, Mueller BA (2022) Multi-spatial-scale dynamic interactions between functional sources reveal sex-specific changes in schizophrenia. Netw Neurosci 6:357–381

    Article  PubMed  PubMed Central  Google Scholar 

  • Irimia A, van Horn JD (2014) Systematic network lesioning reveals the core white matter scaffold of the human brain. Front Hum Neurosci 8:51

    Article  PubMed  PubMed Central  Google Scholar 

  • Iturria-Medina Y, Sotero RC, Canales-Rodríguez EJ, Alemán-Gómez Y, Melie-García L (2008) Studying the human brain anatomical network via diffusion-weighted MRI and graph theory. Neuroimage 40:1064–1076. https://doi.org/10.1016/j.neuroimage.2007.10.060

    Article  PubMed  Google Scholar 

  • Jafarian A, Zeidman P, Litvak V, Friston K (2019) Structure learning in coupled dynamical systems and dynamic causal modelling. Phil Trans R Soc A 377:20190048

    Article  PubMed  PubMed Central  Google Scholar 

  • Jafarian A, Zeidman P, Wykes RC, Walker M, Friston KJ (2021) Adiabatic dynamic causal modelling. Neuroimage 238:118243. https://doi.org/10.1016/j.neuroimage.2021.118243

    Article  PubMed  Google Scholar 

  • Janzing D, Balduzzi D, Grosse-Wentrup M, Schölkopf B (2013) Quantifying causal influences. Ann Stat. https://doi.org/10.1214/13-AOS1145

    Article  Google Scholar 

  • Jauhar S, McCutcheon R, Borgan F, Veronese M, Nour M, Pepper F, Rogdaki M, Stone J, Egerton A, Turkheimer F (2018) The relationship between cortical glutamate and striatal dopamine in first-episode psychosis: a cross-sectional multimodal PET and magnetic resonance spectroscopy imaging study. Lancet Psychiatry 5:816–823

    Article  PubMed  PubMed Central  Google Scholar 

  • Kakusa B, Saluja S, Dadey DYA, Barbosa DAN, Gattas S, Miller KJ, Cowan RP, Kouyoumdjian Z, Pouratian N, Halpern CH (2020) Electrophysiology and structural connectivity of the posterior hypothalamic region: much to learn from a rare indication of deep brain stimulation. Front Hum Neurosci 14:164

    Article  PubMed  PubMed Central  Google Scholar 

  • Kamiya S, Kawakita G, Sasai S, Kitazono J, Oizumi M (2023) Optimal control costs of brain state transitions in linear stochastic systems. J Neurosci 43:270–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kass RE, Raftery AE (1995) Bayes factors. J Am Stat Assoc 90:773–795. https://doi.org/10.1080/01621459.1995.10476572

    Article  Google Scholar 

  • Kelly C, de Zubicaray G, Di Martino A, Copland DA, Reiss PT, Klein DF, Castellanos FX, Milham MP, McMahon K (2009) L-dopa modulates functional connectivity in striatal cognitive and motor networks: a double-blind placebo-controlled study. J Neurosci 29:7364–7378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kernbach JM, Yeo BT, Smallwood J, Margulies DS, Thiebaut de Schotten M, Walter H, Sabuncu MR, Holmes AJ, Gramfort A, Varoquaux G (2018) Subspecialization within default mode nodes characterized in 10,000 UK Biobank participants. Proc Natl Acad Sci 115:12295–12300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirschner M, Hodzic-Santor B, Antoniades M, Nenadic I, Kircher T, Krug A, Meller T, Grotegerd D, Fornito A, Arnatkeviciute A (2022) Cortical and subcortical neuroanatomical signatures of schizotypy in 3004 individuals assessed in a worldwide ENIGMA study. Mol Psychiatry 27:1167–1176

    Article  PubMed  Google Scholar 

  • Kivela M, Arenas A, Barthelemy M, Gleeson JP, Moreno Y, Porter MA (2014) Multilayer networks. J Complex Netw 2:203–271. https://doi.org/10.1093/comnet/cnu016

    Article  Google Scholar 

  • Klaassen A-L, Heiniger A, Vaca Sánchez P, Harvey MA, Rainer G (2021) Ventral pallidum regulates the default mode network, controlling transitions between internally and externally guided behavior. Proc Natl Acad Sci 118:e2103642118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klemm K, Serrano MÁ, Eguíluz VM, Miguel MS (2012) A measure of individual role in collective dynamics. Sci Rep 2:292. https://doi.org/10.1038/srep00292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knyazev GG, Savostyanov AN, Bocharov AV, Levin EA, Rudych PD (2020) Intrinsic connectivity networks in the self-and other-referential processing. Front Hum Neurosci 14:579703

    Article  PubMed  PubMed Central  Google Scholar 

  • Koshiyama D, Fukunaga M, Okada N, Yamashita F, Yamamori H, Yasuda Y, Fujimoto M, Ohi K, Fujino H, Watanabe Y (2018) Role of subcortical structures on cognitive and social function in schizophrenia. Sci Rep 8:1183

    Article  PubMed  PubMed Central  Google Scholar 

  • Kottaram A, Johnston LA, Cocchi L, Ganella EP, Everall I, Pantelis C, Kotagiri R, Zalesky A (2019) Brain network dynamics in schizophrenia: Reduced dynamism of the default mode network. Hum Brain Mapp 40:2212–2228

    Article  PubMed  PubMed Central  Google Scholar 

  • Kunisato Y, Okamoto Y, Okada G, Aoyama S, Demoto Y, Munakata A, Nomura M, Onoda K, Yamawaki S (2011) Modulation of default-mode network activity by acute tryptophan depletion is associated with mood change: a resting state functional magnetic resonance imaging study. Neurosci Res 69:129–134

    Article  CAS  PubMed  Google Scholar 

  • Lecciso F, Colombo B (2019) Beyond the cortico-centric models of cognition: the role of subcortical functioning in neurodevelopmental disorders. Front Psychol 10:2809

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee T-W, Xue S-W (2018) Functional connectivity maps based on hippocampal and thalamic dynamics may account for the default-mode network. Eur J Neurosci 47:388–398. https://doi.org/10.1111/ejn.13828

    Article  PubMed  Google Scholar 

  • Li P, Zhang J, Xu X-K, Small M (2012) Dynamical influence of nodes revisited: a Markov chain analysis of epidemic process on networks. Chin Phys Lett 29:48903. https://doi.org/10.1088/0256-307X/29/4/048903

    Article  Google Scholar 

  • Li J, Curley WH, Guerin B, Dougherty DD, Dalca AV, Fischl B, Horn A, Edlow BL (2021) Mapping the subcortical connectivity of the human default mode network. Neuroimage 245:118758

    Article  PubMed  Google Scholar 

  • Lin Q-H, Liu J, Zheng Y-R, Liang H, Calhoun VD (2010) Semiblind spatial ICA of fMRI using spatial constraints. Hum Brain Mapp 31:1076–1088. https://doi.org/10.1002/hbm.20919

    Article  PubMed  Google Scholar 

  • Litvak V, Jafarian A, Zeidman P, Tibon R, Henson RN, Friston K (eds) (2019) There’s no such thing as a ‘true’ model: the challenge of assessing face validity. In: 2019 IEEE international conference on systems, man and cybernetics (SMC)

  • Liu Y-Y, Barabási A-L (2016) Control principles of complex networks. Rev Mod Phys 88:247. https://doi.org/10.1103/RevModPhys.88.035006

    Article  Google Scholar 

  • Liu J-G, Lin J-H, Guo Q, Zhou T (2016) Locating influential nodes via dynamics-sensitive centrality. Sci Rep 6:21380. https://doi.org/10.1038/srep21380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Chen L, Cheng R, Luo T, Lv F, Fang W, Gong J, Jiang P (2019) Altered functional connectivity in patients with subcortical ischemic vascular disease: a resting-state fMRI study. Brain Res 1715:126–133. https://doi.org/10.1016/j.brainres.2019.03.022

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Persem A, Verhagen L, Amiez C, Petrides M, Sallet J (2019) The human ventromedial prefrontal cortex: sulcal morphology and its influence on functional organization. J Neurosci 39:3627–3639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorenzini L, van Wingen G, Cerliani L (2021) Atypically high influence of subcortical activity on primary sensory regions in autism. NeuroImage Clin 32:102839

    Article  PubMed  PubMed Central  Google Scholar 

  • Lozano-Montes L, Dimanico M, Mazloum R, Li W, Nair J, Kintscher M, Schneggenburger R, Harvey M, Rainer G (2020) Optogenetic stimulation of basal forebrain Parvalbumin neurons activates the default mode network and associated behaviors. Cell Rep 33:18359. https://doi.org/10.1016/j.celrep.2020.108359

    Article  CAS  Google Scholar 

  • Luo CY, Guo XY, Song W, Chen Q, Cao B, Yang J, Gong QY, Shang H-F (2015) Functional connectome assessed using graph theory in drug-naive Parkinson’s disease. J Neurol 262:1557–1567

    Article  CAS  PubMed  Google Scholar 

  • Mana L, Vila-Vidal M, Kockeritz C, Aquino K, Fornito A, Kringelbach ML, Deco G (2022) Using in silico perturbational approach to identify critical areas in schizophrenia. BioRxiv 2022:1

    Google Scholar 

  • Mancuso L, Cavuoti-Cabanillas S, Liloia D, Manuello J, Buzi G, Cauda F, Costa T (2022) Tasks activating the default mode network map multiple functional systems. Brain Struct Funct 227:1711–1734

    Article  PubMed  PubMed Central  Google Scholar 

  • Margulies DS, Ghosh SS, Goulas A, Falkiewicz M, Huntenburg JM, Langs G, Bezgin G, Eickhoff SB, Castellanos FX, Petrides M (2016) Situating the default-mode network along a principal gradient of macroscale cortical organization. Proc Natl Acad Sci 113:12574–12579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marreiros AC, Kiebel SJ, Friston KJ (2008) Dynamic causal modelling for fMRI: a two-state model. Neuroimage 39:269–278

    Article  CAS  PubMed  Google Scholar 

  • Marsman M, Borsboom D, Kruis J, Epskamp S, van Bork R, Waldorp LJ, van der Maas HLJ, Maris G (2018) An introduction to network psychometrics: relating Ising network models to item response theory models. Multivar Behav Res 53:15–35. https://doi.org/10.1080/00273171.2017.1379379

    Article  CAS  Google Scholar 

  • Masuda N, Kori H (2010) Dynamics-based centrality for directed networks. Phys Rev E Stat Nonlin Soft Matter Phys 82:56107. https://doi.org/10.1103/PhysRevE.82.056107

    Article  CAS  Google Scholar 

  • McColgan P, Seunarine KK, Razi A, Cole JH, Gregory S, Durr A, Roos RAC, Stout JC, Landwehrmeyer B, Scahill RI (2015) Selective vulnerability of Rich Club brain regions is an organizational principle of structural connectivity loss in Huntington’s disease. Brain 138:3327–3344

    Article  PubMed  PubMed Central  Google Scholar 

  • McNally RJ (2016) Can network analysis transform psychopathology? Behav Res Ther 86:95–104

    Article  PubMed  Google Scholar 

  • Metzger CD, Wiegers M, Walter M, Abler B, Graf H (2016) Local and global resting state activity in the noradrenergic and dopaminergic pathway modulated by reboxetine and amisulpride in healthy subjects. Int J Neuropsychopharmacol 19:1

    Article  CAS  Google Scholar 

  • Monti MM, Schnakers C, Korb AS, Bystritsky A, Vespa PM (2016) Non-invasive ultrasonic thalamic stimulation in disorders of consciousness after severe brain injury: a first-in-man report. Brain Stimul 9:940–941

    Article  PubMed  Google Scholar 

  • Moran R, Pinotsis DA, Friston K (2013) Neural masses and fields in dynamic causal modeling. Front Comput Neurosci 7:57

    Article  PubMed  PubMed Central  Google Scholar 

  • Mothersill O, Tangney N, Morris DW, McCarthy H, Frodl T, Gill M, Corvin A, Donohoe G (2017) Further evidence of alerted default network connectivity and association with theory of mind ability in schizophrenia. Schizophr Res 184:52–58

    Article  PubMed  Google Scholar 

  • Murphy C, Jefferies E, Rueschemeyer S-A, Sormaz M, Wang H-t, Margulies DS, Smallwood J (2018) Distant from input: evidence of regions within the default mode network supporting perceptually-decoupled and conceptually-guided cognition. Neuroimage 171:393–401. https://doi.org/10.1016/j.neuroimage.2018.01.017

    Article  PubMed  Google Scholar 

  • Mwilambwe-Tshilobo L, Spreng RN (2021) Social exclusion reliably engages the default network: a meta-analysis of Cyberball. Neuroimage 227:117666

    Article  PubMed  Google Scholar 

  • Nair J, Klaassen A-L, Arato J, Vyssotski AL, Harvey M, Rainer G (2018) Basal forebrain contributes to default mode network regulation. Proc Natl Acad Sci USA 115:1352–1357. https://doi.org/10.1073/pnas.1712431115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neacsu V, Mirza MB, Adams RA, Friston KJ (2022) Structure learning enhances concept formation in synthetic active inference agents. PLoS ONE 17:e0277199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novelli L, Razi A (2022) A mathematical perspective on edge-centric brain functional connectivity. Nat Commun 13:524. https://doi.org/10.1038/s41467-022-29775-7

    Article  CAS  Google Scholar 

  • Olde Dubbelink KTE, Hillebrand A, Stoffers D, Deijen JB, Twisk JWR, Stam CJ, Berendse HW (2014) Disrupted brain network topology in Parkinson’s disease: a longitudinal magnetoencephalography study. Brain 137:197–207

    Article  PubMed  Google Scholar 

  • Opsahl T, Agneessens F, Skvoretz J (2010) Node centrality in weighted networks: Generalizing degree and shortest paths. Soc Netw 32:245–251. https://doi.org/10.1016/j.socnet.2010.03.006

    Article  Google Scholar 

  • Otte E, Rousseau R (2002) Social network analysis: a powerful strategy, also for the information sciences. J Inf Sci 28:441–453. https://doi.org/10.1177/016555150202800601

    Article  Google Scholar 

  • Panda R, Thibaut A, Lopez-Gonzalez A, Escrichs A, Bahri MA, Hillebrand A, Deco G, Laureys S, Gosseries O, Annen J (2022) Disruption in structural–functional network repertoire and time-resolved subcortical fronto-temporoparietal connectivity in disorders of consciousness. Elife 11:e77462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parent A, Hazrati L-N (1995) Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res Rev 20:91–127

    Article  CAS  PubMed  Google Scholar 

  • Park G, Raskutti G (2016) Identifiability assumptions and algorithm for directed graphical models with feedback. Preprint arXiv:1602.04418

  • Park KM, Lee BI, Shin KJ, Ha SY, Park J, Kim SE, Kim SE (2019) Pivotal role of subcortical structures as a network hub in focal epilepsy: evidence from graph theoretical analysis based on diffusion-tensor imaging. J Clin Neurol 15:68–76. https://doi.org/10.3988/jcn.2019.15.1.68

    Article  PubMed  Google Scholar 

  • Parsons N, Bowden SC, Vogrin S, D’Souza WJ (2020) Default mode network dysfunction in idiopathic generalised epilepsy. Epilepsy Res 159:106254

    Article  PubMed  Google Scholar 

  • Pasqualetti F, Zampieri S, Bullo F (2014) Controllability metrics, limitations and algorithms for complex networks. IEEE Trans Control Netw Syst 1:40–52. https://doi.org/10.1109/TCNS.2014.2310254

    Article  Google Scholar 

  • Pearl J (1998) Graphical models for probabilistic and causal reasoning. In: Smets P (ed) Quantified representation of uncertainty and imprecision. Handbook of defeasible reasoning and uncertainty management systems, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1735-9_12

    Chapter  Google Scholar 

  • Pearl J (2010) An introduction to causal inference. Int J Biostat 6:1–62

    Article  Google Scholar 

  • Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE (2012) Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59:2142–2154. https://doi.org/10.1016/j.neuroimage.2011.10.018

    Article  PubMed  Google Scholar 

  • Prando G, Zorzi M, Bertoldo A, Corbetta M, Zorzi M, Chiuso A (2020) Sparse DCM for whole-brain effective connectivity from resting-state fMRI data. Neuroimage 208:116367

    Article  PubMed  Google Scholar 

  • Qian Y, Li Y, Zhang M, Ma G, Lu F (2017) Quantifying edge significance on maintaining global connectivity. Sci Rep 7:45380. https://doi.org/10.1038/srep45380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qian W, Fischer CE, Churchill NW, Kumar S, Rajji T, Schweizer TA (2019) Delusions in Alzheimer disease are associated with decreased default mode network functional connectivity. Am J Geriatr Psychiatry 27:1060–1068

    Article  PubMed  Google Scholar 

  • Qin P, Northoff G (2011) How is our self related to midline regions and the default-mode network? Neuroimage 57:1221–1233

    Article  PubMed  Google Scholar 

  • Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci 98:676–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rawls E, Kummerfeld E, Mueller BA, Ma S, Zilverstand A (2022) The resting-state causal human connectome is characterized by hub connectivity of executive and attentional networks. Neuroimage 255:119211

    Article  PubMed  Google Scholar 

  • Razi A, Kahan J, Rees G, Friston KJ (2015) Construct validation of a DCM for resting state fMRI. Neuroimage 106:1–14. https://doi.org/10.1016/j.neuroimage.2014.11.027

    Article  PubMed  Google Scholar 

  • Restrepo JG, Ott E, Hunt BR (2006) Characterizing the dynamical importance of network nodes and links. Phys Rev Lett 97:94102. https://doi.org/10.1103/PhysRevLett.97.094102

    Article  CAS  Google Scholar 

  • Richardson T (1996a) A discovery algorithm for directed cyclic graphs. In: Proceedings of the twelfth international conference on uncertainty in artificial intelligence, pp 454–461

  • Richardson T (1996b) A polynomial-time algorithm for deciding Markov equivalence of directed cyclic graphical models. In: Proceedings of the twelfth international conference on uncertainty in artificial intelligence, pp 462–469

  • Robbins TW, Arnsten A (2009) The neuropsychopharmacology of fronto-executive function: monoaminergic modulation. Annu Rev Neurosci 32:267–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy AK, Shehzad Z, Margulies DS, Kelly AMC, Uddin LQ, Gotimer K, Biswal BB, Castellanos FX, Milham MP (2009) Functional connectivity of the human amygdala using resting state fMRI. Neuroimage 45:614–626. https://doi.org/10.1016/j.neuroimage.2008.11.030

    Article  PubMed  Google Scholar 

  • Ruppert MC, Greuel A, Freigang J, Tahmasian M, Maier F, Hammes J, van Eimeren T, Timmermann L, Tittgemeyer M, Drzezga A (2021) The default mode network and cognition in Parkinson’s disease: a multimodal resting-state network approach. Hum Brain Mapp 42:2623–2641

    Article  PubMed  PubMed Central  Google Scholar 

  • Sabaroedin K, Tiego J, Fornito A (2023a) Circuit-based approaches to understanding corticostriatothalamic dysfunction across the psychosis continuum. Biol Psychiatry 93:113–124. https://doi.org/10.1016/j.biopsych.2022.07.017

    Article  PubMed  Google Scholar 

  • Sabaroedin K, Razi A, Chopra S, Tran N, Pozaruk A, Chen Z, Finlay A, Nelson B, Allott K, Alvarez-Jimenez M, Graham J, Yuen HP, Harrigan S, Cropley V, Sharma S, Saluja B, Williams R, Pantelis C, Wood SJ, O’Donoghue B, Francey S, McGorry P, Aquino K, Fornito A (2023b) Frontostriatothalamic effective connectivity and dopaminergic function in the psychosis continuum. Brain 146:372–386. https://doi.org/10.1093/brain/awac018

    Article  PubMed  Google Scholar 

  • Sadeghi S, Mier D, Gerchen MF, Schmidt SNL, Hass J (2020) Dynamic causal modeling for fMRI with wilson-cowan-based neuronal equations. Front Neurosci 14:593867

    Article  PubMed  PubMed Central  Google Scholar 

  • Sang L, Zhang J, Wang L, Zhang J, Zhang Y, Li P, Wang J, Qiu M (2015) Alteration of brain functional networks in early-stage Parkinson’s disease: a resting-state fMRI study. PLoS ONE 10:e0141815

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanz Perl Y, Escrichs A, Tagliazucchi E, Kringelbach ML, Deco G (2022) Strength-dependent perturbation of whole-brain model working in different regimes reveals the role of fluctuations in brain dynamics. PLoS Comput Biol 18:e1010662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schiff ND, Giacino JT, Kalmar K, Victor JD, Baker K, Gerber M, Fritz B, Eisenberg B, Biondi T, O’Connor J, Kobylarz EJ, Farris S, Machado A, McCagg C, Plum F, Fins JJ, Rezai AR (2007) Behavioural improvements with thalamic stimulation after severe traumatic brain injury. Nature 448:600–603. https://doi.org/10.1038/nature06041

    Article  CAS  PubMed  Google Scholar 

  • Sheline YI, Barch DM, Price JL, Rundle MM, Vaishnavi SN, Snyder AZ, Mintun MA, Wang S, Coalson RS, Raichle ME (2009) The default mode network and self-referential processes in depression. Proc Natl Acad Sci 106:1942–1947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sokolov AA, Zeidman P, Erb M, Ryvlin P, Pavlova MA, Friston KJ (2019) Linking structural and effective brain connectivity: structurally informed Parametric Empirical Bayes (si-PEB). Brain Struct Funct 224:205–217

    Article  PubMed  Google Scholar 

  • Sokolov AA, Zeidman P, Razi A, Erb M, Ryvlin P, Pavlova MA, Friston KJ (2020) Asymmetric high-order anatomical brain connectivity sculpts effective connectivity. Netw Neurosci 4:871–890

    Article  PubMed  PubMed Central  Google Scholar 

  • Spirtes P (1995) Directed cyclic graphical representations of feedback models. In: Proceedings of the eleventh conference on uncertainty in artificial intelligence, pp 491–498

  • Srivastava P, Nozari E, Kim JZ, Ju H, Zhou D, Becker C, Pasqualetti F, Pappas GJ, Bassett DS (2020) Models of communication and control for brain networks: distinctions, convergence, and future outlook. Netw Neurosci 4:1122–1159

    Article  PubMed  PubMed Central  Google Scholar 

  • Stam CJ, Reijneveld JC (2007) Graph theoretical analysis of complex networks in the brain. Nonlinear Biomed Phys 1:3. https://doi.org/10.1186/1753-4631-1-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Stanley ML, Moussa MN, Paolini BM, Lyday RG, Burdette JH, Laurienti PJ (2013) Defining nodes in complex brain networks. Front Comput Neurosci 7:169

    Article  PubMed  PubMed Central  Google Scholar 

  • Stephan KE, Marshall JC, Penny WD, Friston KJ, Fink GR (2007a) Interhemispheric integration of visual processing during task-driven lateralization. J Neurosci 27:3512–3522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephan KE, Weiskopf N, Drysdale PM, Robinson PA, Friston KJ (2007b) Comparing hemodynamic models with DCM. Neuroimage 38:387–401

    Article  PubMed  Google Scholar 

  • Stephan KE, Tittgemeyer M, Knösche TR, Moran RJ, Friston KJ (2009) Tractography-based priors for dynamic causal models. Neuroimage 47:1628–1638. https://doi.org/10.1016/j.neuroimage.2009.05.096

    Article  PubMed  Google Scholar 

  • Stoodley CJ, Schmahmann JD (2009) Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage 44:489–501

    Article  PubMed  Google Scholar 

  • Summerfield C, Koechlin E (2008) A neural representation of prior information during perceptual inference. Neuron 59:336–347

    Article  CAS  PubMed  Google Scholar 

  • Triana AM, Glerean E, Saramäki J, Korhonen O (2020) Effects of spatial smoothing on group-level differences in functional brain networks. Netw Neurosci 4:556–574

    Article  PubMed  PubMed Central  Google Scholar 

  • Urrutia-Piñones J, Morales-Moraga C, Sanguinetti-González N, Escobar AP, Chiu CQ (2022) Long-range gabaergic projections of cortical origin in brain function. Front Syst Neurosci 16:1

    Article  Google Scholar 

  • van de Ven V, Wingen M, Kuypers KPC, Ramaekers JG, Formisano E (2013) Escitalopram decreases cross-regional functional connectivity within the default-mode network. PLoS ONE 8:e68355

    Article  PubMed  PubMed Central  Google Scholar 

  • van den Heuvel MP, Stam CJ, Boersma M, Pol HH (2008) Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain. Neuroimage 43:528–539

    Article  PubMed  Google Scholar 

  • van Elteren C, Quax R, Sloot P (2022) Dynamic importance of network nodes is poorly predicted by static structural features. Phys A Stat Mech Appl 593:126889. https://doi.org/10.1016/j.physa.2022.126889

    Article  Google Scholar 

  • van Wingen GA, Tendolkar I, Urner M, van Marle HJ, Denys D, Verkes R-J, Fernández G (2014) Short-term antidepressant administration reduces default mode and task-positive network connectivity in healthy individuals during rest. Neuroimage 88:47–53

    Article  PubMed  Google Scholar 

  • Vohryzek J, Cabral J, Castaldo F, Sanz-Perl Y, Lord L-D, Fernandes H, Litvak V, Kringelbach ML, Deco G (2022) Dynamic sensitivity analysis: defining personalised strategies to drive brain state transitions via whole brain modelling. Comput Struct Biotechnol J 2022:1

    Google Scholar 

  • Vonsattel J-P, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson EP Jr (1985) Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol 44:559–577

    Article  CAS  PubMed  Google Scholar 

  • Výtvarová E, Mareček R, Fousek J, Strýček O, Rektor I (2017) Large-scale cortico-subcortical functional networks in focal epilepsies: the role of the basal ganglia. NeuroImage Clin 14:28–36. https://doi.org/10.1016/j.nicl.2016.12.014

    Article  PubMed  Google Scholar 

  • Wang S, Wen H, Qiu S, Xie P, Qiu J, He H (2022) Driving brain state transitions in major depressive disorder through external stimulation. Hum Brain Mapp 43:5326–5339

    Article  PubMed  PubMed Central  Google Scholar 

  • Whitfield-Gabrieli S, Ford JM (2012) Default mode network activity and connectivity in psychopathology. Annu Rev Clin Psychol 8:49–76

    Article  PubMed  Google Scholar 

  • Wolf DH, Satterthwaite TD, Loughead J, Pinkham A, Overton E, Elliott MA, Dent GW, Smith MA, Gur RC, Gur RE (2011) Amygdala abnormalities in first-degree relatives of individuals with schizophrenia unmasked by benzodiazepine challenge. Psychopharmacology 218:503–512. https://doi.org/10.1007/s00213-011-2348-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu CW, Chen C-L, Liu P-Y, Chao Y-P, Biswal BB, Lin C-P (2011) Empirical evaluations of slice-timing, smoothing, and normalization effects in seed-based, resting-state functional magnetic resonance imaging analyses. Brain Connect 1:401–410

    Article  PubMed  Google Scholar 

  • Yamamoto M, Bagarinao E, Shimamoto M, Iidaka T, Ozaki N (2022) Involvement of cerebellar and subcortical connector hubs in schizophrenia. Neuroimage Clin 35:103140. https://doi.org/10.1016/j.nicl.2022.103140

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Qiao S, Sani OG, Sedillo JI, Ferrentino B, Pesaran B, Shanechi MM (2021) Modelling and prediction of the dynamic responses of large-scale brain networks during direct electrical stimulation. Nat Biomed Eng 5:324–345

    Article  PubMed  Google Scholar 

  • Yu E-Y, Chen D-B, Zhao J-Y (2018) Identifying critical edges in complex networks. Sci Rep 8:14469. https://doi.org/10.1038/s41598-018-32631-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Q, Yin D, Kaiser M, Xu G, Guo M, Liu F, Li J, Fan M (2023) Pathway-specific mediation effect between structure, function, and motor impairment after subcortical stroke. Neurology 100:e616–e626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zalesky A, Fornito A, Bullmore E (2012) On the use of correlation as a measure of network connectivity. Neuroimage 60:2096–2106

    Article  PubMed  Google Scholar 

  • Zamani Esfahlani F, Jo Y, Faskowitz J, Byrge L, Kennedy DP, Sporns O, Betzel RF (2020) High-amplitude cofluctuations in cortical activity drive functional connectivity. Proc Natl Acad Sci 117:28393–28401

    Article  PubMed  PubMed Central  Google Scholar 

  • Zangen A, Zibman S, Tendler A, Barnea-Ygael N, Alyagon U, Blumberger DM, Grammer G, Shalev H, Gulevski T, Vapnik T (2023) Pursuing personalized medicine for depression by targeting the lateral or medial prefrontal cortex with Deep TMS. JCI Insight 8:1

    Article  Google Scholar 

  • Zarghami TS, Friston KJ (2020) Dynamic effective connectivity. Neuroimage 207:116453

    Article  PubMed  Google Scholar 

  • Zarghami TS, Hossein-Zadeh G-A, Bahrami F (2020) Deep temporal organization of fMRI phase synchrony modes promotes large-scale disconnection in schizophrenia. Front Neurosci 14:214

    Article  PubMed  PubMed Central  Google Scholar 

  • Zarghami TS, Zeidman P, Razi A, Bahrami F, Hossein-Zadeh G-A (2023) Dysconnection and cognition in schizophrenia: a spectral dynamic causal modeling study. Hum Brain Mapp 44(7), 2873-2896. https://doi.org/10.1002/hbm.26251

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeidman P, Jafarian A, Corbin N, Seghier ML, Razi A, Price CJ, Friston KJ (2019a) A guide to group effective connectivity analysis, part 1: first level analysis with DCM for fMRI. Neuroimage 200:174–190. https://doi.org/10.1016/j.neuroimage.2019.06.031

    Article  PubMed  Google Scholar 

  • Zeidman P, Jafarian A, Seghier ML, Litvak V, Cagnan H, Price CJ, Friston KJ (2019b) A guide to group effective connectivity analysis, part 2: second level analysis with PEB. Neuroimage 200:12–25. https://doi.org/10.1016/j.neuroimage.2019.06.032

    Article  PubMed  Google Scholar 

  • Zeidman P, Friston K, Parr T (2023) A primer on variational Laplace. Neuroimage 279:120310. https://doi.org/10.1016/j.neuroimage.2023.120310

  • Zeng N, Aleman A, Liao C, Fang H, Xu P, Luo Y (2023) Role of the amygdala in disrupted integration and effective connectivity of cortico-subcortical networks in apathy. Cereb Cortex 33:3171–3180. https://doi.org/10.1093/cercor/bhac267

    Article  PubMed  Google Scholar 

  • Zhao Q, Cao H, Zhang W, Li S, Xiao Y, Tamminga CA, Keshavan MS, Pearlson GD, Clementz BA, Gershon ES (2022) A subtype of institutionalized patients with schizophrenia characterized by pronounced subcortical and cognitive deficits. Neuropsychopharmacology 47:2024–2032

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

I would like to thank the anonymous Reviewers for their time and valuable feedback on this manuscript, which improved the presentation of this work.

Author information

Authors and Affiliations

Authors

Contributions

TSZ: Conceptualization, Methodology, Analysis, Interpretation, Writing.

Corresponding author

Correspondence to Tahereh S. Zarghami.

Ethics declarations

Conflict of interest

The author has no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 866 KB)

Appendices

Appendix 1: Causal centrality derivation

In this appendix, the identifiable expression in Eq. 6 is derived from the definition of causal centrality in Eq. 4, and the normalization constant (Z in Eq. 4) is clarified in this process. To start, we expand the KL-divergence between the pre- and post-intervention distributions:

$$\begin{aligned} D_{{\text{KL}}} \left( {P\left( {\theta ,Y|m} \right)\parallel P^R \left( {\theta ,Y|m^R } \right)} \right) & = \smallint \nolimits_\theta P\left( {Y,\theta |m} \right) \log \frac{{P\left( {Y,\theta |m} \right)}}{{P^R \left( {Y,\theta |m^R } \right)}} \\ & = \smallint \nolimits_\theta P\left( {\theta |Y,m} \right) P\left( {Y|m} \right) \log \frac{{P\left( {\theta |Y,m} \right) P\left( {Y|m} \right) }}{{P^R \left( {\theta |Y,m^R } \right) P^R \left( {Y|m^R } \right)}} d\theta \\ \end{aligned}$$
(11)

The first equality is just the definition of KL-divergence: \(D_{{\text{KL}}} \left( {P_1 ||P_2 } \right) \triangleq \smallint \limits_z P_1 \left( z \right)\log \frac{P_1 \left( z \right)}{{P_2 \left( z \right)}}{\text{d}}z\). The second equality uses the product rule of probability: \(P\left( {Y,\theta |m} \right) = P\left( {\theta |Y,m} \right) P\left( {Y|m} \right)\). Herein, R as a superscript refers to the reduced/post-intervention model, whereas the full/pre-intervention model bears no superscript. With some re-arrangement, Eq. 11 simplifies to:

$$\begin{aligned} & = P\left( {Y|m} \right) \smallint \limits_\theta P\left( {\theta |Y,m} \right)\left[ {\log \frac{{P\left( {\theta |Y,m} \right) }}{{P^R \left( {\theta |Y,m^R } \right)}} + \log \frac{{P\left( {Y|m} \right)}}{{P^R \left( {Y|m^R } \right)}}} \right] {\text{d}}\theta \\ & = P\left( {Y|m} \right) \left[ { \smallint \limits_\theta P\left( {\theta |Y,m} \right)\log \frac{{P\left( {\theta |Y,m} \right) }}{{P^R \left( {\theta |Y,m^R } \right)}} {\text{d}}\theta + \smallint \limits_\theta P\left( {\theta |Y,m} \right) \log \frac{{P\left( {Y|m} \right)}}{{P^R \left( {Y|m^R } \right)}} {\text{d}}\theta } \right] \\ & = P\left( {Y|m} \right)\left[ { D_{{\text{KL}}} \left( {P\left( {\theta |Y,m} \right) P^R \left( {\theta |Y,m^R } \right)} \right) + \log \frac{{P\left( {Y|m} \right)}}{{P^R \left( {Y|m^R } \right)}} \smallint \limits_\theta P\left( {\theta |Y,m} \right){\text{d}}\theta } \right] \\ & = P\left( {Y|m} \right) \left[ { D_{{\text{KL}}} \left( {P\left( {\theta |Y,m} \right) P^R \left( {\theta |Y,m^R } \right)} \right) + \log \frac{{P\left( {Y|m} \right)}}{{P^R \left( {Y|m^R } \right)}} \times 1} \right] \\ \end{aligned}$$
(12)

In variational Bayesian inference, the optimized variational density and free energy replace the posterior density and log model evidence: \(Q\left( {\theta |Y,m} \right) \approx P\left( {\theta |Y,m} \right)\) and \(F \approx \log P\left( {Y|m} \right)\). Hence, Eq. 12 simplifies to:

$$\approx \exp \left( F \right)\left[ {D_{{\text{KL}}} \left( {Q\left( {\theta |Y,m} \right)\parallel Q^R \left( {\theta |Y,m^R } \right)} \right) + \left( {F - F^R } \right)} \right]$$
(13)

Causal centrality is estimable as the normalized version of Eq. 13, where the normalization constant \(Z = P\left( {Y|m} \right) \approx \exp \left( F \right)\). As such, we arrive at Eq. 6:

$$\begin{aligned} {\text{Causal centrality}} & \triangleq \frac{1}{{P\left( {Y|m} \right)}}D_{{\text{KL}}} \left[ {P\left( {\theta ,Y|m} \right)\parallel P^R \left( {\theta ,Y|m^R } \right)} \right] \\ & \approx D_{{\text{KL}}} \left[ {Q\left( {\theta |Y,m} \right)\parallel Q^R \left( {\theta |Y,m^R } \right)} \right] + \left( {F - F^R } \right) \\ \end{aligned}$$
(14)

where the posterior and free energy of the reduced model can be computed analytically using Bayesian model reduction, as elaborated in “Appendix 2”. Moreover, under Gaussian assumptions on the posterior distributions in variational Laplace (Friston et al. 2007; Zeidman et al. 2023), the KL-divergence between the two (full and reduced) Gaussian posteriors can be readily computed as:

$$\begin{aligned}D_{{\text{KL}}} \left( {{\rm{\mathcal{N}}}_{\text{F}}||{\rm{\mathcal{N}}}_{\text{R}} } \right) &= \frac{1}{2}\left\{{\text{tr}}\left( {\Sigma_{\text{R}}^{ - 1} \Sigma_{\text{F}} }\right) - d \right.\\ &\quad\qquad\left.+ \left( {\mu_{\text{R}} -\mu_{\text{F}} } \right)^{\text{T}} \Sigma_R^{ - 1} \left({\mu_{\text{R}} - \mu_{\text{F}} } \right) + \ln \left( {\frac{{\det \Sigma_{\text{R}} }}{{\det \Sigma_{\text{F}} }}} \right) \right\}\end{aligned}$$
(15)

where \(\mu\) and \({\Sigma }\) denote the mean vector and the covariance matrix, respectively; \(d\) is the dimensionality of the multivariate Gaussians; \(F\) and \(R\) subscripts refer to the full and reduced models, respectively; tr stands for the trace of a matrix, and \(\ln = \log_{\text{e}}\).

Appendix 2: Bayesian model reduction derivations

Bayesian model reduction refers to the analytic inversion of reduced models using the priors and posteriors of a full model. Reduced models are nested within a full model; that is, they include only a subset of the parameters of the full model after “switching off” the other parameters (by imposing very precise null priors, which shrinks them to zero). Consider Bayes rule replicated for the full and reduced models (denoted by \(m\) and \(m^R\), respectively) (Friston et al. 2016, 2018; Friston and Penny 2011):

$$P\left( {\theta |y,m} \right) = \frac{{P\left( {y|\theta ,m} \right)P\left( {\theta |m} \right)}}{{P\left( {y|m} \right)}}$$
(16)
$$P^R \left( {\theta |y,m^R } \right) = \frac{{P\left( {y|\theta ,m^R } \right)P\left( {\theta |m^R } \right)}}{{P\left( {y|m^R } \right)}}$$
(17)

Since the models differ only in terms of their priors, the likelihood terms are identical:

$$P^R \left( {y|\theta ,m^R } \right) = P\left( {y|\theta ,m} \right)$$
(18)

Hence, equating the expressions in Eqs. 16 and 17 over the likelihood gives:

$$\frac{{P^R \left( {\theta |y,m^R } \right)P^R \left( {y|m^R } \right)}}{{P^R \left( {\theta |m^R } \right)}} = P\left( {y|\theta ,m} \right) = \frac{{ P\left( {\theta |y,m} \right)P\left( {y|m} \right)}}{{P\left( {\theta |m} \right)}}$$
(19)

By re-arranging Eq. 19, we get the posterior distribution over the parameters of the reduced model:

$$P^R \left( {\theta |y,m^R } \right) = P\left( {\theta |y,m} \right)\frac{{P^R \left( {\theta |m^R } \right)}}{{P\left( {\theta |m} \right)}}\frac{{P\left( {y|m} \right)}}{{P^R \left( {y|m^R } \right)}}$$
(20)

On the R.H.S. of Eq. 20 only \(P^R \left( {y|m^R } \right)\) is unknown, which is the model evidence for the reduced model. This term can be obtained by integrating both sides of Eq. 20 over \(\theta\):

$$\int {P^R } \left( {\theta |y,m^R } \right) {\text{d}}\theta = 1 = \int P \left( {\theta |y,m} \right)\frac{{P^R \left( {\theta |m^R } \right)}}{{P\left( {\theta |m} \right)}}\frac{{P\left( {y|m} \right)}}{{P^R \left( {y|m^R } \right)}} {\text{d}}\theta$$
(21)
$$\to \frac{{P^R \left( {y{|}m^R } \right)}}{{P\left( {y{|}m} \right)}} = \smallint^P\left( {\theta {|}y,m} \right)\frac{{P^R \left( {\theta {|}m^R } \right)}}{{P\left( {\theta {|}m} \right)}} {\text{d}}\theta$$
(22)
$$\to \log P^R \left( {y|m^R } \right) = \log P\left( {y|m} \right) + \log \smallint^P\left( {\theta |y,m} \right)\frac{{P^R \left( {\theta |m^R } \right)}}{{P\left( {\theta |m} \right)}} {\text{d}}\theta$$
(23)
$$\to F^R = F + \log \smallint^Q\left( {\theta |y,m} \right)\frac{{P^R \left( {\theta |m^R } \right)}}{{P\left( {\theta |m} \right)}} {\text{d}}\theta$$
(24)

In the last line, the optimized variational density and free energy have replaced the posterior density and log model evidence: \(Q\left( {\theta |Y,m} \right) \approx P\left( {\theta |Y,m} \right)\) and \(F \approx \log P\left( {Y|m} \right)\). Under Gaussian assumptions for the distributions (in variational Laplace), the reduced posterior and free energy take simple forms, as elaborated in Friston et al. (2016, 2018) and Friston and Penny (2011).

Appendix 3: Graph theoretical centralities

This appendix includes the mathematical expressions for several graph-theoretical centrality measures. These measures are defined for weighted networks, based on Opsahl et al. (2010), which generalizes the definitions originally proposed for binary networks (Freeman 1979).

Node strength is the generalization of node degree (i.e., the number of connections of a node) for weighted networks, which is defined for node \(x_i\) as:

$$C_s \left( {x_i } \right) = \mathop \sum \limits_{j = 1}^n \left| {a_{ij} } \right|$$
(25)

where \(n\) is the number of nodes, |.| denotes the absolute value function, and \(a_{ij}\) is the \(\left( {i,j} \right){\text{th}}\) entry of the weighted adjacency matrix \(A\).

Closeness centrality is defined as:

$$C_c \left( {x_i } \right) = \left( {\mathop \sum \limits_{j = 1}^n d\left( {i,j} \right)} \right)^{ - 1}$$
(26)

where \(d(i,j)\) denotes the shortest path between nodes \(x_i\) and \(x_j\), which is the path that minimizes the cost of travelling from \(x_i\) to \(x_j\); the cost of travelling is the inverse of the weight of the (directed) edges connecting the two nodes—as encoded in the adjacency matrix.

Betweenness centrality is defined as:

$$C_B \left( {x_i } \right) = \mathop \sum \limits_{j = 1}^n \mathop \sum \limits_{k = 1}^n \frac{{g_{jk} \left( {x_i } \right)}}{{g_{jk} }}$$
(27)

where \(g_{jk} (x_i )\) is the number of shortest paths between nodes \(x_j\) and \(x_k\) that go through node \(x_i\); and \(g_{jk}\) is the total number of shortest paths between nodes \(x_j\) and \(x_k\).

Note that in the formulation of DCM (Eq. 7), \(A\) encodes the directed causal influences; hence, it corresponds to the adjacency matrix of a (directed weighted) signed graph, in which excitatory (positive) and inhibitory (negative) effects are equally important. In this case, the absolute values of the causal connections are typically computed (Cai et al. 2021; Dablander and Hinne 2019). So, to compute the closeness and betweenness centralities (based on the notion of shortest paths), \(A\) was converted to an unsigned matrix first, using the absolute function: \(A \to |A|\).

Finally, for a node to have high eigenvector centrality, it should be connected to many other nodes that also have high eigenvector centrality. In other words, connection to an important node counts more than connection to a less important node. This notion is formalized using the first eigenvector of the adjacency matrix (Bonacich 2007; Bonacich and Lloyd 2001):

$$C_E \left( {x_i } \right) = \frac{1}{\lambda } \sum \limits_{j \in N\left( {x_i } \right)} \nu_j$$
(28)

where \(\lambda\) is the largest eigenvalue of an undirected adjacency matrix, and \(\nu_j\) is the jth element of the corresponding eigenvector; \(N(x_i )\) denotes the set of nodes that are adjacent/neighbor to \(x_i\). Since eigenvector centrality is defined for undirected graphs, the (unsigned weighted) directed adjacency matrix \(\left| A \right|\) was first symmetrized as follows: \(\left| A \right| \to \frac{{\left| A \right| + \left| {A^{\text{T}} } \right| }}{2} = \left| A \right|_{{\text{sym}}}\); where \(T\) denotes the transpose operator.

The graph-theoretical centrality measures were computed using the centrality function in MATLAB R2021b.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarghami, T.S. A new causal centrality measure reveals the prominent role of subcortical structures in the causal architecture of the extended default mode network. Brain Struct Funct 228, 1917–1941 (2023). https://doi.org/10.1007/s00429-023-02697-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-023-02697-w

Keywords

Navigation