Skip to main content
Log in

A central mesencephalic reticular formation projection to the Edinger–Westphal nuclei

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The central mesencephalic reticular formation, a region associated with horizontal gaze control, has recently been shown to project to the supraoculomotor area in primates. The Edinger–Westphal nucleus is found within the supraoculomotor area. It has two functionally and anatomically distinct divisions: (1) the preganglionic division, which contains motoneurons that control both the actions of the ciliary muscle, which focuses the lens, and the sphincter pupillae muscle, which constricts the iris, and (2) the centrally projecting division, which contains peptidergic neurons that play a role in food and fluid intake, and in stress responses. In this study, we used neuroanatomical tracers in conjunction with immunohistochemistry in Macaca fascicularis monkeys to examine whether either of these Edinger–Westphal divisions receives synaptic input from the central mesencephalic reticular formation. Anterogradely labeled reticular axons were observed making numerous boutonal associations with the cholinergic, preganglionic motoneurons of the Edinger–Westphal nucleus. These associations were confirmed to be synaptic contacts through the use of confocal and electron microscopic analysis. The latter indicated that these terminals generally contained pleomorphic vesicles and displayed symmetric, synaptic densities. Examination of urocortin-1-positive cells in the same cases revealed fewer examples of unambiguous synaptic relationships, suggesting the centrally projecting Edinger–Westphal nucleus is not the primary target of the projection from the central mesencephalic reticular formation. We conclude from these data that the central mesencephalic reticular formation must play a here-to-for unexpected role in control of the near triad (vergence, lens accommodation and pupillary constriction), which is used to examine objects in near space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Akert K, Glicksman MA, Lang W, Grob P, Huber A (1980) The Edinger-Westphal nucleus in the monkey. A retrograde tracer study. Brain Res 184:491–498

    Article  CAS  PubMed  Google Scholar 

  • Appell PP, Behan M (1990) Sources of subcortical GABAergic projections to the superior colliculus in the cat. J Comp Neurol 302:143–158

    Article  CAS  PubMed  Google Scholar 

  • Barnerssoi M, May PJ (2015) Postembedding immunohistochemistry for inhibitory neurotransmitters in conjunction with neuroanatomical tracers. In: Van Boekstaele EJ (ed) Transmission electron microscopy methods for understanding the brain. Springer, New York (in Press)

    Google Scholar 

  • Bender MB, Shanzer S (1964) Oculomotor pathways defined by electrical stimulation and lesions in the brainstem of monkey. In: Bender MB (ed) The oculomotor system. Hoeber Medical Division, Harper & Row, New York, pp 81–140

    Google Scholar 

  • Bohlen MO, Warren S, May PJ (2015) A central mesencephalic reticular formation projection to the supraoculomotor area in macaque monkeys. Brain Struct Funct. doi:10.1007/s00429-015-1039-2

  • Burde RM (1988) Disparate visceral neuronal pools subserve spinal cord and ciliary ganglion in the monkey: a double labeling approach. Brain Res 440:177–180

    Article  CAS  PubMed  Google Scholar 

  • Burde RM, Loewy AD (1980) Central origin of oculomotor parasympathetic neurons in the monkey. Brain Res 198:434–439

    Article  CAS  PubMed  Google Scholar 

  • Chaturvedi V, Van Gisbergen JA (2000) Stimulation in the rostral pole of monkey superior colliculus: effects on vergence eye movements. Exp Brain Res 132:72–78

    Article  CAS  PubMed  Google Scholar 

  • Chen B, May PJ (2000) The feedback circuit connecting the superior colliculus and central mesencephalic reticular formation: a direct morphological demonstration. Exp Brain Res 131:10–21

    Article  CAS  PubMed  Google Scholar 

  • Clarke RJ, Coimbra CJ, Aléssio ML (1985) Distribution of parasympathetic motoneurones in the oculomotor complex innervating the ciliary ganglion in the marmoset (Callithrix jacchus). Acta Anat (Basel) 121:53–58

    Article  CAS  Google Scholar 

  • Cohen B, Büttner-Ennever JA (1984) Projections from the superior colliculus to a region of the central mesencephalic reticular formation (cMRF) associated with horizontal saccadic eye movements. Exp Brain Res 57:167–176

    Article  CAS  PubMed  Google Scholar 

  • Cohen B, Matsuo V, Fradin J, Raphan T (1985) Horizontal saccades induced by stimulation of the central mesencephalic reticular formation. Exp Brain Res 57:605–616

    Article  CAS  PubMed  Google Scholar 

  • Cohen B, Waitzman DM, Büttner-Ennever JA, Matsuo V (1986) Horizontal saccades and the central mesencephalic reticular formation. Prog Brain Res 64:243–256

    Article  CAS  PubMed  Google Scholar 

  • Crawford K, Terasawa E, Kaufman PL (1989) Reproducible stimulation of ciliary muscle contraction in the cynomolgus monkey via a permanent indwelling midbrain electrode. Brain Res 503:265–272

    Article  CAS  PubMed  Google Scholar 

  • Cromer JA, Waitzman DM (2006) Neurones associated with saccade metrics in the monkey central mesencephalic reticular formation. J Physiol 570:507–523

    Article  CAS  PubMed  Google Scholar 

  • Cromer JA, Waitzman DM (2007) Comparison of saccade-associated neuronal activity in the primate central mesencephalic and paramedian pontine reticular formations. J Neurophysiol 98:835–885

    Article  PubMed  Google Scholar 

  • Das VE (2011) Cells in the supraoculomotor area in monkeys with strabismus show activity related to the strabismus angle. Ann NY Acad Sci 1233:85–90

    Article  PubMed  PubMed Central  Google Scholar 

  • Das VE (2012) Responses of cells in the midbrain near-response area in monkeys with strabismus. IOVS 53:3858–3864

    Google Scholar 

  • Edwards SB (1975) Autoradiographic studies of the projections of the midbrain reticular formation: descending projections of nucleus cuneiformis. J Comp Neurol 161:341–358

    Article  CAS  PubMed  Google Scholar 

  • Edwards SB, de Olmos JS (1976) Autoradiographic studies of the projections of the midbrain reticular formation: ascending projections of nucleus cuneiformis. J Comp Neurol 165:417–431

    Article  CAS  PubMed  Google Scholar 

  • Edwards SB, Henkel CK (1978) Superior colliculus connections with the extraocular motor nuclei in the cat. J Comp Neurol 179:451–467

    Article  CAS  PubMed  Google Scholar 

  • Enright JT (1984) Changes in vergence mediated by saccades. J Physiol 350:9–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erichsen JT, May PJ (2002) The pupillary and ciliary components of the cat Edinger-Westphal nucleus: a transsynaptic transport investigation. Vis Neurosci 19:15–29

    Article  PubMed  Google Scholar 

  • Erichsen JT, Wright NF, May PJ (2014) Morphology and ultrastructure of the medial rectus subgroups motoneurons in the macaque monkey. J Comp Neurol 522:626–641

    Article  PubMed  PubMed Central  Google Scholar 

  • Gamlin PDR, Zhang Y, Clendaniel RA, Mays LE (1994) Behavior of identified Edinger-Westphal neurons during ocular accommodation. J Neurophysiol 72:2368–2382

    CAS  PubMed  Google Scholar 

  • Gerfen CR, Sawchenko PE (1984) An anterograde neuroanatomical tracing method that shows the detailed morphology of neurons, their axons and terminals: immunohistochemical localization of an axonally transported plant lectin, Phaseolus vulgaris leucoagglutinin (PHA-L). Brain Res 290:219–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Handel A, Glimcher PW (1997) Response properties of saccade-related burst neurons in the central mesencephalic reticular formation. J Neurophysiol 78:2164–2175

    CAS  PubMed  Google Scholar 

  • Harting JK (1977) Descending pathways from the superior collicullus: an autoradiographic analysis in the rhesus monkey (Macaca mulatta). J Comp Neurol 173:583–612

    Article  CAS  PubMed  Google Scholar 

  • Horn AK, Eberhorn A, Härtig W, Ardeleanu P, Messoudi A, Büttner-Ennever JA (2008) Perioculomotor cell groups in monkey and man defined by their histochemical and functional properties: reappraisal of the Edinger-Westphal nucleus. J Comp Neurol 507:1317–1335

    Article  PubMed  Google Scholar 

  • Horn AKE, Bohlen MO, Warren S, May PJ (2012) Evidence for the central mesencephalic reticular formation playing a role in the near triad. Soc Neurosci Abst 38(371):02

    Google Scholar 

  • Judge SJ, Cumming BG (1986) Neurons in the monkey midbrain with activity related to vergence eye movement and accommodation. J Neurophysiol 55:915–930

    CAS  PubMed  Google Scholar 

  • Kozicz T (2003) Neurons colocalizing urocortin and cocaine and amphetamine-regulated transcript immunoreactivities are induced by acute lipopolysaccharide stress in the Edinger-Westphal nucleus in the rat. Neuroscience 116:315–320

    Article  CAS  PubMed  Google Scholar 

  • Kozicz T, Yanaihara H, Arimura A (1998) Distribution of urocortin-like immunoreactivity in the central nervous system of the rat. J Comp Neurol 391:1–10

    Article  CAS  PubMed  Google Scholar 

  • Kozicz T, Li M, Arimura A (2001) The activation of urocortin immunoreactive neurons in the Edinger-Westphal nucleus following stress in rats. Stress 4:85–90

    Article  CAS  PubMed  Google Scholar 

  • Kozicz T, Bittencourt JC, May PJ, Reiner A, Gamlin PD, Palkovits M, Horn AK, Toledo CA, Ryabinin AE (2011) The Edinger-Westphal nucleus: a historical, structural, and functional perspective on a dichotomous terminology. J Comp Neurol 519:1413–1434

    Article  PubMed  PubMed Central  Google Scholar 

  • Kübler TC, Kasneci E, Rosensteil W, Schiefer U, Nagel K, Papgeorgiou E (2014) Stress-indicators and exploratory gaze for the analysis of hazard perception in patients with visual field loss. Transport Res (F) 24:231–243

    Google Scholar 

  • Loewenfeld IE (1993) The light reflex. The pupil, anatomy, physiology, and clinical applications. Iowa State University Press, Ames, pp 83–273

    Google Scholar 

  • Maciewicz R, Phipps BS, Foote WE, Aronin N, Difiglia M (1983) The distribution of substance P-containing neurons in the cat Edinger-Westphal nucleus: relationship to efferent projection systems. Brain Res 270:217–230

    Article  CAS  PubMed  Google Scholar 

  • Maxwell JS, King WM (1992) Dynamics and efficacy of saccade-facilitated vergence eye movements in monkeys. J Neurophysiol 68:1248–1260

    CAS  PubMed  Google Scholar 

  • May PJ, Porter JD, Gamlin PD (1992) Interconnections between the primate cerebellum and midbrain near-response regions. J Comp Neurol 315:98–116

    Article  CAS  PubMed  Google Scholar 

  • May PJ, Reiner AJ, Ryabinin AE (2008a) Comparison of the distributions of urocortin-containing and cholinergic neurons in the perioculomotor midbrain of the cat and macaque. J Comp Neurol 507:1300–1316

    Article  PubMed  PubMed Central  Google Scholar 

  • May PJ, Sun W, Erichsen JT (2008b) Defining the pupillary component of the perioculomotor preganglionic population within a unitary primate Edinger-Westphal nucleus. In: Kennard C, Leigh RJ (eds) Using eye movements as an experimental probe of brain function, Prog Brain Res, vol 171, pp 97–106

  • Mays LE (1984) Neural control of vergence eye movements: convergence and divergence neurons in midbrain. J Neurophysiol 51:1091–1108

    CAS  PubMed  Google Scholar 

  • Mays LE, Porter JD, Gamlin PD, Tello CA (1986) Neural control of vergence eye movements: neurons encoding vergence velocity. J Neurophysiol 56:1007–1021

    CAS  PubMed  Google Scholar 

  • McDougal DH, Gamlin PD (2015) Autonomic control of the eye. Compr Physiol 5:439–473

    PubMed  PubMed Central  Google Scholar 

  • Moschovakis AK, Karabelas AB, Highstein SM (1988) Structure-function relationships in the primate superior colliculus. II. Morphological identity of presaccadic neurons. J Neurophysiol 60:263–302

    CAS  PubMed  Google Scholar 

  • Ohtsuka K, Nagasaka Y (1999) Divergent axon collaterals from the rostral superior colliculus to the pretectal accommodation-related areas and the omnipause neuron area in the cat. J Comp Neurol 413:68–76

    Article  CAS  PubMed  Google Scholar 

  • Ohtsuka K, Sato A (1997) Retinal projections to the accommodation-related area in the rostral superior colliculus of the cat. Exp Brain Res 113:169–173

    Article  CAS  PubMed  Google Scholar 

  • Pathmanathan JS, Cromer JA, Cullen KE, Waitzman DM (2006a) Temporal characteristics of neurons in the central mesencephalic reticular formation of head unrestrained monkeys. Exp Brain Res 168:471–492

    Article  PubMed  Google Scholar 

  • Pathmanathan JS, Presnell R, Cromer JA, Cullen KE, Waitzman DM (2006b) Spatial characteristics of neurons in the central mesencephalic reticular formation (cMRF) of head-unrestrained monkeys. Exp Brain Res 168:455–470

    Article  PubMed  Google Scholar 

  • Perkins E, Warren S, May PJ (2009) The mesencephalic reticular formation as a conduit for primate collicular gaze control: tectal inputs to neurons targeting the spinal cord and medulla. Anat Rec 292:1162–1181

    Article  Google Scholar 

  • Perkins E, May PJ, Warren S (2014) Feed-forward and feedback projections of midbrain reticular formation neurons in the cat. Front Neuroanat 7:55

    Article  PubMed  PubMed Central  Google Scholar 

  • Rasband WS (1997) ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA, http://imagej.nih.gov/ij/

  • Ryabinin AE, Weitemier AZ (2006) The urocortin 1 neurocircuit: ethanol-sensitivity and potential involvement in alcohol consumption. Brain Res Rev 52:368–380

    Article  CAS  PubMed  Google Scholar 

  • Sun W, May PJ (2014a) Central pupillary light reflex circuits in the cat: the olivary pretectal nucleus. J Comp Neurol 522:3960–3977

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun W, May PJ (2014b) Central pupillary light reflex circuits in the cat: morphology, ultrastructure and inputs of preganglionic motoneurons. J Comp Neurol 522:3978–4002

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang X, Büttner-Ennever J, Mustari MJ, Horn AKE (2015) Internal organization of medial rectus and inferior rectus muscle neurons in the C group of the oculomotor nucleus in monkey. J Comp Neurol 523:1809–1823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Horn MR, Waitzman DM, Cullen KE (2013) Vergence neurons identified in the rostral superior colliculus code smooth eye movements in 3D space. J Neurosci 33:7274–7284

    Article  PubMed  Google Scholar 

  • Vasconcelos LA, Donaldson C, Sita LV, Casatti CA, Lotfi CF, Wang L, Cadinouche MZ, Frigo L, Elias CF, Lovejoy DA, Bittencourt JC (2003) Urocortin in the central nervous system of a primate (Cebus apella): sequencing, immunohistochemical, and hybridization histochemical characterization. J Comp Neurol 463:157–175

    Article  CAS  PubMed  Google Scholar 

  • Waitzman DM, Silakov VL, Cohen B (1996) Central mesencephalic reticular formation (cMRF) neurons discharging before and during eye movements. J Neurophysiol 75:1546–1572

    CAS  PubMed  Google Scholar 

  • Waitzman DM, Van Horn MR, Cullen KE (2008) Neuronal evidence for individual eye control in the primate cMRF. Prog Brain Res 171:143–150

    Article  PubMed  Google Scholar 

  • Walton MM, Mays LE (2003) Discharge of saccade-related superior colliculus neurons during saccades accompanied by vergence. J Neurophysiol 90:1124–1139

    Article  PubMed  Google Scholar 

  • Wang N, Warren S, May PJ (2010) The macaque midbrain reticular formation sends side-specific feedback to the superior colliculus. Exp Brain Res 201:701–717

    Article  PubMed  Google Scholar 

  • Wang N, Perkins E, Zhou L, Warren S, May PJ (2013) Anatomical evidence that the superior colliculus controls saccades through central mesencephalic reticular formation gating of omnipause neuron activity. J Neurosci 33:16285–16296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang CA, Boehnke SE, Itti L, Munoz DP (2014) Transient pupil response is modulated by contrast-based saliency. J Neurosci 34:408–417

    Article  CAS  PubMed  Google Scholar 

  • Warren S, Waitzman DM, May PJ (2008) Anatomical evidence for interconnections between the central mesencephalic reticular formation and cervical spinal cord in the cat and macaque. Anat Rec 291:141–160

    Article  Google Scholar 

  • Warwick R (1954) The ocular parasympathetic nerve supply and its mesencephalic sources. J Anat 88:71–93

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weitemier AZ, Ryabinin AE (2005) Lesions of the Edinger-Westphal nucleus alter food and water consumption. Behav Neurosci 119:1235–1243

    Article  CAS  PubMed  Google Scholar 

  • Weitemier AZ, Ryabinin AE (2006) Urocortin 1 in the dorsal raphe regulates food and fluid consumption, but not ethanol preference in C57BL/6J mice. Neuroscience 137:1439–1445

    Article  CAS  PubMed  Google Scholar 

  • Wouterlood FG, Groenewegen HJ (1985) Neuroanatomical tracing by use of Phaseolus vulgaris-leucoagglutinin (PHA-L): electron microscopy of PHA-L filled neuronal somata, dendrites, axons and axon terminals. Brain Res 326:188–191

    Article  CAS  PubMed  Google Scholar 

  • Zhou W, King WM (1998) Premotor commands encode monocular eye movements. Nature 393:692–695

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Warren S, May PJ (2008) The feedback circuit connecting the central mesencephalic reticular formation and the superior colliculus in the macaque monkey: tectal connections. Exp Brain Res 189:485–496

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the help of Jinrong Wei in the histological preparation of the light microscopic material and Glenn Hoskins for preparing the material for ultrastructural examination. We also thank Ahmed Messoudi for excellent technical assistance in preparation of double immunoperoxidase and immunofluorescence staining.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anja K. E. Horn.

Ethics declarations

Conflict of interest

This study was funded by National Institutes of Health of the USA, National Eye Institute grant EY014263 awarded to PJM, SW and AH. In addition, the contribution of MB was supported by DFG Research Training Group 1091, Klinikum Großhadern, Ludwig-Maximilians-University Munich, Germany. The authors declare that they have no conflicts of interest pursuant to the publication of this research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

May, P.J., Warren, S., Bohlen, M.O. et al. A central mesencephalic reticular formation projection to the Edinger–Westphal nuclei. Brain Struct Funct 221, 4073–4089 (2016). https://doi.org/10.1007/s00429-015-1147-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-015-1147-z

Keywords

Navigation