Skip to main content
Log in

Prefronto-subcortical imbalance characterizes poor decision-making: neurochemical and neural functional evidences in rats

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

A major challenge of decision-making research in recent years has been to develop models of poor decision-making to identify its neural bases. Toward this goal, we developed a Rat Gambling Task that discerns good and poor decision-makers in a complex and conflicting situation such as the human Iowa Gambling Task. Nothing is known about the role of the monoaminergic modulatory systems in shaping these phenotypes. Moreover, functional and temporal contributions of brain areas during poor compared to good decision-making remains elusive. Good and poor decision-makers were identified in the Rat Gambling Task. We investigated neurobiological correlates of decision-making capacities in (1) dopamine and serotonin turnovers using post-mortem tissue measurements, (2) the neural circuits differentially recruited during decision-making within the prefronto-subcortical network using cellular Fos immunodetection. Imbalance in monoamine metabolism was revealed in poor decision-makers, i.e. a higher infralimbic vs. lower amygdala serotonergic metabolism. Moreover, good decision-making recruited a wide prefronto-subcortical network but once good choices had been made, a disengagement of key prefrontal areas (insular and infralimbic cortices notably) and the amygdala was observed. By contrast, poor decision-making was associated with a strikingly low recruitment of the prefronto-subcortical network, together with sustained amygdala activity. Our results identify two complementary neurobiological substrates characterizing poor decision-makers: imbalanced monoaminergic systems at rest, congruent with their previously identified complex behavioral phenotype, and an aberrant low recruitment of key brain areas for executive functions and affective valence during the process of decision-making. These biomarkers could sustain vulnerability to developing poor decision-making related disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Asan E, Steinke M, Lesch KP (2013) Serotonergic innervation of the amygdala: targets, receptors, and implications for stress and anxiety. Histochem Cell Biol 139:785–813

    Article  CAS  PubMed  Google Scholar 

  • Avissar S, Schreiber G (2002) Toward molecular diagnostics of mood disorders in psychiatry. Trends Mol Med 8:294–300

    Article  CAS  PubMed  Google Scholar 

  • Balodis IM, Kober H, Worhunsky PD, Stevens MC, Pearlson GD, Potenza MN (2012) Diminished frontostriatal activity during processing of monetary rewards and losses in pathological gambling. Biol Psychiatry 71:749–757

    Article  PubMed Central  PubMed  Google Scholar 

  • Barbelivien A, Billy E, Lazarus C, Kelche C, Majchrzak M (2008) Rats with different profiles of impulsive choice behavior exhibit differences in responses to caffeine and d-amphetamine and in medial prefrontal cortex 5-HT utilization. Behav Brain Res 187:273–283

    Article  CAS  PubMed  Google Scholar 

  • Barker JM, Torregrossa MM, Taylor JR (2013) Bidirectional modulation of infralimbic dopamine D1 and D2 receptor activity regulates flexible reward seeking. Front Neurosci 7:126

    Article  PubMed Central  PubMed  Google Scholar 

  • Bechara A, Damasio AR, Damasio H, Anderson SW (1994) Insensitivity to future consequences following damage to human prefrontal cortex. Cognition 50:7–15

    Article  CAS  PubMed  Google Scholar 

  • Bechara A, Damasio H, Tranel D, Damasio AR (1997) Deciding advantageously before knowing the advantageous strategy. Science 275:1293–1295

    Article  CAS  PubMed  Google Scholar 

  • Berntson GG, Norman GJ, Bechara A, Bruss J, Tranel D, Cacioppo JT (2011) The insula and evaluative processes. Psychol Sci 22:80–86

    Article  PubMed Central  PubMed  Google Scholar 

  • Beyeler A et al (2010) Stimulation of serotonin 2C receptors elicits abnormal oral movements by acting on pathways other than the sensorimotor one in the rat basal ganglia. Neuroscience 169:158–170

    Article  CAS  PubMed  Google Scholar 

  • Cabral J et al (2014) Exploring mechanisms of spontaneous functional connectivity in MEG: how delayed network interactions lead to structured amplitude envelopes of band-pass filtered oscillations. Neuroimage 90:423–435

    Article  PubMed  Google Scholar 

  • Craig AD (2009) How do you feel–now? The anterior insula and human awareness. Nat Rev Neurosci 10:59–70

    Article  CAS  PubMed  Google Scholar 

  • Dalley JW, Theobald DE, Eagle DM, Passetti F, Robbins TW (2002) Deficits in impulse control associated with tonically-elevated serotonergic function in rat prefrontal cortex. Neuropsychopharmacology 26:716–728

    Article  CAS  PubMed  Google Scholar 

  • de Visser L, Baars AM, Lavrijsen M, van der Weerd CM, van den Bos R (2011a) Decision-making performance is related to levels of anxiety and differential recruitment of frontostriatal areas in male rats. Neuroscience 184:97–106

    Article  PubMed  Google Scholar 

  • de Visser L, Baars AM, van’t Klooster J, van den Bos R (2011b) Transient inactivation of the medial prefrontal cortex affects both anxiety and decision-making in male Wistar rats. Front Neurosci 5:102

    PubMed Central  PubMed  Google Scholar 

  • de Visser L et al (2011c) Rodent versions of the Iowa gambling task: opportunities and challenges for the understanding of decision-making. Front Neurosci 5:109

    PubMed Central  PubMed  Google Scholar 

  • Dunn BD, Dalgleish T, Lawrence AD (2006) The somatic marker hypothesis: a critical evaluation. Neurosci Biobehav Rev 30:239–271

    Article  PubMed  Google Scholar 

  • Ernst M, Paulus MP (2005) Neurobiology of decision making: a selective review from a neurocognitive and clinical perspective. Biol Psychiatry 58:597–604

    Article  PubMed  Google Scholar 

  • Ernst M et al (2002) Decision-making in a risk-taking task: a PET study. Neuropsychopharmacology 26:682–691

    Article  PubMed  Google Scholar 

  • Eskenazi D, Neumaier JF (2012) Increased expression of 5-HT(6) receptors in dorsolateral striatum decreases habitual lever pressing, but does not affect learning acquisition of simple operant tasks in rats. Eur J Neurosci 34:343–351

    Article  Google Scholar 

  • Fellows LK (2004) The cognitive neurosciences of human decision making: a review and conceptual framework. Behav Cogn Neurosci Rev 3:159–172

    Article  PubMed  Google Scholar 

  • Fitoussi A, Dellu-Hagedorn F, De Deurwaerdere P (2013) Monoamines tissue content analysis reveals restricted and site-specific correlations in brain regions involved in cognition. Neuroscience 255:233–245

    Article  CAS  PubMed  Google Scholar 

  • Gregoire S, Rivalan M, Le Moine C, Dellu-Hagedorn F (2012) The synergy of working memory and inhibitory control: behavioral, pharmacological and neural functional evidences. Neurobiol Learn Mem 97:202–212

    Article  CAS  PubMed  Google Scholar 

  • Harle KM, Shenoy P, Paulus MP (2013) The influence of emotions on cognitive control: feelings and beliefs-where do they meet? Front Hum Neurosci 7:508

    Article  PubMed Central  PubMed  Google Scholar 

  • Kalueff AV, Ren-Patterson RF, LaPorte JL, Murphy DL (2008) Domain interplay concept in animal models of neuropsychiatric disorders: a new strategy for high-throughput neurophenotyping research. Behav Brain Res 188:243–249

    Article  CAS  PubMed  Google Scholar 

  • Kolata S, Light K, Townsend DA, Hale G, Grossman HC, Matzel LD (2005) Variations in working memory capacity predict individual differences in general learning abilities among genetically diverse mice. Neurobiol Learn Mem 84:241–246

    Article  PubMed  Google Scholar 

  • LaPorte JL, Egan RJ, Hart PC, Bergner CL, Cachat JM, Canavello PR, Kalueff AV (2010) Qui non proficit, deficit: experimental models for ‘integrative’ research of affective disorders. J Affect Disord 121:1–9

    Article  PubMed  Google Scholar 

  • Le Doux J (2007) The amygdala. Curr Biol 17:868–874

    Article  Google Scholar 

  • LeDoux J (2007) The amygdala. Curr Biol 17:R868–R874

    Article  CAS  PubMed  Google Scholar 

  • Li X, Lu ZL, D’Argembeau NM, Bechara A (2010) The Iowa gambling task in fMRI images. Hum Brain Mapp 31:410–423

    PubMed Central  CAS  PubMed  Google Scholar 

  • Matzel LD, Kolata S (2010) Selective attention, working memory, and animal intelligence. Neurosci Biobehav Rev 34:23–30

    Article  PubMed Central  PubMed  Google Scholar 

  • Matzel LD et al (2003) Individual differences in the expression of a “general” learning ability in mice. J Neurosci 23:6423–6433

    CAS  PubMed  Google Scholar 

  • Meredith GE, Baldo BA, Andrezjewski ME, Kelley AE (2008) The structural basis for mapping behavior onto the ventral striatum and its subdivisions. Brain Struct Funct 213:17–27

    Article  PubMed Central  PubMed  Google Scholar 

  • Moll GH, Heinrich H, Rothenberger A (2003) Methylphenidate and intracortical excitability: opposite effects in healthy subjects and attention-deficit hyperactivity disorder. Acta Psychiatr Scand 107:69–72

    Article  CAS  PubMed  Google Scholar 

  • Ongur D, Price JL (2000) The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb Cortex 10:206–219

    Article  CAS  PubMed  Google Scholar 

  • Paulus MP, Tapert SF, Schuckit MA (2005) Neural activation patterns of methamphetamine-dependent subjects during decision making predict relapse. Arch Gen Psychiatry 62:761–768

    Article  PubMed  Google Scholar 

  • Paxinos G, Watson C (1997) The rat brain in stereotaxis coordinates, 3rd edn. Academic Press, San Diego

    Google Scholar 

  • Puumala T, Sirvio J (1998) Changes in activities of dopamine and serotonin systems in the frontal cortex underlie poor choice accuracy and impulsivity of rats in an attention task. Neuroscience 83:489–499

    Article  CAS  PubMed  Google Scholar 

  • Rangel A (2008) Consciousness meets neuroeconomics: what is the value of stimulus awareness in decision making? Neuron 59:525–527

    Article  CAS  PubMed  Google Scholar 

  • Rhodes SE, Killcross AS (2007) Lesions of rat infralimbic cortex result in disrupted retardation but normal summation test performance following training on a Pavlovian conditioned inhibition procedure. Eur J Neurosci 26:2654–2660

    Article  CAS  PubMed  Google Scholar 

  • Rivalan M, Ahmed SH, Dellu-Hagedorn F (2009) Risk-prone individuals prefer the wrong options on a rat version of the Iowa gambling task. Biol Psychiatry 66:743–749

    Article  PubMed  Google Scholar 

  • Rivalan M, Coutureau E, Fitoussi A, Dellu-Hagedorn F (2011) Inter-individual decision-making differences in the effects of cingulate, orbitofrontal, and prelimbic cortex lesions in a rat gambling task. Front Behav Neurosci 5:22

    Article  PubMed Central  PubMed  Google Scholar 

  • Rivalan M, Valton V, Series P, Marchand AR, Dellu-Hagedorn F (2013) Elucidating poor decision-making in a rat gambling task. PLoS ONE 8:e82052

    Article  PubMed Central  PubMed  Google Scholar 

  • Royall DR et al (2002) Executive control function: a review of its promise and challenges for clinical research. A report from the Committee on Research of the American Neuropsychiatric Association. J Neuropsychiatry Clin Neurosci 14:377–405

    Article  PubMed  Google Scholar 

  • Saunders BT, Robinson TE (2012) The role of dopamine in the accumbens core in the expression of Pavlovian-conditioned responses. Eur J Neurosci 36:2521–2532

    Article  PubMed Central  PubMed  Google Scholar 

  • Stalnaker TA, Takahashi Y, Roesch MR, Schoenbaum G (2009) Neural substrates of cognitive inflexibility after chronic cocaine exposure. Neuropharmacology 56(Suppl 1):63–72

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • van den Bos R et al (2013) Cross-species approaches to pathological gambling: a review targeting sex differences, adolescent vulnerability and ecological validity of research tools. Neurosci Biobehav Rev 37:2454–2471

    Article  PubMed  Google Scholar 

  • Zeeb FD, Winstanley CA (2011) Lesions of the basolateral amygdala and orbitofrontal cortex differentially affect acquisition and performance of a rodent gambling task. J Neurosci 31:2197–2204

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported and funded by the Centre National de la Recherche Scientifique, the University of Bordeaux, the Conseil Régional d’Aquitaine and by Fondation M. Bleustein-Blanchet pour la Vocation to A. Fitoussi. Philippe De Deurwaerdère acknowledges support from the COST action CM 1103. We thank B. Bontempi and A. Marchand for helpful comments, L. Graham for English editing, S. Lelgouach, A. Fayoux for technical assistance.

Conflict of interest

The authors declare no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Françoise Dellu-Hagedorn.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 181 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fitoussi, A., Le Moine, C., De Deurwaerdère, P. et al. Prefronto-subcortical imbalance characterizes poor decision-making: neurochemical and neural functional evidences in rats. Brain Struct Funct 220, 3485–3496 (2015). https://doi.org/10.1007/s00429-014-0868-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-014-0868-8

Keywords

Navigation