Skip to main content
Log in

Estradiol regulates large dense core vesicles in the hippocampus of adult female rats

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Previous work has shown that the steroid hormone estradiol facilitates the release of anticonvulsant neuropeptides from inhibitory neurons in the hippocampus to suppress seizures. Because neuropeptides are packaged in large dense core vesicles, estradiol may facilitate neuropeptide release through regulation of dense core vesicles. In the current study, we used serial section electron microscopy in the hippocampal CA1 region of adult female rats to test three hypotheses about estradiol regulation of dense core vesicles: (1) Estradiol increases the number of dense core vesicles in axonal boutons, (2) Estradiol increases the size of dense core vesicles in axonal boutons, (3) Estradiol shifts the location of dense core vesicles toward the periphery of axonal boutons, potentially lowering the threshold for neuropeptide release during seizures. We found that estradiol increases the number and size of dense core vesicles in inhibitory axonal boutons, consistent with increased neuropeptide content, but does not shift the location of dense core vesicles closer to the bouton periphery. These effects were specific to large dense core vesicles (>80 nm) in inhibitory boutons. Estradiol had no effects on small dense core vesicles or dense core vesicles in excitatory boutons. Our results indicate that estradiol suppresses seizures at least in part by increasing the potentially releasable pool of neuropeptides in the hippocampus, and that estradiol facilitation of neuropeptide release involves a mechanism other than mobilization of dense core vesicles toward sites of release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Acsady L, Arabadzisz D, Freund TF (1996a) Correlated morphological and neurochemical features indentify different subsets of VIP-immunoreactive interneurons in rat hippocampus. Neuroscience 73:299–315

    Article  CAS  PubMed  Google Scholar 

  • Acsady L, Gorcs TJ, Freund TF (1996b) Different populations of VIP-immunoreactive interneurons are specialized to control pyramidal cells or interneurons in the hippocampus. Neuroscience 73:317–334

    Article  CAS  PubMed  Google Scholar 

  • Backstrom T (1976) Epileptic seizures in women related to plasma estrogen and progesterone during the menstrual cycle. Acta Neurol Scand 54:321–347

    Article  CAS  PubMed  Google Scholar 

  • Baraban SC, Tallent MK (2004) Interneuron diversity series: interneuronal neuropeptides–endogenous regulators of neuronal excitability. Trends Neurosci 27:135–142

    Article  CAS  PubMed  Google Scholar 

  • Bean AJ, Zhang X, Hokfelt T (1994) Peptide secretion: what do we know? FASEB J 8:630–638

    CAS  PubMed  Google Scholar 

  • de Lanerolle NC, Gunel M, Sundaresan S, Shen MY, Brines ML, Spencer DD (1995) Vasoactive intestinal polypeptide and its receptor changes in human temporal lobe epilepsy. Brain Res 686:182–193

    Article  PubMed  Google Scholar 

  • Feldman SC, Dreyfus CF, Lichtenstein ES (1982) Somatostatin neurons in the rodent hippocampus: an in vitro and in vivo immunocytochemical study. Neurosci Lett 33:29–34

    Article  CAS  PubMed  Google Scholar 

  • Ferraro F, Ma X-M, Sobota JA, Eipper BA, Mains RE (2007) Kalirin/trio rho guanine nucleotide exchange factors regulate a novel step in secretory granule maturation. Mol Biol Cell 200718:4813–4825

    Article  Google Scholar 

  • Fiala JC, Harris KM (2001) Cylindrical diameters method for calibrating section thickness in serial electron microscopy. J Microsci 202:468–472

    Article  CAS  Google Scholar 

  • Grabner CP, Price SD, Lysakowski A, Cahill AL, Fox AP (2006) Regulation of large dense-core vesicle volume and neurotransmitter content mediated by adaptor protein 3. Proc Natl Acad Sci USA 103:10035–10040

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guille C, Spencer S, Cavus I, Epperson CN (2008) The role of sex steroids in catamenial epilepsy and premenstrual dysphoric disorder: implications for diagnosis and treatment. Epilepsy Behav 13:12–24

    Article  PubMed Central  PubMed  Google Scholar 

  • Harris KM, Marshall PE, Landis DM (1985) Ultrastructural study of cholecystokinin-immunoreactive cells and processes in area CA1 of the rat hippocampus. J Comp Neurol 233:147–158

    Article  CAS  PubMed  Google Scholar 

  • Hart SA, Snyder MA, Smejkalova T, Woolley CS (2007) Estrogen mobilizes a subset of estrogen receptor-alpha-immunoreactive vesicles in inhibitory presynaptic boutons in hippocampal CA1. J Neurosci 27:2102–2111

    Article  CAS  PubMed  Google Scholar 

  • Herzog AG (2008) Catamenial epilepsy: definition, prevalence pathophysiology and treatment. Seizure 17:151–159

    Article  PubMed  Google Scholar 

  • Husum H, Mikkelsen JD, Mork A (1998) Extracellular levels of neuropeptide Y are markedly increased in the dorsal hippocampus of freely moving rats during kainic acid-induced seizures. Brain Res 781:351–354

    Article  CAS  PubMed  Google Scholar 

  • Jinno S, Kosaka T (2003) Patterns of expression of neuropeptides in GABAergic nonprincipal neurons in the mouse hippocampus: quantitative analysis with optical disector. J Comp Neurol 461:333–349

    Article  CAS  PubMed  Google Scholar 

  • Kaminski RM, Livingood MR, Rogawski MA (2004) Allopregnanolone analogs that positively modulate GABA receptors protect against partial seizures induced by 6-Hz electrical stimulation in mice. Epilepsia 45:864–867

    Article  CAS  PubMed  Google Scholar 

  • Kunkel DD, Nguyen LB, Harrigan MR, Schwartzkroin PA, Malouf AT (1994) Somatostatin-containing neurons in rat organotypic hippocampal slice cultures: light and electron microscopic immunocytochemistry. Hippocampus 4:157–166

    Article  CAS  PubMed  Google Scholar 

  • Ledoux VA, Woolley CS (2005) Evidence that disinhibition is associated with a decrease in number of vesicles available for release at inhibitory synapses. J Neurosci 25:971–976

    Article  CAS  PubMed  Google Scholar 

  • Ledoux VA, Smejkalova T, May RM, Cooke BM, Woolley CS (2009) Estradiol facilitates the release of neuropeptide Y to suppress hippocampus-dependent seizures. J Neurosci 29:1457–1468

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee JY, Kim JH, Hong SH, Lee JY, Cherny RA, Bush AI, Palmiter RD, Koh JY (2004) Estrogen decreases zinc transporter 3 expression and synaptic vesicle zinc levels in mouse brain. J Biol Chem 279:8602–8607

    Article  CAS  PubMed  Google Scholar 

  • Ma XM, Huang JP, Kim EJ, Zhu Q, Kuchel GA, Mains RE, Eipper BA (2011) Kalirin-7, an important component of excitatory synapses, is regulated by estradiol in hippocampal neurons. Hippocampus 21:661–677

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Majewska MD, Harrison NL, Schwartz RD, Barker JL, Paul SM (1986) Steroid hormone metabolites are barbiturate-like modulators of the GABA receptor. Science 232:1004–1007

    Article  CAS  PubMed  Google Scholar 

  • Manfridi A, Forloni GL, Vezzani A, Fodritto F, De Simoni MG (1991) Functional and histological consequences of quinolinic and kainic acid- induced seizures on hippocampal somatostatin neurons. Neuroscience 41:127–135

    Article  CAS  PubMed  Google Scholar 

  • Marti M, Bregola G, Morari M, Gemignani A, Simonato M (2000) Somatostatin release in the hippocampus in the kindling model of epilepsy: a microdialysis study. J Neurochem 74:2497–2503

    Article  CAS  PubMed  Google Scholar 

  • Milner TA, Veznedaroglu E (1992) Ultrastructural localization of neuropeptide Y-like immunoreactivity in the rat hippocampal formation. Hippocampus 2:107–126

    Article  CAS  PubMed  Google Scholar 

  • Morvan J, Tooze SA (2008) Discovery and progress in our understanding of the regulated secretory pathway in neuroendocrine cells. Histochem Cell Biol 129:243–252

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nakamura NH, McEwen BS (2005) Changes in interneuronal phenotypes regulated by estradiol in the adult rat hippocampus: a potential role for neuropeptide Y. Neuroscience 136:357–369

    Article  CAS  PubMed  Google Scholar 

  • Pickel VM, Chan J, Veznedaroglu E, Milner TA (1995) Neuropeptide Y and dynorphin-immunoreactive large dense-core vesicles are strategically localized for presynaptic modulation in the hippocampal formation and substantia nigra. Synapse 19:160–169

    Article  CAS  PubMed  Google Scholar 

  • Rudick CN, Woolley CS (2001) Estrogen regulates functional inhibition of hippocampal CA1 pyramidal cells in the adult female rat. J Neurosci 21:6532–6543

    CAS  PubMed  Google Scholar 

  • Rudick CN, Gibbs RB, Woolley CS (2003) A role for the basal forebrain cholinergic system in estrogen-induced disinhibition of hippocampal pyramidal cells. J Neurosci 23:4479–4490

    CAS  PubMed  Google Scholar 

  • Salio C, Lossi L, Ferrini F, Merighi A (2006) Neuropeptides as synaptic transmitters. Cell Tissue Res 326:583–598

    Article  CAS  PubMed  Google Scholar 

  • Sobota JA, Mohler WA, Cowan AE, Eipper BA, Mains RE (2010) Dynamics of peptidergic secretory granule transport are regulated by neuronal stimulation. BMC Neurosci 11:32

    Article  PubMed Central  PubMed  Google Scholar 

  • Sørensen AT, Kanter-Schlifke I, Lin EJ, During MJ, Kokaia M (2008) Activity-dependent volume transmission by transgene NPY attenuates glutamate release and LTP in the subiculum. Mol Cell Neurosci 39:229–237

    Article  PubMed  Google Scholar 

  • Sorra KE, Mishra A, Kirov SA, Harris KM (2006) Dense core vesicles resemble active-zone transport vesicles and are diminished following synaptogenesis in mature hippocampal slices. Neuroscience 141:2097–2106

    Article  CAS  PubMed  Google Scholar 

  • Tabatadze N, Smejkalova T, Woolley CS (2013) Distribution and posttranslational modification of synaptic ERα in the adult female rat hippocampus. Endocrinol 154:819–830

    Article  CAS  Google Scholar 

  • Tallent MK, Qiu C (2008) Somatostatin: an endogenous antiepileptic. Mol Cell Endocrinol 286:96–103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Veliskova J (2006) The role of estrogens in seizures and epilepsy: the bad guys or the good guys. Neuroscience 138:837–844

    Article  CAS  PubMed  Google Scholar 

  • Verhage M, McMahon HT, Ghijsen WE, Boomsma F, Scholten G, Wiegant VM, Nicholls DG (1991) Differential release of amino acids, neuropeptides, and catecholamines from isolated nerve terminals. Neuron 6:517–524

    Article  CAS  PubMed  Google Scholar 

  • Wyeth MS, Zhang N, Mody I, Houser CR (2010) Selective reduction of cholecystokinin-positive basket cell innervation in a model of temporal lobe epilepsy. J Neurosci 30:8993–9006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xia X, Lessmann V, Martin TF (2009) Imaging of evoked dense-core-vesicle exocytosis in hippocampal neurons reveals long latencies and kiss-and-run fusion events. J Cell Sci 122:75–82

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhai RG, Vardinon-Friedman H, Cases-Langhoff C, Becker B, Gundelfinger ED, Ziv NE, Garner CC (2001) Assembling the presynaptic active zone: a characterization of an active zone precursor vesicle. Neuron 29:131–143

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by National Institutes of Health R01 NS037324 to CSW and by the Northwestern University Biological Imaging Facility. We thank Anisha Arora for assistance with serial reconstructions.

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine S. Woolley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

May, R.M., Tabatadze, N., Czech, M.M. et al. Estradiol regulates large dense core vesicles in the hippocampus of adult female rats. Brain Struct Funct 219, 1947–1954 (2014). https://doi.org/10.1007/s00429-013-0614-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-013-0614-7

Keywords

Navigation