Skip to main content

Advertisement

Log in

Tumor stroma ratio, tumor stroma maturity, tumor-infiltrating immune cells in relation to prognosis, and neoadjuvant therapy response in esophagogastric junction adenocarcinoma

  • ORIGINAL ARTICLE
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Accurate predictions on prognosis and neoadjuvant therapy response are crucial for esophagogastric junction adenocarcinoma (EGJA) patients. Therefore, we aimed to investigate the predictive abilities of several indicators, including tumor stroma ratio (TSR), tumor stroma maturity (TSM), and the density and spatial distribution of tumor-infiltrating immune cells (TIICs), such as T cells, B cells, and tumor-associated macrophages (TAMs). Resection and biopsy specimens of a total of 695 patients were included, obtained from the National Cancer Center (NCC) and The Cancer Genome Atlas (TCGA) cohorts. TSR and TSM were evaluated based on histological assessment. TIICs were quantified by QuPath following immunohistochemical (IHC) staining in resection specimens, while the Klintrup–Mäkinen (KM) grade was employed for evaluating TIIC in biopsy specimens. Patients with high stromal levels or immature stroma had relatively worse prognoses. Furthermore, high CD8+T cell count in the tumor periphery, as well as low CD68+ TAM count either in the tumor center or in the tumor periphery, was an independent favorable prognostic factor. Significantly, the combination model incorporating TSM and CD163+TAMs emerged as an independent prognostic factor in both two independent cohorts (HR 3.644, 95% CI 1.341–9.900, p = 0.011 and HR 1.891, 95% CI 1.195–2.99, p = 0.006, respectively). Additionally, high stromal levels in preoperative biopsies correlated with poor neoadjuvant therapy response (p < 0.05). In conclusion, our findings suggest that TSR, TSM, CD8+T cell, CD68+TAMs, and CD163+TAMs predict the prognosis to some extent in patients with EGJA. Notably, the combined model incorporating TSM and CD163+TAM can contribute significantly to prognostic stratification. Additionally, high stromal levels evaluated in preoperative biopsy specimens correlated with poor neoadjuvant therapy response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

1. The datasets used and/or analyzed in our cohort are available from the corresponding author on reasonable request.

2. The datasets used in our study from TCGA cohort are available in TCGA-STAD cohort (https://portal.gdc.cancer.gov/projects/TCGA-STAD).

Abbreviations

CAFs:

Cancer-associated fibroblasts

CPS:

Combined positive score

EGJA:

Esophagogastric junction adenocarcinoma

GMS:

Glasgow microenvironment score

HE:

Hematoxylin and eosin

IHC:

Immunohistochemical

MPR:

Major pathological response

pCR:

Pathologic complete regression

TAMs:

Tumor-associated macrophages

TCGA:

The Cancer Genome Atlas

TIICs:

Tumor-infiltrating immune cells

TME:

Tumor microenvironment

TRG:

Tumor regression grade

TSR:

Tumor stroma ratio

TSM:

Tumor stroma maturity

Tc:

Tumor center

Tp:

Tumor periphery

References

  1. Sung H, Ferlay J, Siegel RL et al (2021) Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–249

    Article  PubMed  Google Scholar 

  2. Chevallay M, Bollschweiler E, Chandramohan SM et al (2018) Cancer of the gastroesophageal junction: a diagnosis, classification, and management review. Ann N Y Acad Sci 1434:132–138

    Article  ADS  PubMed  Google Scholar 

  3. Thrift AP, Whiteman DC (2012) The incidence of esophageal adenocarcinoma continues to rise: analysis of period and birth cohort effects on recent trends. Ann Oncol: Off J Eur Soc Med Oncol 23:3155–3162

    Article  CAS  Google Scholar 

  4. Matsuno K, Ishihara R, Ohmori M et al (2019) Time trends in the incidence of esophageal adenocarcinoma, gastric adenocarcinoma, and superficial esophagogastric junction adenocarcinoma. J Gastroenterol 54:784–791

    Article  CAS  PubMed  Google Scholar 

  5. Hatta W, Tong D, Lee YY et al (2017) Different time trend and management of esophagogastric junction adenocarcinoma in three Asian countries. Dig Endosc 29(Suppl 2):18–25

    Article  PubMed  Google Scholar 

  6. Liu K, Yang K, Zhang W et al (2016) Changes of esophagogastric junctional adenocarcinoma and gastroesophageal reflux disease among surgical patients during 1988–2012: a single-institution, high-volume experience in China. Ann Surg 263:88–95

    Article  PubMed  Google Scholar 

  7. Ajani JA, D’Amico TA, Bentrem DJ et al (2022) Gastric Cancer, Version 2.2022, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw: JNCCN 20:167–192

    Article  CAS  PubMed  Google Scholar 

  8. Alsina M, Arrazubi V, Diez M et al (2023) Current developments in gastric cancer: from molecular profiling to treatment strategy. Nat Rev Gastroenterol Hepatol 20:155–170

    Article  CAS  PubMed  Google Scholar 

  9. Shah MA, Kennedy EB, Alarcon-Rozas AE et al (2023) Immunotherapy and targeted therapy for advanced gastroesophageal cancer: ASCO guideline. J Clin Oncol 41:1470–1491

    Article  CAS  PubMed  Google Scholar 

  10. Wu T, Dai Y (2017) Tumor microenvironment and therapeutic response. Cancer Lett 387:61–68

    Article  CAS  PubMed  Google Scholar 

  11. Giraldo NA, Sanchez-Salas R, Peske JD et al (2019) The clinical role of the TME in solid cancer. Br J Cancer 120:45–53

    Article  PubMed  Google Scholar 

  12. Mao X, Xu J, Wang W et al (2021) Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives. Mol Cancer 20:131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Martinez-Outschoorn UE, Lisanti MP, Sotgia F (2014) Catabolic cancer-associated fibroblasts transfer energy and biomass to anabolic cancer cells, fueling tumor growth. Semin Cancer Biol 25:47–60

    Article  CAS  PubMed  Google Scholar 

  14. Kobayashi H, Enomoto A, Woods SL et al (2019) Cancer-associated fibroblasts in gastrointestinal cancer. Nat Rev Gastroenterol Hepatol 16:282–295

    Article  PubMed  Google Scholar 

  15. Farhood B, Najafi M, Mortezaee K (2019) Cancer-associated fibroblasts: secretions, interactions, and therapy. J Cell Biochem 120:2791–2800

    Article  CAS  PubMed  Google Scholar 

  16. Chen Y, McAndrews KM, Kalluri R (2021) Clinical and therapeutic relevance of cancer-associated fibroblasts. Nat Rev Clin Oncol 18:792–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vangangelt KMH, Green AR, Heemskerk IMF et al (2020) The prognostic value of the tumor-stroma ratio is most discriminative in patients with grade III or triple-negative breast cancer. Int J Cancer 146:2296–2304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kramer CJH, Vangangelt KMH, van Pelt GW et al (2019) The prognostic value of tumour-stroma ratio in primary breast cancer with special attention to triple-negative tumours: a review. Breast Cancer Res Treat 173:55–64

    Article  CAS  PubMed  Google Scholar 

  19. Ueno H, Kanemitsu Y, Sekine S et al (2017) Desmoplastic pattern at the tumor front defines poor-prognosis subtypes of colorectal cancer. Am J Surg Pathol 41:1506–1512

    Article  PubMed  Google Scholar 

  20. Akimoto N, Väyrynen JP, Zhao M et al (2022) Desmoplastic reaction, immune cell response, and prognosis in colorectal cancer. Front Immunol 13:840198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Peng C, Liu J, Yang G et al (2018) The tumor-stromal ratio as a strong prognosticator for advanced gastric cancer patients: proposal of a new TSNM staging system. J Gastroenterol 53:606–617

    Article  PubMed  Google Scholar 

  22. Yim K, Jang WM, Cho U et al (2022) Intratumoral budding in pretreatment biopsies, among tumor microenvironmental components, can predict prognosis and neoadjuvant therapy response in colorectal adenocarcinoma. Medicina (Kaunas, Lithuania) 58

  23. Liang Y, Zhu Y, Lin H et al (2021) The value of the tumour-stroma ratio for predicting neoadjuvant chemoradiotherapy response in locally advanced rectal cancer: a case control study. BMC Cancer 21:729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wen X, Zee SY, Shroyer KR et al (2022) Intratumoral budding and tumor microenvironment in pretreatment rectal cancer biopsies predict the response to neoadjuvant chemoradiotherapy. Appl Immunohistochem Mol Morphol : AIMM 30:1–7

    Article  CAS  PubMed  Google Scholar 

  25. van Pelt GW, Krol JA, Lips IM et al (2020) The value of tumor-stroma ratio as predictor of pathologic response after neoadjuvant chemoradiotherapy in esophageal cancer. Clin Transl Radiat Oncol 20:39–44

    PubMed  Google Scholar 

  26. Bruni D, Angell HK, Galon J (2020) The immune contexture and Immunoscore in cancer prognosis and therapeutic efficacy. Nat Rev Cancer 20:662–680

    Article  CAS  PubMed  Google Scholar 

  27. Chen DS, Mellman I (2017) Elements of cancer immunity and the cancer-immune set point. Nature 541:321–330

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Yu CC, Wortman JC, He TF et al (2021) Physics approaches to the spatial distribution of immune cells in tumors. Rep Progress Phys Phys Soc (Great Britain) 84:022601

    Article  ADS  CAS  Google Scholar 

  29. Huang Q, Read M, Gold JS et al (2020) Unraveling the identity of gastric cardiac cancer. J Dig Dis 21:674–686

    Article  CAS  PubMed  Google Scholar 

  30. van Pelt GW, Kjær-Frifeldt S, van Krieken J et al (2018) Scoring the tumor-stroma ratio in colon cancer: procedure and recommendations. Virchows Archiv : Int J Pathol 473:405–412

    Article  Google Scholar 

  31. Kemi N, Eskuri M, Kauppila JH (2019) Tumour-stroma ratio and 5-year mortality in gastric adenocarcinoma: a systematic review and meta-analysis. Sci Rep 9:16018

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  32. Kemi NA, Eskuri M, Pohjanen VM et al (2019) Histological assessment of stromal maturity as a prognostic factor in surgically treated gastric adenocarcinoma. Histopathology 75:882–889

    Article  PubMed  Google Scholar 

  33. Ueno H, Ishiguro M, Nakatani E et al (2021) Prognostic value of desmoplastic reaction characterisation in stage II colon cancer: prospective validation in a phase 3 study (SACURA Trial). Br J Cancer 124:1088–1097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ueno H, Jones A, Jass JR et al (2002) Clinicopathological significance of the ‘keloid-like’ collagen and myxoid stroma in advanced rectal cancer. Histopathology 40:327–334

    Article  CAS  PubMed  Google Scholar 

  35. Janjigian YY, Shitara K, Moehler M et al (2021) First-line nivolumab plus chemotherapy versus chemotherapy alone for advanced gastric, gastro-oesophageal junction, and oesophageal adenocarcinoma (CheckMate 649): a randomised, open-label, phase 3 trial. Lancet (London, England) 398:27–40

    Article  CAS  PubMed  Google Scholar 

  36. Rha SY, Oh DY, Yañez P et al (2023) Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for HER2-negative advanced gastric cancer (KEYNOTE-859): a multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol 24:1181–1195

    Article  CAS  PubMed  Google Scholar 

  37. Klintrup K, Mäkinen JM, Kauppila S et al (2005) Inflammation and prognosis in colorectal cancer. Eur J Cancer (Oxford, England: 1990) 41:2645–2654

    Article  Google Scholar 

  38. Mandard AM, Dalibard F, Mandard JC et al (1994) Pathologic assessment of tumor regression after preoperative chemoradiotherapy of esophageal carcinoma. Clinicopathologic Correl Cancer 73:2680–2686

    CAS  Google Scholar 

  39. Koh YW, Park YS, Ryu MH et al (2013) Postoperative nodal status and diffuse-type histology are independent prognostic factors in resectable advanced gastric carcinomas after preoperative chemotherapy. Am J Surg Pathol 37:1022–1029

    Article  PubMed  Google Scholar 

  40. Li S, Yu W, Xie F et al (2023) Neoadjuvant therapy with immune checkpoint blockade, antiangiogenesis, and chemotherapy for locally advanced gastric cancer. Nat Commun 14:8

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fu M, Chen D, Luo F et al (2020) Association of the tumour stroma percentage in the preoperative biopsies with lymph node metastasis in colorectal cancer. Br J Cancer 122:388–396

    Article  CAS  PubMed  Google Scholar 

  42. Jing CY, Fu YP, Huang JL et al (2018) Prognostic nomogram based on histological characteristics of fibrotic tumor stroma in patients who underwent curative resection for intrahepatic cholangiocarcinoma. Oncologist 23:1482–1493

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ueno H, Kanemitsu Y, Sekine S et al (2019) A multicenter study of the prognostic value of desmoplastic reaction categorization in stage II colorectal cancer. Am J Surg Pathol 43:1015–1022

    Article  PubMed  Google Scholar 

  44. Rimal R, Desai P, Daware R et al (2022) Cancer-associated fibroblasts: origin, function, imaging, and therapeutic targeting. Adv Drug Deliv Rev 189:114504

    Article  CAS  PubMed  Google Scholar 

  45. Chen D, Chen H, Chi L et al (2021) Association of tumor-associated collagen signature with prognosis and adjuvant chemotherapy benefits in patients with gastric cancer. JAMA Netw Open 4:e2136388

    Article  PubMed  PubMed Central  Google Scholar 

  46. Brett EA, Sauter MA, Machens HG et al (2020) Tumor-associated collagen signatures: pushing tumor boundaries. Cancer Metab 8:14

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wernicke M, Piñeiro LC, Caramutti D et al (2003) Breast cancer stromal myxoid changes are associated with tumor invasion and metastasis: a central role for hyaluronan. Mod Pathol 16:99–107

    Article  PubMed  Google Scholar 

  48. Zheng X, Jiang K, Xiao W et al (2022) CD8(+) T cell/cancer-associated fibroblast ratio stratifies prognostic and predictive responses to immunotherapy across multiple cancer types. Front Immunol 13:974265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Xu L, Zhong W, Li C et al (2023) The tumour-associated stroma correlates with poor clinical outcomes and immunoevasive contexture in patients with upper tract urothelial carcinoma: results from a multicenter real-world study (TSU-01 study). Br J Cancer 128:310–320

    Article  CAS  PubMed  Google Scholar 

  50. Maller O, Drain AP, Barrett AS et al (2021) Tumour-associated macrophages drive stromal cell-dependent collagen crosslinking and stiffening to promote breast cancer aggression. Nat Mater 20:548–559

    Article  ADS  CAS  PubMed  Google Scholar 

  51. Zhai Q, Fan J, Lin Q et al (2019) Tumor stromal type is associated with stromal PD-L1 expression and predicts outcomes in breast cancer. PLoS One 14:e0223325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Park JH, McMillan DC, Powell AG et al (2015) Evaluation of a tumor microenvironment-based prognostic score in primary operable colorectal cancer. Clin Cancer Res 21:882–888

    Article  CAS  PubMed  Google Scholar 

  53. Hwang HW, Kim JY, Lee SE et al (2020) Prognostic effects of histology-based tumour microenvironment scores in resected distal bile duct cancer. Histopathology 77:402–412

    Article  PubMed  Google Scholar 

  54. Park JH, van Wyk H, McMillan DC et al (2020) Preoperative, biopsy-based assessment of the tumour microenvironment in patients with primary operable colorectal cancer. J Pathol Clin Res 6:30–39

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Bingning Wang, Hua Zeng, and Wenchao Liu for their assistance in the immunohistochemical staining involved in the current study.

Funding

The authors received no funding for this work.

Author information

Authors and Affiliations

Authors

Contributions

J.Y. and L.X. provide guidance and revise manuscripts. N.C. contributed to the methodology, data analysis, and writing; B.W. provided acquisition, analysis, and interpretation of data. J.X. contributed to the clinicopathological data acquisition. All authors read and approved the final paper.

Corresponding authors

Correspondence to Liyan Xue or Jianming Ying.

Ethics declarations

Ethics approval and consent to participate

The study was approved by the Institutional Review Board of National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, and individual consent was waived for this retrospective analysis.

Consent for publication

Informed consent was obtained from all individual participants included in the study.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 47.3 KB)

S Fig. 1

(PNG 173 kb)

High resolution image (TIF 14437 KB)

S Fig. 2

(PNG 10626 kb)

High resolution image (TIF 41292 KB)

S Fig. 3

(PNG 3616 kb)

High resolution image (TIF 7807 KB)

S Fig. 4

(PNG 512 kb)

High resolution image (EPS 25776 KB)

S Fig. 5

(PNG 403 kb)

High resolution image (EPS 14.5 MB)

S Fig. 6

(PNG 115 kb)

High resolution image (EPS 14863 KB)

S Fig. 7

(PNG 1395 kb)

High resolution image (EPS 49845 KB)

S Fig. 8

(PNG 152 kb)

High resolution image (EPS 13101 KB)

S Fig. 9

(PNG 575 kb)

High resolution image (EPS 50.4 MB)

S Fig. 10

(PNG 705 kb)

High resolution image (EPS 93212 KB)

S Fig. 11

(PNG 566 kb)

High resolution image (EPS 49137 KB)

S Fig. 12

(PNG 1076 kb)

High resolution image (EPS 116754 KB)

S Fig. 13

(PNG 770 kb)

High resolution image (EPS 96315 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, N., Wang, B., Xu, J. et al. Tumor stroma ratio, tumor stroma maturity, tumor-infiltrating immune cells in relation to prognosis, and neoadjuvant therapy response in esophagogastric junction adenocarcinoma. Virchows Arch (2024). https://doi.org/10.1007/s00428-024-03755-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00428-024-03755-2

Keywords

Navigation