Skip to main content
Log in

SIUrO best practice recommendations to optimize BRCA 1/2 gene testing from DNA extracted from bone biopsy in mCRPC patients (BRCA Optimal Bone Biopsy Procedure: BOP)

  • Review and Perspectives
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

The main guidelines and recommendations for the implementation of the BRCA1/2 somatic test do not focus on the clinical application of predictive testing on bone metastases, a frequent condition in metastatic prostate cancer, by analyzing the critical issues encountered by laboratory practice. Our goal is to produce a document (protocol) deriving from a multidisciplinary team approach to obtain high quality nucleic acids from biopsy of bone metastases. This document aims to compose an operational check-list of three phases: the pre-analytical phase concerns tumor cellularity, tissue processing, sample preservation (blood/FFPE), fixation and staining, but above all the decalcification process, the most critical phase because of its key role in allowing the extraction of somatic DNA with a good yield and high quality. The analytical phase involves the preparation of the libraries that can be analyzed in various NGS genetic sequencing platforms and with various bioinformatics software for the interpretation of sequence variants. Finally, the post-analytical phase that allows to report the variants of the BRCA1/2 genes in a clear and usable way to the clinician who will use these data to manage cancer therapy with PARP Inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Giunta EF, Annaratone L, Bollito E et al (2021) Molecular Characterization of Prostate Cancers in the Precision Medicine Era. Cancers 13(19):4771. https://doi.org/10.3390/cancers13194771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Halabi S, Kelly WK, Ma H et al (2016) Meta-analysis evaluating the impact of site of metastasis on overall survival in men with castration-resistant prostate cancer. J Clin Oncol 34:1652–1659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bubendorf L, Schopfer A, Wagner U et al (2000) Metastatic patterns of prostate cancer: an autopsy study of 1,589 patients. Hum Pathol 31:578–583

    Article  CAS  PubMed  Google Scholar 

  4. Conteduca V, Mosca A, Brighi N, de Giorgi U, Rescigno P (2021) New Prognostic Biomarkers in Metastatic Castration-Resistant Prostate Cancer. Cells 10(1):193. https://doi.org/10.3390/cells10010193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mateo J, Carreira S, Sandhu S et al (2015) DNA-repair defects and olaparib in metastatic prostate cancer. N Engl J Med 373:1697–1708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Robinson D, Van Allen EM, Wu YM et al (2015) Integrative clinical genomics of advanced prostate cancer. Cell 161:1215–1228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Van Allen EM, Foye A, Wagle N et al (2014) Successful whole-exome sequencing from a prostate cancer bone metastasis biopsy. Prostate Cancer Prostatic Dis 17:23–27

    Article  PubMed  Google Scholar 

  8. Zheng G, Lin MT, Lokhandwala PM et al (2016) Clinical mutational profiling of bone metastases of lung and colon carcinoma and malignant melanoma using next-generation sequencing. Cancer 124:744–753

    CAS  Google Scholar 

  9. Spritzer CE, Afonso PD, Vinson EN et al (2013) Bone marrow biopsy: RNA isolation with expression profiling in men with metastatic castration-resistant prostate cancer–factors affecting diagnostic success. Radiology 269:816–823

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ross RW, Halabi S, Ou SS et al Cancer and Leukemia Group B(2005) Predictors of prostate cancer tissue acquisition by an undirected core bone marrow biopsy in metastatic castration-resistant prostate cancer-a Cancer and Leukemia Group B study. Clin Cancer Res 11:8109–8113

    Article  CAS  PubMed  Google Scholar 

  11. FDA (2020) LYNPARZA (olaparib) prescribing information. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/208558s014lbl.pdf

  12. EMA (2020) LYNPARZA (olaparib) summary of product characteristics. Available from: https://www.ema.europa.eu/en/documents/product-information/lynparzaepar-product-information_en.pdf

  13. de Bono J, Mateo J, Fizazi K et al (2020) Olaparib for metastatic castration-resistant prostate cancer. N Engl J Med 382:2091–2102

    Article  PubMed  Google Scholar 

  14. Hussain M, Mateo J, Fizazi K et al (2020) Survival with olaparib in metastatic castration-resistant prostate cancer. N Engl J Med 383:2345–2357

    Article  CAS  PubMed  Google Scholar 

  15. Hussain M, Corcoran C, Sibilla C et al (2022) Tumor Genomic Testing for >4,000 Men with Metastatic Castration-resistant Prostate Cancer in the Phase III Trial PROfound (Olaparib). Clin Cancer Res 28(8):1518–1530. https://doi.org/10.1158/1078-0432.CCR-21-3940

    Article  CAS  PubMed  Google Scholar 

  16. Al-Kateb H, Nguyen TT, Steger-May K, Pfeifer JD (2015) Identification of major factors associated with failed clinical molecular oncology testing performed by next generation sequencing (NGS). Mol Oncol 9:1737–1743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Saad F, Armstrong AJ, Thiery-Vuilleminet A et al (2022) Biomarker analysis and updated results from the Phase III PROpel trial of abiraterone (abi) and olaparib (ola) vs abi and placebo (pbo) as first-line (1L) therapy for patients (pts) with metastatic castration-resistant prostate cancer (mCRPC). Ann Oncol 33(suppl_7):S616–S652. https://doi.org/10.1016/annonc/annonc1070

  18. Mateo J, Porta N, Bianchini D et al (2020) Olaparib in patients with metastatic castration-resistant prostate cancer with DNA repair gene aberrations (TOPARP-B): a multicentre, open-label, randomised, phase 2 trial. Lancet Oncol 21(1):162–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Abida W, Patnaik A, Campbell D et al (2020) Rucaparib in Men With Metastatic Castration-Resistant Prostate Cancer Harboring a BRCA1 or BRCA2 Gene Alteration. J Clin Oncol 38(32):3763–3772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Smith MR, Scher HI, Sandhu S et al (2022) Niraparib in patients with metastatic castration-resistant prostate cancer and DNA repair gene defects (GALAHAD): a multicentre, open-label, phase 2 trial. Lancet Oncol 23:362–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. de Bono JS, Mehra N, Scagliotti GV et al (2022) Talazoparib monotherapy in metastatic castration-resistant prostate cancer with DNA repair alterations (TALAPRO-1): an open-label, phase 2 trial. Lancet Oncol 22(9):1250–1264. https://doi.org/10.1016/S1470-2045(21)00376-4 Erratum in: Lancet Oncol. 23(5):e207. Erratum in: Lancet Oncol. 2022;23(6):e249

    Article  Google Scholar 

  22. Fizazi K, Piulats JM, Reaume MN et al (2023) Rucaparib or Physician's Choice in Metastatic Prostate Cancer. N Engl J Med. https://doi.org/10.1056/NEJMoa2214676

  23. Clarke NW, Armstrong AJ, Thiery-Vuillemin A et al (2022) Abiraterone and olaparib for metastatic castration-resistant prostate cancer. NEJM Evid 1

  24. Chi KN, Rathkopf DE, Smith MR et al (2022) Phase 3 MAGNITUDE study: First results of niraparib (NIRA) with abiraterone acetate and prednisone (AAP) as first-line therapy in patients (pts) with metastatic castration-resistant prostate cancer (mCRPC) with and without homologous recombination repair (HRR) gene alterations. J Clin Oncol 40:12

    Article  Google Scholar 

  25. Schweizer MT, Sivakumar S, Tukachinsky H et al (2021) Concordance of DNA Repair Gene Mutations in Paired Primary Prostate Cancer Samples and Metastatic Tissue or Cell-Free DNA. JAMA Oncol 7(9):1–5. https://doi.org/10.1001/jamaoncol.2021.2350

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gandaglia G, Abdollah F, Schiffmann J et al (2014) Distribution of metastatic sites in patients with prostate cancer: A population based analysis. Prostate 74:210–216

    Article  PubMed  Google Scholar 

  27. Hau A, Kim I, Kattapuram S et al (2002) Accuracy of CT-guided biopsies in 359 patients with musculoskeletal lesions. Skelet Radiol 31:349–353

    Article  Google Scholar 

  28. Shaikh H, Thawani J, Pukenas B (2014) Needle-in-needle technique for percutaneous retrieval of a fractured biopsy needle during CT-guided biopsy of the thoracic spine. Interv Neuroradiol 20:646–649

    Article  PubMed  PubMed Central  Google Scholar 

  29. Luining WI, Meijer D, Dahele MR, Vis AN, Oprea-Lager DE (2021) Nuclear Imaging for Bone Metastases in Prostate Cancer: The Emergence of Modern Techniques Using Novel Radiotracers. Diagnostics (Basel) 11(1):117. https://doi.org/10.3390/diagnostics11010117

    Article  CAS  PubMed  Google Scholar 

  30. Zacho HD, Ravn S, Afshar-Oromieh A et al (2020) Added value of 68Ga-PSMA PET/CT for the detection of bone metastases in patients with newly diagnosed prostate cancer and a previous 99mTc bone scintigraphy. EJNMMI Res 10(1):31. https://doi.org/10.1186/s13550-020-00618-0

    Article  PubMed  PubMed Central  Google Scholar 

  31. Tomasian A, Hillen TJ, Jennings JW (2020) Bone Biopsies: What Radiologists Need to Know. AJR Am J Roentgenol 215(3):523–533

    Article  PubMed  Google Scholar 

  32. Sailer V, Schiffman MH, Kossai M et al (2018) Bone biopsy protocol for advanced prostate cancer in the era of precision medicine. Cancer 124(5):1008–1015

    Article  CAS  PubMed  Google Scholar 

  33. Garnon J, Koch G, Tsoumakidou G et al (2017) Ultrasound-Guided Biopsies of Bone Lesions Without Cortical Disruption Using Fusion Imaging and Needle Tracking: Proof of Concept. Cardiovasc Intervent Radiol 40(8):1267–1273

    Article  PubMed  Google Scholar 

  34. Tselikas L, Joskin J, Roquet F et al (2015) Percutaneous bone biopsies: comparison between flat-panel cone-beam CT and CT-scan guidance. Cardiovasc Intervent Radiol 38(1):167–176

    Article  PubMed  Google Scholar 

  35. Lorente D, Omlin A, Zafeiriou Z et al (2016) Castration-Resistant Prostate Cancer Tissue Acquisition From Bone Metastases for Molecular Analyses. Clin Genitourin Cancer 14(6):485–493. https://doi.org/10.1016/j.clgc.2016.04.016

    Article  PubMed  PubMed Central  Google Scholar 

  36. Suh CH, Yun SJ (2019) Diagnostic Outcome of Image-Guided Percutaneous Core Needle Biopsy of Sclerotic Bone Lesions: A Meta-Analysis. AJR Am J Roentgenol 212(3):625–631

    Article  PubMed  Google Scholar 

  37. Yang SY, Oh E, Kwon JW, Kim HS (2018) Percutaneous Image-Guided Spinal Lesion Biopsies: Factors Affecting Higher Diagnostic Yield. AJR Am J Roentgenol 211(5):1068–1074

    Article  PubMed  Google Scholar 

  38. Craig JC, Freeman M, Walton S et al (2022) A Quality Analysis of Bony Specimens for Optimal Ethylenediaminetetraacetic Acid (EDTA) Decalcification. Int J Surg Pathol 30(8):853–860. https://doi.org/10.1177/10668969221088877

    Article  CAS  PubMed  Google Scholar 

  39. Singh VM, Salunga RC, Huang VJ et al (2013) Analysis of the effect of various decalcification agents on the quantity and quality of nucleic acid (DNA and RNA) recovered from bone biopsies. Ann Diagn Pathol 17(4):322–326. https://doi.org/10.1016/j.anndiagpath.2013.02.001

    Article  PubMed  Google Scholar 

  40. Chen H, Luthra R, Goswami RS et al (2015) Analysis of Pre-Analytic Factors Affecting the Success of Clinical Next-Generation Sequencing of Solid Organ Malignancies. Cancers (Basel) 7(3):1699–1715. https://doi.org/10.3390/cancers7030859

  41. Torlakovic EE, Brynes RK, Hyjek E et al International Council for Standardization in Haematology(2015) ICSH guidelines for the standardization of bone marrow immunohistochemistry. Int J Lab Hematol 37(4):431–449. https://doi.org/10.1111/ijlh.12365

    Article  CAS  PubMed  Google Scholar 

  42. Goswami RS, Luthra R, Singh RR et al (2016) Identification of Factors Affecting the Success of Next-Generation Sequencing Testing in Solid Tumors. Am J Clin Pathol 145:222–237

    Article  PubMed  Google Scholar 

  43. Saraji A, Offermann A, Stegmann-Frehse J et al (2021) Cracking it - successful mRNA extraction for digital gene expression analysis from decalcified, formalin-fixed and paraffin-embedded bone tissue. PLoS One 16(9):e0257416. https://doi.org/10.1371/journal.pone.0257416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Confavreux CB, Girard N, Pialat JB et al (2014) Mutational profiling of bone metastases from lung adenocarcinoma: results of a prospective study (POUMOS-TEC). Bonekey Rep 3:580. https://doi.org/10.1038/bonekey.2014.75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tukachinsky H, Madison RW, Chung JH et al (2021) Genomic Analysis of Circulating Tumor DNA in 3,334 Patients with Advanced Prostate Cancer Identifies Targetable BRCA Alterations and AR Resistance Mechanisms. Clin Cancer Res 27(11):3094–3105. https://doi.org/10.1158/1078-0432.CCR-20-4805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cimadamore A, Cheng L, Massari F et al (2021) Circulating Tumor DNA Testing for Homology Recombination Repair Genes in Prostate Cancer: From the Lab to the Clinic. Int J Mol Sci 22(11):5522. https://doi.org/10.3390/ijms22115522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chi KN, Barnicle A, Sibilla C et al (2023) Detection of BRCA1, BRCA2, and ATM Alterations in Matched Tumor Tissue and Circulating Tumor DNA in Patients with Prostate Cancer Screened in PROfound. Clin Cancer Res 29(1):81–91. https://doi.org/10.1158/1078-0432.CCR-22-0931

    Article  CAS  PubMed  Google Scholar 

  48. Carreira S, Porta N, Arce-Gallego S et al (2021) Biomarkers Associating with PARP Inhibitor Benefit in Prostate Cancer in the TOPARP-B Trial. Cancer Discov 11(11):2812–2827. https://doi.org/10.1158/2159-8290.CD-21-0007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jensen K, Konnick EQ, Schweizer MT et al (2021) Association of Clonal Hematopoiesis in DNA Repair Genes With Prostate Cancer Plasma Cell-free DNA Testing Interference. JAMA Oncol 7:107–110. https://doi.org/10.1001/jamaoncol.2020.5161

    Article  PubMed  Google Scholar 

  50. Forbes C, Fayter D, de Kock S, Quek RG (2019) A systematic review of international guidelines and recommendations for the genetic screening, diagnosis, genetic counseling, and treatment of BRCAmutated breast cancer. Cancer Manag Res 11:2321–2337

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ellison G, Huang S, Carr H et al (2015) A reliable method for the detection of BRCA1 and BRCA2 mutations in fixed tumour tissue utilising multiplex PCR-based targeted next generation sequencing. BMC Clin Pathol 15:5. https://doi.org/10.1186/s12907-015-0004-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Arreaza G, Qiu P, Pang L et al (2016) Pre-Analytical Considerations for Successful Next-Generation Sequencing (NGS): Challenges and Opportunities for Formalin-Fixed and Paraffin-Embedded Tumor Tissue (FFPE) Samples. Int J Mol Sci 17(9):1579. https://doi.org/10.3390/ijms17091579

    Article  PubMed  PubMed Central  Google Scholar 

  53. Gargis AS, Kalman L, Berry MW et al (2012) Assuring the quality of next-generation sequencing in clinical laboratory practice. Nat Biotechnol 30:1033–1036

    Article  CAS  PubMed  Google Scholar 

  54. Enyedi MZ, Jaksa G, Pintér L et al (2016) Simultaneous detection of BRCA mutations and large genomic rearrangements in germline DNA and FFPE tumor samples. Oncotarget 7:61845–61859

    Article  PubMed  PubMed Central  Google Scholar 

  55. Loman NJ, Misra RV, Dallman TJ et al (2012) Performance comparison of benchtop high-throughput sequencing platforms. Nat Biotechnol 30:434–439

    Article  CAS  PubMed  Google Scholar 

  56. Samorodnitsky E, Jewell BM, Hagopian R et al (2015) Evaluation of Hybridization Capture Versus Amplicon-Based Methods for Whole-Exome Sequencing. Hum Mutat 36(9):903–914. https://doi.org/10.1002/humu.22825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Frampton GM, Fichtenholtz A, Otto GA et al (2013) Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nat Biotechnol 31:1023–1031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Società Italiana di Genetica Umana Italian Society of Human Genetic Linee di indirizzo sull’analisi dei geni BRCA1 e BRCA2 in ambito clinico https://sigu.net › wp-content › uploads › 2021/03

  59. Feng W, Zhao S, Xue D et al (2016) Improving alignment accuracy on homopolymer regions for semiconductor-based sequencing technologies. BMC Genom 17(Suppl 7):521

    Article  Google Scholar 

  60. Jennings LJ, Arcila ME, Corless C et al (2017) Guidelines for Validation of Next-Generation Sequencing-Based Oncology Panels: A Joint Consensus Recommendation of the Association for Molecular Pathology and College of American Pathologists. J Mol Diagn 19:341–365

    Article  PubMed  Google Scholar 

  61. Tavtigian SV, Greenblatt MS, Goldgar DE, Boffetta P Group IUGVW(2008) Assessing pathogenicity: overview of results from the IARC Unclassified Genetic Variants Working Group. Hum Mutat 29:1261–1264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Matthijs G, Souche E, Alders M et al (2016) EuroGentest, European Society of Human G. Guidelines for diagnostic next-generation sequencing. Eur J Hum Genet 24:2–5

    Article  CAS  PubMed  Google Scholar 

  63. Vos JR, Fakkert IE, de Hullu JA et al (2020) Universal Tumor DNA BRCA1/2 Testing of Ovarian Cancer: Prescreening PARPi Treatment and Genetic Predisposition. J Natl Cancer Inst 112:161–169

    Article  PubMed  Google Scholar 

  64. Plon SE, Eccles DM, Easton D et al IARC Unclassified Genetic Variants Working Group(2008) Sequence variant classification and reporting: recommendations for improving the interpretation of cancer susceptibility genetic test results. Hum Mutat 29(11):1282–1291. https://doi.org/10.1002/humu.20880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Contributions

All authors contributed to data collection, drafting, writing, and editing of the manuscript. Alessia Cimadamore and Sergio Bracarda contributed to study conception and design. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Alessia Cimadamore.

Ethics declarations

Ethics approval

The present research work was conducted according to Ethical Standards. The research did not involve human participants and/or animals.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cimadamore, A., Rescigno, P., Conteduca, V. et al. SIUrO best practice recommendations to optimize BRCA 1/2 gene testing from DNA extracted from bone biopsy in mCRPC patients (BRCA Optimal Bone Biopsy Procedure: BOP). Virchows Arch 483, 579–589 (2023). https://doi.org/10.1007/s00428-023-03660-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-023-03660-0

Keywords

Navigation