Skip to main content
Log in

A novel Sudan Black B-based analogue revives lipofuscin as a biomarker for in vivo senescence

  • Invited Commentary
  • Published:
Virchows Archiv Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Munoz-Espin D, Serrano M (2014) Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol 15:482–496

    Article  CAS  Google Scholar 

  2. Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cells. Exp Cell Res 25:585–621

    Article  CAS  Google Scholar 

  3. Rodier F, Campisi J (2011) Four faces of cellular senescence. Cell Biol 192:547–556

    Article  CAS  Google Scholar 

  4. Myrianthopoulos V, Evangelou K, Vasileiou PVS, Cooks T, Vassilakopoulos TP, Pangalis GA et al (2018) Senescence and senotherapeutics: a new field in cancer therapy. Pharmacol Ther. https://doi.org/10.1016/j.pharmthera.2018.08.006

  5. Evangelou K, Lougiakis N, Rizou SV, Kotsinas A, Kletsas D, Muñoz-Espín D et al (2017) Robust, universal biomarker assay to detect senescent cells in biological specimens. Aging Cell 16:192–197

    Article  Google Scholar 

  6. Gorgoulis VG, Halazonetis TD (2010) Oncogene-induced senescence: the bright and dark side of the response. Curr Opin Cell Biol 22:816–827

    Article  CAS  Google Scholar 

  7. Milanovic M, Fan DNY, Belenki D, Däbritz HJ, Zhao Z, Yu Y et al (2018) Senescence-associated reprogramming promotes cancer stemness. Nature 553:96–100

    Article  CAS  Google Scholar 

  8. Zhu Y, Tchkonia T, Pirtskhalava T, Gower AC, Ding H, Giorgadze N et al (2015) The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 14:644–658

  9. Ogrodnik M, Miwa S, Tchkonia T, Tiniakos D, Wilson CL, Lahat A et al (2017) Cellular senescence drives age-dependent hepatic steatosis. Nat Commun 8:1569

    Article  Google Scholar 

  10. Jurk D, Wang C, Miwa S, Maddick M, Korolchuk V, Tsolou A et al (2012) Postmitotic neurons develop a p21-dependent senescence-like phenotype driven by a DNA damage response. Aging Cell 11:996–1004

    Article  CAS  Google Scholar 

Download references

Funding

DT is Training Strand Lead for the Newcastle Molecular Pathology Node funded by the Engineering and Physical Sciences Research Council (EPSRC)/Medical Research Council (MRC). DJ acknowledges funding from the AMS (The Academy of Medical Sciences, REF: SBF003\1179).

Author information

Authors and Affiliations

Authors

Contributions

DT drafted the manuscript and revised it critically for important intellectual content; DJ revised the manuscript critically for important intellectual content.

Corresponding author

Correspondence to Dina Tiniakos.

Ethics declarations

This article does not include research involving human participants and/or animals.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiniakos, D., Jurk, D. A novel Sudan Black B-based analogue revives lipofuscin as a biomarker for in vivo senescence. Virchows Arch 473, 781–783 (2018). https://doi.org/10.1007/s00428-018-2452-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-018-2452-8

Navigation