Skip to main content
Log in

INK4a-ARF alterations in Barrett’s epithelium, intraepithelial neoplasia and Barrett’s adenocarcinoma

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Introduction

The INK4a-ARF [CDKN2A]- locus on chromosome 9p21 encodes for two tumour suppressor proteins, p16INK4a and p14ARF, which act as upstream regulators of the Rb-CDK4 and p53 pathways. To study the contribution of each pathway to the carcinogenesis of Barrett’s adenocarcinoma, we analysed the alterations of p14ARFand p16INK4a in preneoplastic and neoplastic lesions of this disease.

Materials and methods

After microdissection, DNA of 15 Barrett’s adenocarcinomas, 40 Barrett’s intraepithelial neoplasms (n=20 low- and n=20 high-grade) and 15 Barrett’s mucosa without neoplasia was analysed for INK4-ARF inactivation using DNA sequence and loss of heterozygosity (LOH) analysis, methylation-specific polymerase chain reaction, restriction-enzyme-related polymerase chain reaction and immunohistochemistry.

Results

We detected 9p21 LOH, p16INK4a methylation and p16INK4a mutations in Barrett’s adenocarcinomas in 5 of 15 (33%), 8 of 15 (53%) and 1 of 15 (7%) patients, respectively. P14ARF was methylated in 3 of 15 (20%) adenocarcinomas. In Barrett’s intraepithelial neoplasia, p16INK4a was altered in 12 of 20 (60%) high-grade and in 4 of 20 (20%) low-grade intraepithelial neoplasms. In Barrett’s mucosa without intraepithelial neoplasia p16INK4a was methylated in one case (7%). P14ARF was intact in Barrett’s mucosa without intraepithelial neoplasia.

Conclusions

We conclude that most Barrett’s intraepithelial neoplasms contain genetic and/or epigenetic INK4a-ARF alterations. Methylation of p16INK4a appears to be the most frequent epigenetic defect in the neoplastic progression of Barrett’s tumourigenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ahrendt SA, Eisenberger CF, Yip L, Rashid A, Chow JT, Pitt HA, Sidransky D (1999) Chromosome 9p21 loss and p16 inactivation in primary sclerosing cholangitis-associated cholangiocarcinoma. J Surg Res 84:88–93

    Article  CAS  PubMed  Google Scholar 

  2. Barrett MT, Sanchez CA, Galipeau PC, Neshat K, Emond M, Reid BJ (1996) Allelic loss of 9p21 and mutation of the CDKN2/p16 gene develop as early lesions during neoplastic progression in Barrett’s esophagus. Oncogene 13:1867–1873

    CAS  Google Scholar 

  3. Bartsch DK, Sina-Frey M, Lang S, Wild A, Gerdes B, Barth P, Kress R, Grutzmann R, Colombo-Benkmann M, Ziegler A, Hahn SA, Rothmund M, Rieder H (2002) CDKN2A germline mutations in familial pancreatic cancer. Ann Surg 236:730–737

    Article  PubMed  Google Scholar 

  4. Basu KK, Pick B, Bale R, West KP, de Caestecker JS (2002) Efficacy and one year follow up of argon plasma coagulation therapy for ablation of Barrett’s oesophagus: factors determining persistence and recurrence of Barrett’s epithelium. Gut 51:776–780

    Article  CAS  PubMed  Google Scholar 

  5. Belinsky SA, Snow SS, Nikula KJ, Finch GL, Tellez CS, Palmisano WA (2002) Aberrant CpG island methylation of the p16(INK4a) and estrogen receptor genes in rat lung tumors induced by particulate carcinogens. Carcinogenesis 23:335–339

    Article  CAS  PubMed  Google Scholar 

  6. Bian YS, Osterheld MC, Fontolliet C, Bosman FT, Benhattar J (2002) P16 inactivation by methylation of the CDKN2A promoter occurs early during neoplastic progression in Barrett’s esophagus. Gastroenterology 122:1113–1121

    CAS  PubMed  Google Scholar 

  7. Cameron AJ, Ott BJ, Payne WS (1985) The incidence of adenocarcinoma in columnar-lined (Barrett’s) esophagus. N Engl J Med 313:857–859

    CAS  PubMed  Google Scholar 

  8. Chaubert P, Gayer R, Zimmermann A, Fontolliet C, Stamm B, Bosman F, Shaw P (1997) Germ-line mutations of the p16INK4(MTS1) gene occur in a subset of patients with hepatocellular carcinoma. Hepatology 25:1376–1381

    CAS  PubMed  Google Scholar 

  9. Conio M, Cameron AJ, Romero Y, Branch CD, Schleck CD, Burgart LJ, Zinsmeister AR, Melton LJ 3rd, Locke GR 3rd (2001) Secular trends in the epidemiology and outcome of Barrett’s oesophagus in Olmsted County, Minnesota. Gut 48:304–309

    Article  CAS  PubMed  Google Scholar 

  10. Devesa SS, Blot WJ, Fraumeni JF Jr (1998) Changing patterns in the incidence of esophageal and gastric carcinoma in the United States. Cancer 83:2049–2053

    Google Scholar 

  11. Doak SH, Jenkins GJ, Parry EM, D’Souza FR, Griffiths AP, Toffazal N, Shah V, Baxter JN, Parry JM (2003) Chromosome 4 hyperploidy represents an early aberration in premalignant Barrett’s oesophagus. Gut 52:623–628

    Article  CAS  PubMed  Google Scholar 

  12. Eads CA, Lord RV, Wickramasinghe K, Long TI, Kurumboor SK, Bernstein L, Peters JH, DeMeester SR, DeMeester TR, Skinner KA, Laird PW (2001) Epigenetic patterns in the progression of esophageal adenocarcinoma. Cancer Res 61:3410–3418

    CAS  PubMed  Google Scholar 

  13. Egger K, Werner M, Meining A, Ott R, Allescher HD, Höfler H, Classen M, Rösch T (2003) Biopsy surveillance is still necessary in patients with Barrett’s oesophagus despite new endoscopic imaging techniques. Gut 52:18–23

    Article  CAS  PubMed  Google Scholar 

  14. Faller G, Borchard F, Ell C, Seitz G, Stolte M, Walch A, Rüschoff J, Working Group for Gastroenterological Pathology of the German Society for Pathology (2003) Histopathological diagnosis of Barrett’s mucosa and associated neoplasias: results of a consensus conference of the Working Group for Gastroenterological Pathology of the German Society for Pathology on 22 September 2001 in Erlangen. Virchows Arch 443:597–601

    Article  CAS  PubMed  Google Scholar 

  15. Fitzgerald RC (2003) Ablative mucosectomy is the procedure of choice to prevent Barrett’s cancer. Gut 52:16–17

    Article  CAS  PubMed  Google Scholar 

  16. Fitzgerald RC, Abdalla S, Onwuegbusi BA, Sirieix P, Saeed IT, Burnham WR, Farthing MJ (2002) Inflammatory gradient in Barrett’s oesophagus: implications for disease complications. Gut 51:316–322

    Article  CAS  PubMed  Google Scholar 

  17. Fujii T, Nakagawa S, Hanzawa M, Sueyoshi S, Fujita H, Shirouzu K, Yamana H (2003) Immunohistological study of cell-cycle-related factors, oncogene expression, and cell proliferation in adenocarcinoma development in Barrett’s esophagus. Oncol Rep 10:427–431

    CAS  PubMed  Google Scholar 

  18. Haggitt RC (1994) Barrett’s esophagus, dysplasia, and adenocarcinoma. Hum Pathol 25:982–993

    CAS  PubMed  Google Scholar 

  19. Hamilton SR, Aaltonen LA (eds) (2000) WHO Pathology and genetics. IARC Press, Lyon, pp 173–200

  20. Hearle N, Damato BE, Humphreys J, Wixey J, Green H, Stone J, Easton DF, Houlston RS (2003) Contribution of germline mutations in BRCA2, P16(INK4A), P14(ARF) and P15 to uveal melanoma. Invest Ophthalmol Vis Sci 44:458–462

    Article  PubMed  Google Scholar 

  21. Hussussian CJ, Struewing JP, Goldstein AM, Higgins PA, Ally DS, Sheahan MD, Clark WH Jr, Tucker MA, Dracopoli NC (1994) Germline p16 mutations in familial melanoma. Nat Genet 8:15–21

    CAS  PubMed  Google Scholar 

  22. Issa JP, Ahuja N, Toyota M, Bronner MP, Brentnall TA (2001) Accelerated age-related CpG island methylation in ulcerative colitis. Cancer Res 61:3573–3577

    CAS  PubMed  Google Scholar 

  23. Jang TJ, Kim DI, Shin YM, Chang HK, Yang CH (2001) p16(INK4a) Promoter hypermethylation of non-tumorous tissue adjacent to gastric cancer is correlated with glandular atrophy and chronic inflammation. Int J Cancer 93:629–634

    Article  CAS  PubMed  Google Scholar 

  24. Jen J, Harper JW, Bigner SH, Bigner DD, Papadopoulos N, Markowitz S, Willson JK, Kinzler KW, Vogelstein B (1994) Deletion of p16 and p15 genes in brain tumors. Cancer Res 54:6353–6358

    CAS  PubMed  Google Scholar 

  25. Karayan L, Riou JF, Seite P, Migeon J, Cantereau A, Larsen CJ (2001) Human ARF protein interacts with topoisomerase I and stimulates its activity. Oncogene 20:836–848

    CAS  PubMed  Google Scholar 

  26. Klump B, Hsieh CJ, Nehls O, Dette S, Holzmann K, Kiesslich R, Jung M, Sinn U, Ortner M, Porschen R, Gregor M (1998) Hypermethylation of the CDKN2/p16 promoter during neoplastic progression in Barrett’s esophagus. Gastroenterology 115:1381–1386

    CAS  PubMed  Google Scholar 

  27. Lo DYM, Wong IHN, Zhang J, Tein MS, Ng MH, Hjelm NM (1999) Quantitative analysis of aberrant p16 methylation using real-time quantitative methylation-specific polymerase chain reaction. Cancer Res 59:3899–3903

    CAS  PubMed  Google Scholar 

  28. Martin A, Baran-Marzak F, El Mansouri S, Legendre C, Leblond V, Charlotte F, Davi F, Canioni D, Raphael M (2000) Expression of p16/INK4a in posttransplantation lymphoproliferative disorders. Am J Pathol 156:1573–1579

    CAS  PubMed  Google Scholar 

  29. May A, Gossner L, Pech O, Fritz A, Günter E, Mayer G, Müller H, Seitz G, Vieth M, Stolte M, Ell C (2002) Local endoscopic therapy for intraepithelial high-grade neoplasia and early adenocarcinoma in Barrett’s oesophagus: acute-phase and intermediate results of a new treatment approach. Eur J Gastroenterol Hepatol 14:1085–1091

    Article  PubMed  Google Scholar 

  30. Montgomery E, Bronner MP, Goldblum J, Greenson JK, Haber MM, Hart J, Lamps LW, Lauwers GY, Lazenby AJ, Lewin DN, Robert ME, Toledano AY, Shyr Y, Washington K (2001) Reproducibility of the diagnosis of dysplasia in Barrett esophagus: a reaffirmation. Hum Pathol 32:368–378

    Article  CAS  PubMed  Google Scholar 

  31. Morales CP, Souza RF, Spechler SJ (2002) Hallmarks of cancer progression in Barrett’s oesophagus. Lancet 360:1587–1589

    Article  PubMed  Google Scholar 

  32. Ormsby AH, Petras RE, Henricks WH, Rice TW, Rybicki LA, Richter JE, Goldblum JR (2002) Observer variation in the diagnosis of superficial oesophageal adenocarcinoma. Gut 51:671–676

    Article  CAS  PubMed  Google Scholar 

  33. Ortner MA, Ebert B, Hein E, Zumbusch K, Nolte D, Sukowski U, Weber-Eibel J, Fleige B, Dietel M, Stolte M, Oberhuber G, Porschen R, Klump B, Hortnagl H, Lochs H, Rinneberg H (2003) Time gated fluorescence spectroscopy in Barrett’s oesophagus. Gut 52:28–33

    Article  PubMed  Google Scholar 

  34. Pera M (2000) Epidemiology of esophageal cancer, especially adenocarcinoma of the esophagus and esophagogastric junction. Recent Results Cancer Res 155:1–14

    CAS  PubMed  Google Scholar 

  35. Rashid A, Shen L, Morris JS, Issa JP, Hamilton SR (2001) CpG island methylation in colorectal adenomas. Am J Pathol 159:1129–1135

    CAS  PubMed  Google Scholar 

  36. Reid BJ (1991) Barrett’s esophagus and esophageal adenocarcinoma. Gastroenterol Clin North Am 20:817–834

    CAS  PubMed  Google Scholar 

  37. Rutter JL, Goldstein AM, Dávila MR, Tucker MA, Struewing JP (2003) CDKN2A point mutations D153spl(c.457G>T) and IVS2+1G>T result in aberrant splice products affecting both p16INK4a and p14ARF. Oncogene 44:4444–4448

    Article  Google Scholar 

  38. Sharma P, Weston AP, Topalovski M, Cherian R, Bhattacharyya A, Sampliner RE (2003) Magnification chromoendoscopy for the detection of intestinal metaplasia and dysplasia in Barrett’s oesophagus. Gut 52:24–27

    Article  CAS  PubMed  Google Scholar 

  39. Sherr CJ (2001) The INK4a/ARF network in tumour suppression. Nat Rev Mol Cell Biol 2:731–737

    Article  CAS  PubMed  Google Scholar 

  40. Spechler SJ (1994) Barrett’s esophagus. Semin Oncol 21:431–437

    CAS  PubMed  Google Scholar 

  41. Spechler SJ (2002) Barrett’s esophagus. N Engl J Med 346:836–842

    Article  PubMed  Google Scholar 

  42. Tannapfel A, Benicke M, Katalinic A, Uhlmann D, Köckerling F, Hauss J, Wittekind C (2000) Frequency of p16INK4A alterations and k-ras mutations in intrahepatic cholangiocarcinoma of the liver. Gut 47:721–727

    Article  CAS  PubMed  Google Scholar 

  43. Tannapfel A, Busse C, Geißler F, Witzigmann H, Hauss J, Wittekind C (2002) INK4a-ARF alterations in liver cell adenoma. Gut 51:253–258

    Article  CAS  PubMed  Google Scholar 

  44. Tselepis C, Morris CD, Wakelin D, Hardy R, Perry I, Luong QT, Harper E, Harrison R, Attwood SE, Jankowski JA (2003) Upregulation of oncogene c-myc in Barrett’s adenocarcinoma: induction of c-myc by acidified bile acid in vitro. Gut 52:174–180

    Article  CAS  PubMed  Google Scholar 

  45. Wheeler JM, Bodmer WF, Mortensen NJ (2000) DNA mismatch repair genes and colorectal cancer. Gut 47:148–153

    Article  CAS  PubMed  Google Scholar 

  46. Wong DJ, Paulson TG, Prevo LJ, Galipeau C, Longton G, Blount PL, Reid BJ (2001) P16INK4a lesions are common, early abnormalities that undergo clonal expansion in Barrett’s metaplastic epithelium. Cancer Res 61:8284–8289

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Vieth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vieth, M., Schneider-Stock, R., Röhrich, K. et al. INK4a-ARF alterations in Barrett’s epithelium, intraepithelial neoplasia and Barrett’s adenocarcinoma. Virchows Arch 445, 135–141 (2004). https://doi.org/10.1007/s00428-004-1042-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-004-1042-0

Keywords

Navigation