Skip to main content
Log in

From “self-differentiation” to organoids—the quest for the units of development

  • Perspective
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

As proposed by Wilhelm Roux in 1885, the key goal of experimental embryology (“Entwicklungsmechanik”) was to elucidate whether organisms or their parts develop autonomously (“self-differentiation”) or require interactions with other parts or the environment. However, experimental embryologists soon realized that concepts like “self-differentiation” only make sense when applied to particular parts or units of the developing embryo as defined both in time and space. Whereas the formation of tissues or organs may initially depend on interactions with surrounding tissues, they later become independent of such interactions or “determined.” Moreover, the determination of a particular tissue or organ primordium has to be distinguished from the spatially coordinated determination of its parts—what we now refer to as “patterning.” While some primordia depend on extrinsic influences (e.g., signals from adjacent tissues) for proper patterning, others rely on intrinsic mechanisms. Such intrinsically patterned units may behave as “morphogenetic fields” that can compensate for lost parts and regulate their size and proper patterning. While these insights were won by experimental embryologists more than 100 years ago, they retain their relevance today. To enable the generation of more life-like organoids in vitro for studying developmental processes and diseases in a dish, questions about the spatiotemporal units of development (when and how tissues and organs are determined and patterned) need to be increasingly considered. This review briefly sketches this conceptual history and its continued relevance by focusing on the determination and patterning of the inner ear with a specific emphasis on some studies published in this journal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable

References

  • Abello G, Alsina B (2007) Establishment of a proneural field in the inner ear. Int J Dev Biol 51:483–493

    Article  CAS  PubMed  Google Scholar 

  • Ben-Zvi D, Shilo BZ, Barkai N (2011) Scaling of morphogen gradients. Curr Opin Genet Dev 21:704–710

    Article  CAS  PubMed  Google Scholar 

  • Braus H (1904) Einige Ergebnisse der Transplantation von Organanlagen bei Bombinatorlarven. Verh d Anatom Ges 18:53–66

    Google Scholar 

  • Clevers H (2016) Modeling development and disease with organoids. Cell 165:1586–1597

    Article  CAS  PubMed  Google Scholar 

  • De Robertis EM, Morita EA, Cho KWY (1991) Gradient fields and homeobox genes. Development 112:669–678

    Article  PubMed  Google Scholar 

  • Delgado I, Torres M (2017) Coordination of limb development by crosstalk among axial patterning pathways. Dev Biol 429:382–386

    Article  CAS  PubMed  Google Scholar 

  • Driesch H (1891) Entwicklungsmechanische Studien. I. Der Werth der beiden ersten Furchungszellen in der Echinodermenentwicklung. Experimentelle Erzeugen von Theil-und Doppelbildungen. Z Zool 53:160–178

    Google Scholar 

  • Driesch H (1899) Die lokalisation morphogenetischer vorgänge. Ein beweis vitalistischen geschehens. Archiv für Entwicklungsmechanik 8:35–111

    Article  Google Scholar 

  • Eiraku M, Takata N, Ishibashi H, Kawada M, Sakakura E, Okuda S, Sekiguchi K, Adachi T et al (2011) Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472:51–56

    Article  CAS  PubMed  Google Scholar 

  • Eisinger K, Sternberg H (1923) Beiträge zur Entwicklungsmechanik des inneren Ohres. Archiv f mikrosk Anat u Entwcklungsmechanik 100:542–559

    Article  Google Scholar 

  • Fritzsch B, Barald KF, Lomax MI (1998) Early embryology of the vertebrate ear. In: Rubel EW, Popper AN, Fay RR (eds) Development of the auditory system. Springer, New York, pp 80–145

    Chapter  Google Scholar 

  • Ginsburg AS (1995) Determination of the labyrinth in different amphibina species and its correlation with determination of the other ectoderm derivatives. Roux’s Arch Dev Biol 204:351–358

    Article  Google Scholar 

  • Groves AK, Fekete DM (2012) Shaping sound in space: the regulation of inner ear patterning. Development 139:245–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison RG (1907) Experiments in transplanting limbs and their bearing upon the problems of the development of nerves. J Exp Zool 4:239–281

    Article  Google Scholar 

  • Harrison RG (1918) Experiments on the development of the fore limb of Amblystoma, a self-differentiating, equipotential system. J Exp Zool 25:413–461

    Article  Google Scholar 

  • Harrison RG (1924) Experiments on the development of the internal ear. Science 59:448

    Google Scholar 

  • Harrison RG (1936) Relations of symmetry in the developing ear of Amblystoma punctatum. Proc Natl Acad Sci USA 22:238–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison RG (1969) Harrison stages and description of the normal development of the spotted salamander, Amblystoma punctatum (Linn.). In: Harrison RG (ed) Organization and development of the embryo. New Haven, Yale University Press

    Google Scholar 

  • Hollinshead WH (1932) Determination of potencies in the forelimb of Amblystoma punctatum. J Exp Zool 73:183–194

    Article  Google Scholar 

  • Huxley JS, de Beer GR (1934) The elements of experimental embryology. Cambridge University Press, Cambridge

    Google Scholar 

  • Kaan HW (1927) Experiments on the development of the ear of Amblystoma punctatum. J ExpZool 46:13–61

    Google Scholar 

  • Kicheva A, Briscoe J (2015) Developmental pattern formation in phases. Trends Cell Biol 25:579–591

    Article  PubMed  Google Scholar 

  • Maienschein J (2014) Embryos under the microscope. MA, Harvard University Press, Cambridge

    Book  Google Scholar 

  • Plouhinec JL, De Robertis EM (2009) Systems biology of the self-regulating morphogenetic gradient of the Xenopus gastrula. Cold Spring Harb Perspect Biol 1:a001701

    Article  PubMed  PubMed Central  Google Scholar 

  • Raft S, Groves AK (2015) Segregating neural and mechanosensory fates in the developing ear: patterning, signaling, and transcriptional control. Cell Tissue Res 359:315–332

    Article  CAS  PubMed  Google Scholar 

  • Roccio M, Edge ASB (2019) Inner ear organoids: new tools to understand neurosensory cell development, degeneration and regeneration. Development 146:dev177188

  • Röhlich K (1929) Experimentelle untersuchungen über den zeitpunkt der determination der gehörblase bei Amblystoma-Embryonen. Wilhelm Roux’ Archiv für Entwicklungsmechanik der Organismen 118:164–199

    Article  PubMed  Google Scholar 

  • Roux W (1885) Beiträge zur Entwickelungsmechanik des Embryos. I. Zur Orientirung über einige Probleme der organischen Entwickelung. Z Biol 21:411–524

    Google Scholar 

  • Roux W (1888) Beiträge zur Entwickelungsmechanik des Embryo. V. Ueber die künstliche Hervorbringung “halber” Embryonen durch Zerstörung einer der beiden ersten Furchungszellen, sowie über die Nachentwickelung (Post generation) der fehlenden Körperhälfte. Virchow’s Archiv 114:419–521

    Google Scholar 

  • Saha M (1991) Spemann seen through a lens. In: Gilbert SF (ed) A conceptual history of modern embryology. Plenum Press, New York, pp 91–108

    Chapter  Google Scholar 

  • Sasai Y (2013) Cytosystems dynamics in self-organization of tissue architecture. Nature 493:318–326

    Article  CAS  PubMed  Google Scholar 

  • Schaper A (1904) Über einige fälle atypischer linsenentwicklung unter abnormen bedingungen. Anat Anz 24:305–326

    Google Scholar 

  • Schlosser G (2021) Development of sensory and neurosecretory cell types. Vertebrate cranial placodes, Vol.1. Boca Raton. CRC Press

    Book  Google Scholar 

  • Simunovic M, Brivanlou AH (2017) Embryoids, organoids and gastruloids: new approaches to understanding embryogenesis. Development 144:976–985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slack JMW (1991) From egg to embryo. Cambridge Univ, Press, Cambridge

    Book  Google Scholar 

  • Spemann H (1901) Ueber Correlationen in der Entwicklung des Auges. Verh Anat Ges 15:61–79

    Google Scholar 

  • Spemann H (1905) Über Linsenbildung nach experimenteller Entfernung der primären Linsenbildungszellen. Zool Anzeiger 28:419–432

    Google Scholar 

  • Spemann H (1906) Über eine neue Methode der embryonalen Transplantation. Verhand Deutsch Zool Gesellsch 16:195–202

    Google Scholar 

  • Spemann H (1910) Die Entwicklung des invertierten Hörgrübchens zum Labyrinth. Archiv für Entwicklungsmechanik 30:437–458

    Article  Google Scholar 

  • Spemann H (1918) Über die Determination der ersten Organanlagen des Amphibienembryo. Archiv für Entwicklungsmechanik 43:448–555

    Article  Google Scholar 

  • Spemann H (1921) Die Erzeugung tierischer Chimären durch heteroplastische embryonale Transplantationen zwischen Triton cristatus und taeniatus. Roux Arch Entwickl mech 48:533–570

    Article  Google Scholar 

  • Spemann H (1936) Experimentelle Beiträge zu einer Theorie der Entwicklung. Springer, Berlin

    Book  Google Scholar 

  • Spemann H, Geinitz B (1927) Über Weckung organisatorischer Fähigkeiten durch Verpflanzung in organisatorische Umgebung. Archiv für Entwicklungsmechanik 109:129–175

    Article  CAS  Google Scholar 

  • Stocum DL, Fallon JF (1982) Control of pattern formation in urodele limb ontogeny: a review and a hypothesis. J Embryol Exp Morphol 69:7–36

    CAS  PubMed  Google Scholar 

  • Streeter GL (1907) Some factors in the development of the amphibian ear vesicle and further experiments on equilibration. J Exp Zool 4:431–445

    Article  Google Scholar 

  • van der Valk WH, Steinhart MR, Zhang J, Koehler KR (2021) Building inner ears: recent advances and future challenges for in vitro organoid systems. Cell Death Differ 28:24–34

    Article  PubMed  Google Scholar 

  • Weismann A (1885) Die Continuität des Keimplasma’s als Grundlage einer Theorie der Vererbung. Jena, Gustav Fischer

    Google Scholar 

  • Weiss P (1939) Principles of development. Henry Holt and Co, New York

    Google Scholar 

  • Wolpert L (1969) Positional information and the spatial pattern of cellular differentiation. J Theor Biol 25:1–47

    Article  CAS  PubMed  Google Scholar 

  • Wu DK, Kelley MW (2012) Molecular mechanisms of inner ear development. Cold Spring Harb Perspect Biol 4:a008409

    Article  PubMed  PubMed Central  Google Scholar 

  • Yntema CL (1933) Experiments on the determination of the ear ectoderm in the embryo of Amblystoma punctatum. J Exp Zool 65:317–357

    Article  Google Scholar 

  • Yntema CL (1939) Self-differentiation of heterotopic ear ectoderm in the embryo of Amblystoma punctatum. J Exp Zool 80:1–17

    Article  Google Scholar 

  • Zuniga A (2015) Next generation limb development and evolution: old questions, new perspectives. Development 142:3810–3820

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

G.S wrote the manuscript and prepared the figures.

Corresponding author

Correspondence to Gerhard Schlosser.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Responsible Editor: V. Hartenstein

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schlosser, G. From “self-differentiation” to organoids—the quest for the units of development. Dev Genes Evol (2023). https://doi.org/10.1007/s00427-023-00711-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00427-023-00711-z

Keywords

Navigation