Skip to main content
Log in

C-terminal residues specific to Vasa among DEAD-box helicases are required for its functions in piRNA biogenesis and embryonic patterning

Development Genes and Evolution Aims and scope Submit manuscript

Abstract

The DEAD-box RNA helicase Vasa (Vas, also known as DDX4) is required for germ cell development. In Drosophila, analysis of hypomorphic mutations has implicated maternally expressed Vas in germ cell formation and posterior embryonic patterning. vas-null females, which rarely complete oogenesis, exhibit defects in mitotic progression of germline stem cells, Piwi-interacting RNA (piRNA)-mediated transposon silencing, and translation of Gurken (Grk), an EGFR ligand. The carboxy-terminal region of Vas orthologs throughout the animal kingdom consists of several acidic residues as well as an invariant tryptophan in the penultimate or ultimate position (Trp660 in Drosophila melanogaster). Using CRISPR/Cas9 gene editing, we made a substitution mutant in this residue. Replacing Trp660 by Glu (W660E) abolishes the ability of Vas to support germ cell formation and embryonic patterning and greatly reduces Vas activity in piRNA biogenesis, as measured by transposon silencing, and in activating Grk translation. A conservative substitution (W660F) has much milder phenotypic consequences. In addition, females expressing only a form of Vas in which the seven C-terminal amino acids were replaced with the corresponding residues from Belle (Bel, also known as DDX3) show defects in perinuclear nuage assembly and transposon silencing. Oogenesis in females expressing only the chimeric Vas arrests early; however, in a vas 1 background, in which early expression of endogenous Vas supports oogenesis, the chimeric protein supports posterior patterning and germ cell specification. These results indicate that the unique C-terminus of Vas is essential for its function in piRNA biogenesis and that the conserved Trp660 residue has an important functional role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alié A, Leclere L, Jager M, Dayraud C, Chang P, Le Guyader H, Queinnec E, Manuel M (2011) Somatic stem cells express Piwi and Vasa genes in an adult ctenophore: ancient association of “germline genes” with stemness. Dev Biol 350:183–197

    Article  CAS  PubMed  Google Scholar 

  • Anand A, Kai T (2012) The tudor domain protein kumo is required to assemble the nuage and to generate germline piRNAs in Drosophila. EMBO J 31:870–882

    Article  CAS  PubMed  Google Scholar 

  • Anne J (2010) Targeting and anchoring Tudor in the pole plasm of the Drosophila oocyte. PLoS One 5:e14362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barckmann B, Pierson S, Dufourt J, Papin C, Armenise C, Port F, Grentzinger T, Chambeyron S, Baronian G, Desvignes JP, Curk T, Simonelig M (2015) Aubergine iCLIP reveals piRNA-dependent decay of mRNAs involved in germ cell development in the early embryo. Cell Rep 12:1205–1216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breitwieser W, Markussen FH, Horstmann H, Ephrussi A (1996) Oskar protein interaction with Vasa represents an essential step in polar granule assembly. Genes Dev 10:2179–2188

    Article  CAS  PubMed  Google Scholar 

  • Carmel AB, Matthews BW (2004) Crystal structure of the BstDEAD N-terminal domain: a novel DEAD protein from Bacillus stearothermophilus. RNA 10:66–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carrera P, Johnstone O, Nakamura A, Casanova J, Jackle H, Lasko P (2000) Vasa mediates translation through interaction with a Drosophila yIF2 homolog. Mol Cell 5:181–187

    Article  CAS  PubMed  Google Scholar 

  • Caruthers JM, Johnson ER, McKay DB (2000) Crystal structure of yeast initiation factor 4A, a DEAD-box RNA helicase. Proc Natl Acad Sci U S A 97:13080–13085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castrillon DH, Quade BJ, Wang TY, Quigley C, Crum CP (2000) The human vasa gene is specifically expressed in the germ cell lineage. Proc Natl Acad Sci USA 97:9585–9590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cordin O, Banroques J, Tanner NK, Linder P (2006) The DEAD-box protein family of RNA helicases. Gene 367:17–37

    Article  CAS  PubMed  Google Scholar 

  • Dehghani M, Lasko P (2015) In vivo mapping of the functional regions of the DEAD-box helicase Vasa. Biol Open 4:450–U457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hafen E, Kuroiwa A, Gehring WJ (1984) Spatial distribution of transcripts from the segmentation gene fushi tarazu during Drosophila embryonic development. Cell 37(3):833–841

  • Hay B, Ackerman L, Barbel S, Jan LY, Jan YN (1988) Identification of a component of Drosophila polar granules. Development 103:625–640

    CAS  PubMed  Google Scholar 

  • Ikenishi K, Tanaka TS (2000) Spatio-temporal expression of Xenopus vasa homolog, XVLG1, in oocytes and embryos: the presence of XVLG1 RNA in somatic cells as well as germline cells. Dev Growth Differ 42:95–103

    Article  CAS  PubMed  Google Scholar 

  • Jankowsky E (2011) RNA helicases at work: binding and rearranging. Trends Biochem Sci 36:19–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jarmoskaite I, Russell R (2011) DEAD-box proteins as RNA helicases and chaperones. Wiley Interdiscip Rev RNA 2:135–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnstone O, Lasko P (2004) Interaction with eIF5B is essential for Vasa function during development. Development 131:4167–4178

    Article  CAS  PubMed  Google Scholar 

  • Johnstone O, Deuring R, Bock R, Linder P, Fuller MT, Lasko P (2005) Belle is a Drosophila DEAD-box protein required for viability and in the germ line. Dev Biol 277:92–101

    Article  CAS  PubMed  Google Scholar 

  • Kim JL, Morgenstern KA, Griffith JP, Dwyer MD, Thomson JA, Murcko MA, Lin C, Caron PR (1998) Hepatitis C virus NS3 RNA helicase domain with a bound oligonucleotide: the crystal structure provides insights into the mode of unwinding. Structure 6:89–100

    Article  CAS  PubMed  Google Scholar 

  • Knaut H, Pelegri F, Bohmann K, Schwarz H, Nusslein-Volhard C (2000) Zebrafish vasa RNA but not its protein is a component of the germ plasm and segregates asymmetrically before germline specification. J Cell Biol 149:875–888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korolev S, Hsieh J, Gauss GH, Lohman TM, Waksman G (1997) Major domain swiveling revealed by the crystal structures of complexes of E-coli Rep helicase bound to single-stranded DNA and ADP. Cell 90:635–647

    Article  CAS  PubMed  Google Scholar 

  • Kugler JM, Woo JS, Oh BH, Lasko P (2010) Regulation of Drosophila Vasa in vivo through paralogous cullin-RING E3 ligase specificity receptors. Mol Cell Biol 30:1769–1782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuznicki KA, Smith PA, Leung-Chiu WMA, Estevez AO, Scott HC, Bennett KL (2000) Combinatorial RNA interference indicates GLH-4 can compensate for GLH-1; these two P granule components are critical for fertility in C-elegans. Development 127:2907–2916

    CAS  PubMed  Google Scholar 

  • Lasko P, Ashburner M (1990) Posterior localization of Vasa protein correlates with, but is not sufficient for pole cell development. Genes Dev 4:905–921

    Article  CAS  PubMed  Google Scholar 

  • Lerit DA, Gavis ER (2011) Transport of germ plasm on astral microtubules directs germ cell development in Drosophila. Curr Biol 21:439–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang L, Diehljones W, Lasko P (1994) Localization of Vasa protein to the Drosophila pole plasm is independent of its RNA-binding and helicase activities. Development 120:1201–1211

    CAS  PubMed  Google Scholar 

  • Liu NK, Han H, Lasko P (2009) Vasa promotes Drosophila germline stem cell differentiation by activating mei-P26 translation by directly interacting with a (U)-rich motif in its 3′ UTR. Genes Dev 23:2742–2752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luking A, Stahl U, Schmidt U (1998) The protein family of RNA helicases. Crit Rev Biochem Mol Biol 33:259–296

    Article  CAS  PubMed  Google Scholar 

  • Megosh HB, Cox DN, Campbell C, Lin H (2006) The role of Piwi and the miRNA machinery in Drosophila germline determination. Curr Biol 16:1884–1894

    Article  CAS  PubMed  Google Scholar 

  • Mochizuki K, Nishimiya-Fujisawa C, Fujisawa T (2001) Universal occurrence of the vasa-related genes among metazoans and their germline expression in Hydra. Dev Genes Evol 211:299–308

    Article  CAS  PubMed  Google Scholar 

  • Patil VS, Kai T (2010) Repression of retroelements in Drosophila germline via piRNA pathway by the Tudor domain protein Tejas. Curr Biol 20:724–730

    Article  CAS  PubMed  Google Scholar 

  • Pek JW, Kai T (2011a) A role for Vasa in regulating mitotic chromosome condensation in Drosophila. Curr Biol 21:39–44

    Article  CAS  PubMed  Google Scholar 

  • Pek JW, Kai T (2011b) DEAD-box RNA helicase Belle/DDX3 and the RNA interference pathway promote mitotic chromosome segregation. Proc Natl Acad Sci U S A 108:12007–12012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pek JW, Patil VS, Kai T (2012) piRNA pathway and the potential processing site, the nuage, in the Drosophila germline. Dev Growth Differ 54:66–77

    Article  CAS  PubMed  Google Scholar 

  • Port F, Chen HM, Lee T, Bullock SL (2014) Optimized CRISPR/Cas tools for efficient germline and somatic genome engineering in Drosophila. Proc Natl Acad Sci U S A 111:E2967–E2976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rouget C, Papin C, Boureux A, Meunier AC, Franco B, Robine N, Lai EC, Pelisson A, Simonelig M (2010) Maternal mRNA deadenylation and decay by the piRNA pathway in the early Drosophila embryo. Nature 467:1128–1132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schüpbach T, Wieschaus E (1986) Maternal-effect mutations altering the anterior-posterior of the Drosophila embryo. Rouxs Arch Dev Biol 195:302–317

    Article  Google Scholar 

  • Sengoku T, Nureki O, Nakamura A, Satoru KI, Yokoyama S (2006) Structural basis for RNA unwinding by the DEAD-box protein Drosophila vasa. Cell 125:287–300

    Article  CAS  PubMed  Google Scholar 

  • Shibata N, Umesono Y, Orii H, Sakurai T, Watanabe K, Agata K (1999) Expression of vasa(vas)-related genes in germline cells and totipotent somatic stem cells of planarians. Dev Biol 206:73–87

    Article  CAS  PubMed  Google Scholar 

  • Styhler S, Nakamura A, Swan A, Suter B, Lasko P (1998) vasa is required for Gurken accumulation in the oocyte, and is involved in oocyte differentiation and germline cyst development. Development 125:1569–1578

    CAS  PubMed  Google Scholar 

  • Styhler S, Nakamura A, Lasko P (2002) Vasa localization requires the SPRY-domain and SOCS-box containing protein, Gustavus. Dev Cell 3:865–876

    Article  CAS  PubMed  Google Scholar 

  • Subramanya HS, Bird LE, Brannigan JA, Wigley DB (1996) Crystal structure of a DExx box DNA helicase. Nature 384:379–383

    Article  CAS  PubMed  Google Scholar 

  • Tanaka SS, Toyooka Y, Akasu R, Katoh-Fukui Y, Nakahara Y, Suzuki R, Yokoyama M, Noce T (2000) The mouse homolog of Drosophila Vasa is required for the development of male germ cells. Genes Dev 14:841–853

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tomancak P, Guichet A, Zavorszky P, Ephrussi A (1998) Oocyte polarity depends on regulation of gurken by Vasa. Development 125:1723–1732

    CAS  PubMed  Google Scholar 

  • Voronina E, Lopez M, Juliano CE, Gustafson E, Song JL, Extavour C, George S, Oliveri P, McClay D, Wessel G (2008) Vasa protein expression is restricted to the small micromeres of the sea urchin, but is inducible in other lineages early in development. Dev Biol 314:276–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Dickinson LK, Lehmann R (1994) Genetics of Nanos localization in Drosophila. Dev Dynam 199:103–115

    Article  CAS  Google Scholar 

  • Webster PJ, Liang L, Berg CA, Lasko P, Macdonald PM (1997) Translational repressor bruno plays multiple roles in development and is widely conserved. Genes Dev 11:2510–2521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiol J, Spinelli P, Laussmann MA, Homolka D, Yang Z, Cora E, Coute Y, Conn S, Kadlec J, Sachidanandam R et al (2014) RNA clamping by Vasa assembles a piRNA amplifier complex on transposon transcripts. Cell 157:1698–1711

    Article  CAS  PubMed  Google Scholar 

  • Yajima M, Wessel GM (2015) Essential elements for translation: the germline factor Vasa functions broadly in somatic cells. Development 142:1960–1970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Wang J, Xu J, Zhang Z, Koppetsch BS, Schultz N, Vreven T, Meignin C, Davis I, Zamore PD et al (2012) UAP56 couples piRNA clusters to the perinuclear transposon silencing machinery. Cell 151:871–884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao R, Shen JP, Green MR, MacMorris M, Blumenthal T (2004) Crystal structure of UAP56, a DExD/H-Box protein involved in pre-mRNA splicing and mRNA export. Structure 12:1373–1381

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Beili Hu for microinjection into the embryos. All the images were taken using the Cellular Imaging and Analysis Network (CIAN) facility at McGill University. We would also like to thank Fillip Port for his technical support during CRISPR gene editing and for sharing some of his unpublished observations. This work was supported by NSERC Discovery grant RGPIN-2014-06340 to P. L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Lasko.

Additional information

Communicated by Angelika Stollewerk

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Interactions of Vas with Osk, Gus and eIF5B are not abolished by ∆655-661 or W660E. A. A β-Galactosidase filter assay shows similar results for vas +, vas ∆655-661 and vas W660E in terms of interactions with Osk, Gus and eIF5B. B. Positive interactions would enable yeast to grow on the quadruple drop-out (-Trp, -Leu, -His and –Ade) media. This test also confirmed that the interactions with Osk, Gus and eIF5B are not notably different among vas +, vas ∆655-661 and vas W660E. (GIF 169 kb)

High resolution image (TIF 2830 kb)

Table S1

The list of the proteins that have been previously found to associate with Vas through different assays, including yeast two-hybrid (Y2H), GST pull-down or co-immunoprecipitation (co-IP). The latter has been performed using the endogenous or tagged proteins from Drosophila ovaries or Bombyx mori BmN4 cell lines. We expressed each one of these candidates in yeast, either as a full length protein or a fragment. Our Y2H assays only showed a direct interaction between full-length Vas and Osk, Gus and eIF5B, consistent with the previous studies. 1: (Breitwieser et al. 1996), 2: (Anne 2010), 3: (Styhler et al. 2002), 4: (Kugler et al. 2010), 5: (Carrera et al. 2000), 6: (Webster et al. 1997), 7: (Lerit and Gavis 2011), 8: (Patil and Kai 2010), 9: (Megosh et al. 2006), 10: (Pek and Kai 2011a), 11: (Anand and Kai 2012), 12: (Xiol et al. 2014) (GIF 78 kb)

High resolution image (TIF 855 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehghani, M., Lasko, P. C-terminal residues specific to Vasa among DEAD-box helicases are required for its functions in piRNA biogenesis and embryonic patterning. Dev Genes Evol 226, 401–412 (2016). https://doi.org/10.1007/s00427-016-0560-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-016-0560-5

Keywords

Navigation