Skip to main content
Log in

Memory for surface features of unfamiliar melodies: independent effects of changes in pitch and tempo

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

A melody’s identity is determined by relations between consecutive tones in terms of pitch and duration, whereas surface features (i.e., pitch level or key, tempo, and timbre) are irrelevant. Although surface features of highly familiar recordings are encoded into memory, little is known about listeners’ mental representations of melodies heard once or twice. It is also unknown whether musical pitch is represented additively or interactively with temporal information. In two experiments, listeners heard unfamiliar melodies twice in an initial exposure phase. In a subsequent test phase, they heard the same (old) melodies interspersed with new melodies. Some of the old melodies were shifted in key, tempo, or key and tempo. Listeners’ task was to rate how well they recognized each melody from the exposure phase while ignoring changes in key and tempo. Recognition ratings were higher for old melodies that stayed the same compared to those that were shifted in key or tempo, and detrimental effects of key and tempo changes were additive in between-subjects (Experiment 1) and within-subjects (Experiment 2) designs. The results confirm that surface features are remembered for melodies heard only twice. They also imply that key and tempo are processed and stored independently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. “Melody” is sometimes used to refer solely to successive pitch relations, as opposed to “rhythm”, which refers to differences in tone durations. Here, we define melody as a coherent series of tones that differ in pitch and duration.

  2. For all pairwise comparisons, Cohen’s d was calculated using the average SD.

References

  • Abe, J.-I., & Okada, A. (2004). Integration of metrical and tonal organization in melody perception. Japanese Psychological Research, 46, 298–307.

    Article  Google Scholar 

  • Andrews, M. W., Dowling, W. J., Bartlett, J. C., & Halpern, A. R. (1998). Identification of speeded and slowed familiar melodies by younger, middle-aged, and older musicians and nonmusicians. Psychology and Aging, 13, 462–471.

    Article  PubMed  Google Scholar 

  • Bartlett, J. C., & Dowling, W. J. (1980). Recognition of transposed melodies: A key-distance effect in developmental perspective. Journal of Experimental Psychology: Human Perception and Performance, 6, 501–513.

    PubMed  Google Scholar 

  • Bergeson, T. R., & Trehub, S. E. (2002). Absolute pitch and tempo in mothers’ songs to infants. Psychological Science, 13, 72–75.

    Article  PubMed  Google Scholar 

  • Boltz, M. G. (1998). Tempo discrimination of musical patterns: Effects due to pitch and rhythmic structure. Perception & Psychophysics, 60, 1357–1373.

    Article  Google Scholar 

  • Boltz, M. G. (2011). Illusory tempo changes due to musical characteristics. Music Perception, 28, 367–386.

    Article  Google Scholar 

  • Boltz, M. G., Marshburn, E., Jones, M. R., & Johnson, W. (1985). Serial pattern structure and temporal order recognition. Perception & Psychophysics, 37, 209–217.

    Article  Google Scholar 

  • Brainerd, C. J., & Reyna, V. F. (2002). Fuzzy-trace theory and false memory. Current Directions in Psychological Science, 11, 164–169.

    Article  Google Scholar 

  • Creel, S. C. (2011). Specific previous experience affects perception of harmony and meter. Journal of Experimental Psychology: Human Perception and Performance, 37, 1512–1526.

    PubMed  Google Scholar 

  • Dowling, W. J., & Bartlett, J. C. (1981). The importance of interval information in long-term memory for melodies. Psychomusicology, 1, 30–49.

    Article  Google Scholar 

  • Dowling, W. J., & Fujitani, D. S. (1971). Contour, interval, and pitch recognition in memory for melodies. Journal of the Acoustical Society of America, 49, 524–531.

    Article  PubMed  Google Scholar 

  • Eerola, T., Järvinen, T., Louhivuori, J., & Toiviainen, P. (2001). Statistical features and perceived similarity of folk melodies. Music Perception, 18, 275–296.

    Article  Google Scholar 

  • Ellis, R. J., & Jones, M. R. (2009). The role of accent salience and joint accent structure in meter perception. Journal of Experimental Psychology: Human Perception and Performance, 35, 264–280.

    PubMed  Google Scholar 

  • Halpern, A. R. (1984). Perception of structure in novel music. Memory & Cognition, 12, 163–170.

    Google Scholar 

  • Halpern, A. R. (1989). Memory for the absolute pitch of familiar songs. Memory & Cognition, 17, 572–581.

    Article  Google Scholar 

  • Halpern, A. R., Bartlett, J. C., & Dowling, W. J. (1995). Aging and experience in the recognition of musical transpositions. Psychology and Aging, 10, 325–342.

    Article  PubMed  Google Scholar 

  • Halpern, A. R., & Müllensiefen, D. (2008). Effects of timbre and tempo change on memory for music. The Quarterly Journal of Experimental Psychology, 61, 1371–1384.

    Article  PubMed  Google Scholar 

  • Hyde, K. L., & Peretz, I. (2004). Brains that are out of tune but in time. Psychological Science, 15, 356–360.

    Article  PubMed  Google Scholar 

  • Hyde, K. L., Zatorre, R. J., & Peretz, I. (2011). Functional MRI evidence for abnormal neural integrity of the pitch processing network in congenital amusia. Cerebral Cortex, 21, 292–299.

    Article  PubMed  Google Scholar 

  • John, O. P., Donahue, E. M., & Kentle, R. L. (1991). The big five inventory—Versions 4a and 54. Berkeley, CA: University of California, Berkeley, Institute of Personality and Social Research.

    Google Scholar 

  • Johnson, M. K., Hashtroudi, S., & Lindsay, D. S. (1993). Source monitoring. Psychological Bulletin, 113, 403–439.

    Article  Google Scholar 

  • Jones, M. R. (1987). Dynamic pattern structure in music: Recent theory and research. Perception & Psychophysics, 41, 621–634.

    Article  Google Scholar 

  • Jones, M. R. (1993). Dynamics of musical patterns: How do melody and rhythm fit together? In T. J. Tighe & W. J. Dowling (Eds.), Psychology and music: The understanding of melody and rhythm (pp. 67–92). Hillsdale: Erlbaum.

    Google Scholar 

  • Jones, M. R., & Boltz, M. (1989). Dynamic attending and responses to time. Psychological Review, 96, 459–491.

    Article  PubMed  Google Scholar 

  • Jones, M. R., Boltz, M., & Kidd, G. (1982). Controlled attending as a function of melodic and temporal context. Perception & Psychophysics, 32, 211–218.

    Article  Google Scholar 

  • Jones, M. R., Johnston, H. M., & Puente, J. (2006). Effects of auditory pattern structure on anticipatory and reactive attending. Cognitive Psychology, 53, 59–96.

    Article  PubMed  Google Scholar 

  • Jones, M. R., Moynihan, H., MacKenzie, N., & Puente, J. (2002). Temporal aspects of stimulus-driven attending in dynamic arrays. Psychological Science, 13, 313–319.

    Article  PubMed  Google Scholar 

  • Jones, M. R., & Ralston, J. T. (1991). Some influences of accent structure on melody recognition. Memory & Cognition, 19, 8–20.

    Article  Google Scholar 

  • Krumhansl, C. L. (1991). Memory for musical surface. Memory & Cognition, 19, 401–411.

    Article  Google Scholar 

  • Krumhansl, C. L. (2000). Rhythm and pitch in music cognition. Psychological Bulletin, 126, 159–179.

    Article  PubMed  Google Scholar 

  • Ladinig, O., & Schellenberg, E. G. (2012). Liking unfamiliar music: Effects of felt emotion and individual differences. Psychology of Aesthetics, Creativity, and the Arts, 6, 146–154.

    Article  Google Scholar 

  • Lamont, A., & Dibben, N. (2001). Motivic structure and the perception of similarity. Music Perception, 18, 245–274.

    Article  Google Scholar 

  • Levitin, D. J. (1994). Absolute memory of musical pitch: Evidence from the production of learned melodies. Perception & Psychophysics, 56, 414–423.

    Article  Google Scholar 

  • Levitin, D. J., & Cook, P. R. (1996). Memory for musical tempo: Additional evidence that auditory memory is absolute. Perception & Psychophysics, 58, 927–935.

    Article  Google Scholar 

  • Loui, P., Alsop, D., & Schlaug, G. (2009). Tone deafness: A new disconnection syndrome? Journal of Neuroscience, 29, 10215–10220.

    Article  PubMed Central  PubMed  Google Scholar 

  • McAdams, S., Vieillard, S., Houix, O., & Reynolds, R. (2004). Perception of musical similarity among contemporary thematic materials in two instrumentations. Music Perception, 22, 207–237.

    Article  Google Scholar 

  • Monahan, C. B., & Carterette, E. C. (1985). Pitch and duration as determinants of musical space. Music Perception, 3, 1–32.

    Article  Google Scholar 

  • Nygaard, L. C. (2005). Perceptual integration of linguistic and nonlinguistic properties of speech. In D. B. Pisoni & R. E. Remez (Eds.), Handbook of speech perception (pp. 390–413). Malden, MA: Oxford/Blackwell.

    Chapter  Google Scholar 

  • Palmer, C., & Krumhansl, C. L. (1987a). Independent temporal and pitch structures in determination of musical phrases. Journal of Experimental Psychology: Human Perception and Performance, 13, 116–126.

    PubMed  Google Scholar 

  • Palmer, C., & Krumhansl, C. L. (1987b). Pitch and temporal contributions to musical phase perception: Effects of harmony, performance timing, and familiarity. Perception & Psychophysics, 41, 505–518.

    Article  Google Scholar 

  • Peretz, I. (2008). Musical disorders: From behavior to genes. Current Directions in Psychological Science, 17, 329–333.

    Article  Google Scholar 

  • Peretz, I., Brattico, E., Järvenpää, M., & Tervaniemi, M. (2009). The amusic brain: In tune, out of key, and unaware. Brain, 132, 1277–1286.

    Article  PubMed  Google Scholar 

  • Peretz, I., Gaudreau, D., & Bonnel, A.-M. (1998). Exposure effects on music preference and recognition. Memory & Cognition, 26, 884–902.

    Article  Google Scholar 

  • Peretz, I., & Zatorre, R. J. (2005). Brain organization for music processing. Annual Review of Psychology, 56, 89–114.

    Article  PubMed  Google Scholar 

  • Plantinga, J., & Trainor, L. J. (2005). Memory for melody: Infants use a relative pitch code. Cognition, 98, 1–11.

    Article  PubMed  Google Scholar 

  • Poulin-Charronnat, B., Bigand, E., Lalitte, P., Madurell, F., Vieillard, S., & McAdams, S. (2004). Effects of a change in instrumentation on the recognition of musical materials. Music Perception, 22, 239–263.

    Article  Google Scholar 

  • Prince, J. B., Schmuckler, M. A., & Thompson, W. F. (2009). The effect of task and pitch structure on pitch–time interactions in music. Memory & Cognition, 37, 368–381.

    Article  Google Scholar 

  • Prince, J. B., Thompson, W. F., & Schmuckler, M. A. (2009). Pitch and time, tonality and meter: How do musical dimensions combine? Journal of Experimental Psychology: Human Perception and Performance, 35, 1598–1617.

    PubMed  Google Scholar 

  • Radvansky, G. A., Fleming, K. J., & Simmons, J. A. (1995). Timbre reliance in nonmusicians’ and musicians’ memory for melodies. Music Perception, 13, 127–140.

    Article  Google Scholar 

  • Radvansky, G. A., & Potter, J. K. (2000). Source cuing: Memory for melodies. Memory & Cognition, 28, 693–699.

    Article  Google Scholar 

  • Reder, L. M., Donavos, D. K., & Erickson, M. A. (2002). Perceptual match effects in direct tests of memory: The role of contextual fan. Memory & Cognition, 30, 312–323.

    Article  Google Scholar 

  • Schellenberg, E. G. (1996). Expectancy in melody: Tests of the implication-realization model. Cognition, 58, 75–125.

    Article  PubMed  Google Scholar 

  • Schellenberg, E. G. (2001). Asymmetries in the discrimination of musical intervals: Going out-of-tune is more noticeable than going in-tune. Music Perception, 19, 223–248.

    Article  Google Scholar 

  • Schellenberg, E. G., Iverson, P., & McKinnon, M. C. (1999). Name that tune: Identifying popular recordings from brief excerpts. Psychonomic Bulletin & Review, 6, 641–646.

    Article  Google Scholar 

  • Schellenberg, E. G., Krysciak, A. M., & Campbell, R. J. (2000). Perceiving emotion in melody: Interactive effects of pitch and rhythm. Music Perception, 18, 155–171.

    Article  Google Scholar 

  • Schellenberg, E. G., Peretz, I., & Vieillard, S. (2008). Liking for happy and sad sounding music: Effects of exposure. Cognition and Emotion, 22, 218–237.

    Article  Google Scholar 

  • Schellenberg, E. G., & Trehub, S. E. (1996). Children’s discrimination of melodic intervals. Developmental Psychology, 32, 1039–1050.

    Article  Google Scholar 

  • Schellenberg, E. G., & Trehub, S. E. (1999). Culture-general and culture-specific factors in the discrimination of melodies. Journal of Experimental Child Psychology, 74, 107–127.

    Article  PubMed  Google Scholar 

  • Schellenberg, E. G., & Trehub, S. E. (2003). Good pitch memory is widespread. Psychological Science, 14, 262–266.

    Article  PubMed  Google Scholar 

  • Schellenberg, E. G., & Trehub, S. E. (2008). Is there an Asian advantage for pitch memory? Music Perception, 25, 241–252.

    Article  Google Scholar 

  • Slavin, S. (2010). PsyScript (Version 2.3.0) [software]. Available from https://open.psych.lancs.ac.uk/software/PsyScript.html.

  • Smith, N. A., & Schmuckler, M. A. (2008). Dial A440 for absolute pitch: Absolute pitch memory by non-absolute pitch processors. Journal of the Acoustical Society of America, 123, EL77–EL84.

    Article  PubMed  Google Scholar 

  • Stalinski, S. M., & Schellenberg, E. G. (2010). Shifting perceptions: Developmental changes in judgments of melodic similarity. Developmental Psychology, 46, 1799–1803.

    Article  PubMed  Google Scholar 

  • Takeuchi, A. H., & Hulse, S. H. (1993). Absolute pitch. Psychological Bulletin, 113, 345–361.

    Article  PubMed  Google Scholar 

  • Thompson, W. F., Schellenberg, E. G., & Letnic, A. K. (2012). Fast and loud background music disrupts reading comprehension. Psychology of Music, 40, 700–708.

    Article  Google Scholar 

  • Tillmann, B., Gossellin, N., Bigand, E., & Peretz, I. (2012). Priming paradigm reveals harmonic structure processing in congenital amusia. Cortex, 48, 1073–1078.

    Article  PubMed  Google Scholar 

  • Trainor, L. J., Wu, L., & Tsang, C. D. (2004). Long-term memory for music: Infants remember tempo and timbre. Developmental Science, 7, 289–296.

    Article  PubMed  Google Scholar 

  • Trehub, S. E., Schellenberg, E. G., & Nakata, T. (2008). Cross-cultural perspectives on pitch memory. Journal of Experimental Child Psychology, 100, 40–52.

    Article  PubMed  Google Scholar 

  • Tulving, E., & Thompson, D. M. (1973). Encoding specificity and retrieval processes in episodic memory. Psychological Review, 80, 352–373.

    Article  Google Scholar 

  • Van Egmond, R., Povel, D.-J., & Maris, E. (1996). The influence of height and key on the perceptual similarity of transposed melodies. Perception & Psychophysics, 58, 1252–1259.

    Article  Google Scholar 

  • Volkova, A., Trehub, S. E., & Schellenberg, E. G. (2006). Infants’ memory for musical performances. Developmental Science, 9, 583–589.

    Article  PubMed  Google Scholar 

  • Warker, J. A., & Halpern, A. R. (2005). Musical stem completion: Humming that note. American Journal of Psychology, 118, 567–585.

    PubMed  Google Scholar 

  • Warren, R. M., Gardner, D. A., Brubaker, B. S., & Bashford, J. A, Jr. (1991). Melodic and nonmelodic sequence of tones: Effects of duration on perception. Music Perception, 8, 277–290.

    Article  Google Scholar 

  • Weiss, M. W., Trehub, S. E., & Schellenberg, E. G. (2012). Something in the way she sings: Enhanced memory for vocal melodies. Psychological Science, 23, 1074–1078.

    Article  PubMed  Google Scholar 

  • Wolpert, R. A. (1990). Recognition of melody, harmonic accompaniment, and instrumentation: Musicians vs. nonmusicians. Music Perception, 8, 95–106.

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by the Natural Sciences and Engineering Research Council of Canada. Andrew Griffith, Monika Mankarious, and Elizabeth Sharma assisted in recruiting and testing participants. Rogério Lira helped in producing the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Glenn Schellenberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schellenberg, E.G., Stalinski, S.M. & Marks, B.M. Memory for surface features of unfamiliar melodies: independent effects of changes in pitch and tempo. Psychological Research 78, 84–95 (2014). https://doi.org/10.1007/s00426-013-0483-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-013-0483-y

Keywords

Navigation