Skip to main content
Log in

Host RNAi-mediated silencing of Fusarium oxysporum f. sp. lycopersici specific-fasciclin-like protein genes provides improved resistance to Fusarium wilt in Solanum lycopersicum

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Main conclusion

Tomato transgenics expressing dsRNA against FoFLPs act as biofungicides and result in enhanced disease resistance upon Fol infection, by downregulating the endogenous gene expression levels of FoFLPs within Fol.

Abstract

Fusarium oxysporum f. sp. lycopersici (Fol) hijacks plant immunity by colonizing within the host and further instigating secondary infection causing vascular wilt disease in tomato that leads to significant yield loss. Here, RNA interference (RNAi) technology was used to determine its potential in enduring resistance against Fusarium wilt in tomato. To gain resistance against Fol infection, host-induced gene silencing (HIGS) of Fol-specific genes encoding for fasciclin-like proteins (FoFLPs) was done by generating tomato transgenics harbouring FoFLP1, FoFLP4 and FoFLP5 RNAi constructs confirmed by southern hybridizations. These tomato transgenics were screened for stable siRNA production in T0 and T1 lines using northern hybridizations. This confirmed stable dsRNAhp expression in tomato transgenics and suggested durable trait heritability in the subsequent progenies. FoFLP-specific siRNAs producing T1 tomato progenies were further selected to ascertain its disease resistance ability using seedling infection assays. We observed a significant reduction in FoFLP1, FoFLP4 and FoFLP5 transcript levels in Fol, upon infecting their respective RNAi tomato transgenic lines. Moreover, tomato transgenic lines, expressing intended siRNA molecules in the T1 generation, exhibit delayed disease onset with improved resistance. Furthermore, reduced fungal colonization was observed in the roots of Fol-infected T1 tomato progenies, without altering the plant photosynthetic efficiency of transgenic plants. These results substantiate the cross-kingdom dsRNA or siRNA delivery from transgenic tomato to Fol, leading to enhanced resistance against Fusarium wilt disease. The results also demonstrated that HIGS is a successful approach in rendering resistance to Fol infection in tomato plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All the data in the manuscript and supplementary information will be made available by the corresponding author upon request.

Abbreviations

DPI:

Days post-inoculation

Fol :

Fusarium oxysporum F. sp. lycopersici

HIGS:

Host-induced gene silencing

dsRNA:

Double-stranded RNA

siRNA:

Small interfering RNA

References

  • Bastiani MJ, Harrelson AL, Snow PM, Goodman CS (1987) Expression of fasciclin I and II glycoproteins on subsets of axon pathways during neuronal development in the grasshopper. Cell 48:745–755

    Article  CAS  PubMed  Google Scholar 

  • Basu D, Wang W, Ma S, DeBrosse T, Poirier E, Emch K, Soukup E, Tian L, Showalter AM (2015) Two hydroxyproline galactosyltransferases, GALT5 and GALT2, function in arabinogalactan-protein glycosylation, growth and development in Arabidopsis. PLoS ONE 10:e0125624

    Article  PubMed  PubMed Central  Google Scholar 

  • Basu D, Tian L, Debrosse T, Poirier E, Emch K, Herock H, Travers A, Showalter AM (2016) Glycosylation of a fasciclin-like arabinogalactan-protein (SOS5) mediates root growth and seed mucilage adherence via a cell wall receptor-like kinase (FEI1/FEI2) pathway in Arabidopsis. PLoS ONE 11:e0145092

    Article  PubMed  PubMed Central  Google Scholar 

  • Baulcombe DC (2015) VIGS, HIGS and FIGS: small RNA silencing in the interactions of viruses or filamentous organisms with their plant hosts. Curr Opin Plant Biol 26:141–146

    Article  CAS  PubMed  Google Scholar 

  • Berger SE, Chazli Y, Babu AF, Coste AT (2017) Azole resistance in Aspergillus fumigatus: a consequence of antifungal use in agriculture? Front Microbiol 8:1–6

    Article  Google Scholar 

  • Bhardwaj AR, Pandey R, Agarwal M, Agarwal SK (2012) Northern blot analysis for expression profiling of mRNAs and small RNAs. In: Jin H, Gassmann W (eds) RNA abundance analysis, vol 883. Humana Press, Totowa, NJ, pp 19–45

    Chapter  Google Scholar 

  • Bharti P, Jyoti P, Kapoor P, Sharma V, Shanmugam V, Yadav SK (2017) Host-induced silencing of pathogenicity genes enhances resistance to Fusarium oxysporum wilt in tomato. Mol Biotechnol 59:343–352

    Article  CAS  PubMed  Google Scholar 

  • Cai Q, He B, Kogel KH, Jin H (2018a) Cross-kingdom RNA trafficking and environmental RNAi—nature’s blueprint for modern crop protection strategies. Curr Opin Microbiol 46:58–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai Q, Qiao L, Wang M, He B, Lin FM, Palmquist J, Huang SD, Jin H (2018b) Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes. Science 360:1126–1129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai Q, He B, Weiberg A, Buck AH, Jin H (2019) Small RNAs and extracellular vesicles: new mechanisms of cross-species communication and innovative tools for disease control. PLoS Pathog 15:1008090

    Article  Google Scholar 

  • Catanzariti AM, Do HT, Bru P, de Sain M, Thatcher LF, Rep M, Jones DA (2017) The tomato I gene for Fusarium wilt resistance encodes an atypical leucine-rich repeat receptor-like protein whose function is nevertheless dependent on SOBIR 1 and SERK 3/BAK 1. Plant J 89:1195–1209

    Article  CAS  PubMed  Google Scholar 

  • Chauhan S, Rajam MV (2022) RNAi-mediated down-regulation of fasciclin-like proteins (FoFLPs) in Fusarium oxysporum f. sp. lycopersici results in reduced pathogenicity and virulence. Microbiol Res 260:127033

    Article  CAS  PubMed  Google Scholar 

  • Chen JY, Liu C, Gui YJ, Si KW, Zhang DD, Wang J, Short DP, Huang JQ, Li NY, Liang Y, Zhang WQ (2018) Comparative genomics reveals cotton-specific virulence factors in flexible genomic regions in Verticillium dahliae and evidence of horizontal gene transfer from Fusarium. New Phytol 217:756–770

    Article  CAS  PubMed  Google Scholar 

  • Cheng W, Song XS, Li HP, Cao LH, Sun K, Qiu XL, Xu YB, Yang P, Huang T, Zhang JB, Qu B (2015) Host-induced gene silencing of an essential chitin synthase gene confers durable resistance to Fusarium head blight and seedling blight in wheat. Plant Biotechnol J 13:1335–1345

    Article  CAS  PubMed  Google Scholar 

  • Choquer M, Rascle C, Gonçalves IR, de Vallée A, Ribot C, Loisel E, Smilevski P, Ferria J, Savadogo M, Souibgui E, Gagey MJ (2021) The infection cushion of Botrytis cinerea: a fungal ‘weapon’ of plant-biomass destruction. Environ Microbiol 23:2293–2314

    Article  CAS  PubMed  Google Scholar 

  • Deng Y, Wan Y, Liu W, Zhang L, Zhou K, Feng P, He G, Wang N (2022) OsFLA1 encodes a fasciclin-like arabinogalactan protein and affects pollen exine development in rice. Theor Appl Genet 135:1247–1262

    Article  CAS  PubMed  Google Scholar 

  • Dias MC (2012) Phytotoxicity: An overview of the physiological responses of plants exposed to fungicides. J Bot 2012:135479

    Google Scholar 

  • Dong OX, Ronald PC (2019) Genetic engineering for disease resistance in plants: recent progress and future perspectives. Plant Physiol 180:26–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong X, Wang M, Ling N, Shen Q, Guo S (2016) Potential role of photosynthesis-related factors in banana metabolism and defense against Fusarium oxysporum f. sp. Cubense. Environ Exp Bot 129:4–12

    Article  CAS  Google Scholar 

  • Dou T, Shao X, Hu C, Liu S, Sheng O, Bi F, Deng G, Ding L, Li C, Dong T, Gao H (2020) Host-induced gene silencing of Foc TR4 ERG6/11 genes exhibits superior resistance to Fusarium wilt of banana. Plant Biotechnol J 18:11–13

    Article  CAS  PubMed  Google Scholar 

  • Doyle J, Doyle J (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Dubey H, Kiran K, Jaswal R, Jain P, Kayastha AM, Bhardwaj SC, Mondal TK, Sharma TR (2019) Discovery and profiling of small RNAs from Puccinia triticina by deep sequencing and identification of their potential targets in wheat. Funct Integr Genomics 19:391–407

    Article  CAS  PubMed  Google Scholar 

  • Elkins T, Hortsch M, Bieber AJ, Snow PM, Goodman CS (1990) Drosophila fasciclin I is a novel homophilic adhesion molecule that along with fasciclin III can mediate cell sorting. J Cell Biol 110:1825–1832

    Article  CAS  PubMed  Google Scholar 

  • Fisher MC, Henk D, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, Gurr SJ (2012) Emerging fungal threats to animal, plant and ecosystem health. Nature 484:186–194

    Article  CAS  PubMed  Google Scholar 

  • Fravel D, Olivain C, Alabouvette C (2003) Fusarium oxysporum and its biocontrol. New Phytol 157:493–502

    Article  CAS  PubMed  Google Scholar 

  • Ghag SB, Shekhawat UK, Ganapathi TR (2014) Host-induced post-transcriptional hairpin RNA-mediated gene silencing of vital fungal genes confers efficient resistance against Fusarium wilt in banana. Plant Biotechnol J 12:541–553

    Article  CAS  PubMed  Google Scholar 

  • Gladieux P, Byrnes EJ III, Aguileta G, Fisher MC, Heitman J, Giraud T (2011) Epidemiology and evolution of fungal pathogens in plants and animals. In: Tibayrenc M (ed) Genetics and evolution of infectious disease. Elsevier, London, pp 59–132

    Chapter  Google Scholar 

  • Gonzalez-Cendales Y, Catanzariti AM, Baker B, Mcgrath DJ, Jones DA (2016) Identification of I-7 expands the repertoire of genes for resistance to Fusarium wilt in tomato to three resistance gene classes. Mol Plant Pathol 17:448–463

    Article  CAS  PubMed  Google Scholar 

  • Guedes FT, Laurans F, Quemener B, Assor C, Lainé-Prade V, Boizot N, Vigouroux J, Lesage-Descauses MC, Leplé JC, Déjardin A, Pilate G (2017) Non-cellulosic polysaccharide distribution during G-layer formation in poplar tension wood fibers: abundance of rhamnogalacturonan I and arabinogalactan proteins but no evidence of xyloglucan. Planta 246:857–878

    Article  CAS  PubMed  Google Scholar 

  • Guo XY, Li Y, Fan J, Xiong H, Xu FX, Shi J, Shi Y, Zhao JQ, Wang YF, Cao XL, Wang WM (2019) Host-induced gene silencing of MoAP1 confers broad-spectrum resistance to Magnaporthe oryzae. Front Plant Sci 10:433

    Article  PubMed  PubMed Central  Google Scholar 

  • Hahn M (2014) The rising threat of fungicide resistance in plant pathogenic fungi: Botrytis as a case study. J Chem Biol 7:133–141

    Article  PubMed  PubMed Central  Google Scholar 

  • He F, Zhang R, Zhao J, Qi T, Kang Z, Guo J (2019) Host-induced silencing of Fusarium graminearum genes enhances the resistance of Brachypodium distachyon to Fusarium head blight. Front Plant Sci 10:1362

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu S, Sonnenfeld M, Stahl S, Crews ST (1998) Midline fasciclin: A Drosophila fasciclin-I-related membrane protein localized to the CNS midline cells and trachea. J Neurobiol 35:77–93

    Article  CAS  PubMed  Google Scholar 

  • Jahan SN, Åsman AK, Corcoran P, Fogelqvist J, Vetukuri RR, Dixelius C (2015) Plant-mediated gene silencing restricts growth of the potato late blight pathogen Phytophthora infestans. J Exp Bot 66:2785–2794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin Y, Guo HS (2018) Plant small RNAs responsive to fungal pathogen infection. In: Ma W, Wolpert T (eds) Plant pathogenic fungi and oomycetes. Springer, Humana Press, New York, USA, pp 67–80

    Chapter  Google Scholar 

  • Joshi R (2018) A review of Fusarium oxysporum on its plant interaction and industrial use. J Med Plant Stud 6:112–115

    Article  CAS  Google Scholar 

  • Khatri M, Rajam M (2007) Targeting polyamines of Aspergillus nidulans by siRNA specific to fungal ornithine decarboxylase gene. Med Mycol 45:211–220

    Article  CAS  PubMed  Google Scholar 

  • Kumar M (2011) RNAi-mediated targeting of acetylcholinesterase gene of Helicoverpa armigera for insect resistance in transgenic tobacco and tomato. PhD Thesis, University of Delhi, Delhi

  • Lafarguette F, Leplé JC, Déjardin A, Laurans F, Costa G, Lesage-Descauses MC, Pilate G (2004) Poplar genes encoding fasciclin-like arabinogalactan proteins are highly expressed in tension wood. New Phytol 164:107–121

    Article  CAS  PubMed  Google Scholar 

  • Li J, Yu M, Geng LL, Zhao J (2010) The fasciclin-like arabinogalactan protein gene, FLA3, is involved in microspore development of Arabidopsis. Plant J 64:482–497

    Article  CAS  PubMed  Google Scholar 

  • Li X, Huang R, Liu J, Xu G, Yuan M (2021) Engineering false smut resistance rice via host-induced gene silencing of two chitin synthase genes of Ustilaginoidea virens. Plant Biotechnol J 19:2386–2388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang Z, Breman AM, Grimes BR, Rosen ED (2008) Identifying and genotyping transgene integration loci. Transgenic Res 17:979–983

    Article  CAS  PubMed  Google Scholar 

  • Liu TB, Chen GQ, Min H, Lin FC (2009) MoFLP1, encoding a novel fungal fasciclin-like protein, is involved in conidiation and pathogenicity in Magnaporthe oryzae. J Zhejiang Univ Sci B 10:434–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Madhulatha P, Pandey R, Hazarika P, Rajam MV (2006) Polymines and maltose significantly enhance shoot regeneration in tomato. Physiol Mol Biol Plant 12:295–301

    CAS  Google Scholar 

  • Madhulatha P, Pandey R, Hazarika P, Rajam MV (2007) High transformation frequency in Agrobacterium-mediated genetic transformation of tomato by using polyamines and maltose in shoot regeneration medium. Physiol Mol Biol Plants 13:191–198

    CAS  Google Scholar 

  • Mahto BK, Singh A, Pareek M, Rajam MV, Dhar-Ray S, Reddy PM (2020) Host-induced silencing of the Colletotrichum gloeosporioides conidial morphology 1 gene (CgCOM1) confers resistance against anthracnose disease in chilli and tomato. Plant Mol Biol 104:381–395

    Article  CAS  PubMed  Google Scholar 

  • Marburger DA, Venkateshwaran M, Conley SP, Esker PD, Lauer JG, Ané JM (2015) Crop rotation and management effect on Fusarium spp. populations. Crop Sci 55:365–376

    Article  CAS  Google Scholar 

  • McGovern R (2015) Management of tomato diseases caused by Fusarium oxysporum. Crop Prot 73:78–92

    Article  Google Scholar 

  • Michielse CB, van Wijk R, Reijnen L, Cornelissen BJ, Rep M (2009) Insight into the molecular requirements for pathogenicity of Fusarium oxysporum f. sp. lycopersici through large-scale insertional mutagenesis. Genome Biol 10:R4

    Article  PubMed  PubMed Central  Google Scholar 

  • Miyazaki Y, Kaneko S, Sunagawa M, Shishido K, Yamazaki T, Nakamura M, Babasaki K (2007) The fruiting-specific Leflp1 gene, encoding a novel fungal fasciclin-like protein, of the basidiomycetous mushroom Lentinula edodes. Curr Genet 51:367–375

    Article  CAS  PubMed  Google Scholar 

  • Nogués S, Cotxarrera L, Alegre L, Trillas MI (2002) Limitations to photosynthesis in tomato leaves induced by Fusarium wilt. New Phytol 154:461–470

    Article  PubMed  Google Scholar 

  • Nowara D, Gay A, Lacomme C, Shaw J, Ridout C, Douchkov D, Hensel G, Kumlehn J, Schweizer P (2010) HIGS: host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis. Plant Cell 22:3130–3141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oerke EC, Dehne HW (2004) Safeguarding production losses in major crops and the role of crop protection. Crop Prot 23:275–285

    Article  Google Scholar 

  • Okungbowa F, Shittu H (2012) Fusarium wilts: an overview. Environ Res J 6:83–102

    Google Scholar 

  • Omolehin O, Raruang Y, Hu D, Han ZQ, Wei Q, Wang K, Rajasekaran K, Cary JW, Chen ZY (2021) Resistance to aflatoxin accumulation in maize mediated by host-induced silencing of the Aspergillus flavus alkaline protease (alk) gene. J Fungi 7:904

    Article  CAS  Google Scholar 

  • Panwar V, McCallum B, Bakkeren G (2013) Host-induced gene silencing of wheat leaf rust fungus Puccinia triticina pathogenicity genes mediated by the Barley stripe mosaic virus. Plant Mol Biol 81:595–608

    Article  CAS  PubMed  Google Scholar 

  • Panwar V, Jordan M, McCallum B, Bakkeren G (2018) Host-induced silencing of essential genes in Puccinia triticina through transgenic expression of RNAi sequences reduces severity of leaf rust infection in wheat. Plant Biotechnol J 16:1013–1023

    Article  CAS  PubMed  Google Scholar 

  • Pareek M, Rajam MV (2017) RNAi-mediated silencing of MAP kinase signalling genes (Fmk1, Hog1, and Pbs2) in Fusarium oxysporum reduces pathogenesis on tomato plants. Fungal Biol 121:775–784

    Article  CAS  PubMed  Google Scholar 

  • Peach C, Velten J (1991) Transgene expression variability (position effect) of CAT and GUS reporter genes driven by linked divergent T-DNA promoters. Plant Mol Biol 17:49–60

    Article  CAS  PubMed  Google Scholar 

  • Pliego C, Nowara D, Bonciani G, Gheorghe DM, Xu R, Surana P, Whigham E, Nettleton D, Bogdanove AJ, Wise RP, Schweizer P (2013) Host-induced gene silencing in barley powdery mildew reveals a class of ribonuclease-like effectors. Mol Plant-Microbe Interact 26:633–642

    Article  CAS  PubMed  Google Scholar 

  • Qi T, Guo J, Peng H, Liu P, Kang Z, Guo J (2019) Host-induced gene silencing: a powerful strategy to control diseases of wheat and barley. Int J Mol Sci 20:206

    Article  PubMed  PubMed Central  Google Scholar 

  • Rajam MV (2020) RNA silencing technology: a boon for crop improvement. J Biosci 45:118

    Article  CAS  PubMed  Google Scholar 

  • Rajam MV, Chauhan S (2021) Host-induced gene silencing (HIGS): an emerging strategy for the control of fungal plant diseases. In: Sarmah BK, Borah BK (eds) Genome engineering for crop improvement. Springer, Cham, Switzerland, pp 97–116

    Chapter  Google Scholar 

  • Raruang Y, Omolehin O, Hu D, Wei Q, Han ZQ, Rajasekaran K, Cary JW, Wang K, Chen ZY (2020) Host induced gene silencing targeting Aspergillus flavus aflM reduced aflatoxin contamination in transgenic maize under field conditions. Front Microbiol 11:754

    Article  PubMed  PubMed Central  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor Laboratory Press, New York, USA

    Google Scholar 

  • Sanju S, Siddappa S, Thakur A, Shukla PK, Srivastava N, Pattanayak D, Sharma S, Singh BP (2015) Host-mediated gene silencing of a single effector gene from the potato pathogen Phytophthora infestans imparts partial resistance to late blight disease. Funct Integr Genomics 15:697–706

    Article  CAS  PubMed  Google Scholar 

  • Schaefer LK, Parlange F, Buchmann G, Jung E, Wehrli A, Herren G, Müller MC, Stehlin J, Schmid R, Wicker T, Keller B (2020) Cross-kingdom RNAi of pathogen effectors leads to quantitative adult plant resistance in wheat. Front Plant Sci 11:253

    Article  PubMed  PubMed Central  Google Scholar 

  • Schreiber U (2004) Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse method: an overview. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence. Springer, Dordrecht, pp 279–319

    Chapter  Google Scholar 

  • Seifert GJ, Xue H, Acet T (2014) The Arabidopsis thaliana FASCILIN LIKE ARABINOGALACTAN PROTEIN 4 gene acts synergistically with abscisic acid signalling to control root growth. Ann Bot 114:1125–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh N, Mukherjee SK, Rajam MV (2020) Silencing of the ornithine decarboxylase gene of Fusarium oxysporum f. sp. lycopersici by host-induced RNAi confers resistance to Fusarium wilt in tomato. Plant Mol Biol Rep 38:419–429

    Article  CAS  Google Scholar 

  • Song Y, Thomma BP (2018) Host-induced gene silencing compromises Verticillium wilt in tomato and Arabidopsis. Mol Plant Pathol 19:77–89

    Article  CAS  PubMed  Google Scholar 

  • Srinivas C, Devi DN, Murthy KN, Mohan CD, Lakshmeesha TR, Singh B, Kalagatur NK, Niranjana SR, Hashem A, Alqarawi AA, Tabassum B (2019) Fusarium oxysporum f. sp. lycopersici causal agent of vascular wilt disease of tomato: biology to diversity–a review. Saudi J Biol Sci 26:1315–1324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su X, Lu G, Li X, Rehman L, Liu W, Sun G, Guo H, Wang G, Cheng H (2020) Host-induced gene silencing of an adenylate kinase gene involved in fungal energy metabolism improves plant resistance to Verticillium dahliae. Biomolecules 10:127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takken F, Rep M (2010) The arms race between tomato and Fusarium oxysporum. Mol Plant Pathol 11:309–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tetorya M, Rajam MV (2018) RNA silencing of PEX6 gene causes decrease in pigmentation, sporulation and pathogenicity of Fusarium oxysporum. Plant Pathol 67:67–75

    Article  CAS  Google Scholar 

  • Tetorya M, Rajam MV (2021) RNAi-mediated silencing of PEX6 and GAS1 genes of Fusarium oxysporum f. sp. lycopersici confers resistance against Fusarium wilt in tomato. 3 Biotech 11:443

    Article  PubMed  PubMed Central  Google Scholar 

  • Tiwari IM, Jesuraj A, Kamboj R, Devanna BN, Botella JR, Sharma TR (2017) Host delivered RNAi, an efficient approach to increase rice resistance to sheath blight pathogen (Rhizoctonia solani). Sci Rep 7:7521

    Article  PubMed  PubMed Central  Google Scholar 

  • Van der Does HC, Constantin ME, Houterman PM, Takken FL, Cornelissen BJ, Haring MA, van den Burg HA, Rep M (2019) Fusarium oxysporum colonizes the stem of resistant tomato plants, the extent varying with the R-gene present. Eur J Plant Pathol 154:55–65

    Article  Google Scholar 

  • Wang M, Dean RA (2020) Movement of small RNAs in and between plants and fungi. Mol Plant Pathol 21:589–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiberg A, Wang M, Lin FM, Zhao H, Zhang Z, Kaloshian I, Huang HD, Jin H (2013) Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science 342:118–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiberg A, Wang M, Bellinger M, Jin H (2014) Small RNAs: a new paradigm in plant–microbe interactions. Annu Rev Phytopathol 52:495–516

    Article  CAS  PubMed  Google Scholar 

  • Wightwick A, Walters R, Allinson G, Reichman S, Menzies N (2010) Environmental risks of fungicides used in horticultural production systems. Fungicides 1:273–304

    Google Scholar 

  • Wu J, Yin S, Lin L, Liu D, Ren S, Zhang W, Meng W, Chen P, Sun Q, Fang Y, Wei C (2021) Host-induced gene silencing of multiple pathogenic factors of Sclerotinia sclerotiorum confers resistance to Sclerotinia rot in Brassica napus. Crop J 10:661–671

    Article  Google Scholar 

  • Xu-Gang LI, Song-Biao CH, Zi-Xian LU, Tuan-Jie CH, Qian-Chun ZE, Zhen ZH (2002) Impact of copy number on transgene expression in tobacco. J Integr Plant Biol 44:120–123

    Google Scholar 

  • Zhang J, Cai L, Cheng J, Mao H, Fan X, Meng Z, Chan KM, Zhang H, Qi J, Ji L, Hong Y (2008) Transgene integration and organization in cotton (Gossypium hirsutum L.) genome. Transgenic Res 17:293–306

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Zhao YL, Zhao JH, Wang S, Jin Y, Chen ZQ, Fang YY, Hua CL, Ding SW, Guo HS (2016) Cotton plants export microRNAs to inhibit virulence gene expression in a fungal pathogen. Nat Plant 2:16153

    Article  CAS  Google Scholar 

  • Zhu X, Qi T, Yang Q, He F, Tan C, Ma W, Voegele RT, Kang Z, Guo J (2017) Host-induced gene silencing of the MAPKK gene PsFUZ7 confers stable resistance to wheat stripe rust. Plant Physiol 175:1853–1863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Department of Biotechnology (Grant No. BT/PR0713/AGR/36/601/2008), New Delhi for financial assistance (to MVR). We are also grateful to the Department of Science and Technology, New Delhi for generous support in carrying out the RNAi work in the lab. MVR is grateful to the University Grants Commission (UGC) for BSR Faculty Fellowship. SC is thankful to the University of Delhi for UGC BSR-NET-JRF/SRF Fellowship. We also thank the UGC for SAP (DRS-III) programme, DST for FIST (Level 2) programme and DU-DST PURSE (Phase II) grant.

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: MVR SC. Performed the experiments: SC. Analyzed the data: SC MVR. Wrote the paper: SC. Corrected and edited the paper: MVR. Both the authors have approved the manuscript.

Corresponding author

Correspondence to Manchikatla Venkat Rajam.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Communicated by Dorothea Bartels.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Fig. S1

FLP-RNAi constructs preparation and confirmation. A PCR amplification of off-target free FoFLP1 (sense- 201 bp (1) and antisense- 197 bp (2)), FoFLP4 (sense-156 bp (3) and antisense-152 bp (4)) and FoFLP5 (sense-145 bp (5) and antisense-141 bp (6)) using gene-specific primers (Table S1) at annealing temperatures 65 °C, 59 °C and 61 °C, respectively. B, C TA cloning of PCR amplified products of FoFLP1, FoFLP4 and FoFLP5 in pGEMT easy cloning vector and confirmation of positive transformations using EcoRI restriction enzyme digestion to release the desired fallout. Lane 1, 2 and 3 correspond to FoFLP sense and lane 4, 5 and 6 correspond to FoFLP antisense cloned in pGEMT vector. D, E Restriction enzyme digestions for confirmation of putative bacterial colonies harbouring pMVR-FLP-RNAi constructs.Lane 1 represents Uncut plasmid; lanes 2 and 3 represent vector and putative plasmid constructs restricted with AscI/XbaI; lanes 4 and 5 represent putative plasmid constructs restricted with AscI/SwaI and BamHI/XbaI for sense and antisense respectively; lanes 6 and 7 represent putative plasmid constructs restricted with AscI/BamHI and SwaI/XbaI for sense+intron and antisense+intron. F Plasmid PCR to amplify 35S promoter-sense-intron-antisense-OCS terminator for confirmation of pMVR-FLP-RNAi constructs after mobilising the confirmed construct from E. coli to A. tumefaciens strain LBA4404. B corresponds to vector control; lane 1 corresponds to empty vector control and lanes 2-15 correspond to pMVR-FLP-RNAi constructs. Supplementary file1 (TIF 1516 KB)

Fig. S2

T-DNA maps of FLP-RNAi constructs. A,B, C and D correspond to empty vector pMVR, FLP1, FLP4 and FLP5 RNAi constructs.. Supplementary file2 (TIF 545 KB)

Fig. S3

Agrobacterium-mediated tomato transformation with FLP-RNAi constructs. Cotyledonary leaves were independently transformed with FLP1, FLP4 and FLP5-RNAi constructs and maintained on 50 mg/L kanamycin concentration till hardening. SM, selection medium (MS + 3% maltose + 0.5mg/L IAA and 2.5 mg/L BAP); SRM, shoot regeneration medium (MS + 3% maltose + 0.5 mg/L BAP); RM, rooting medium (1/2 MS + 3% maltose).Supplementary file3 (TIF 3468 KB)

Fig. S4

Morphological characterization of T0 FLP-RNAi tomato transformants. T0 tomato transgenics of FLP1, FLP4 and FLP5 RNAi lines were compared with the non-transformant and empty vector (pMVRhp) controls for variations in plant morphology, flower and fruit.. Supplementary file4 (TIF 3803 KB)

Fig. S5

PCR screening of T0 FLP-RNAi tomato transformants to demonstrate the presence of transgenes. npt-II gene-specific primers were used to screen the putative FLP1, FLP4 and FLP5-RNAi transgenic lines for the presence of FLP1, FLP4 and FLP5-RNAi cassette, respectively. PCR product size of npt-II corresponds to 704 bp. Supplementary file5 (TIF 689 KB)

Fig. S6

Morphological characterization of T1 progenies of FLP-RNAi tomato transgenic lines. Line number 7.1, 7.4, 8.2 and 8.3 of FLP1, 8.17 and 8.31 of FLP4, 8.1 and 8.5 of FLP5, 8.15 of pMVR (empty vector control) and untransformed line showing morphology of plant, flowers and fruits.Supplementary file6 (TIF 9300 KB)

Supplementary file7 (DOCX 16 KB)

Supplementary file8 (DOCX 17 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauhan, S., Rajam, M.V. Host RNAi-mediated silencing of Fusarium oxysporum f. sp. lycopersici specific-fasciclin-like protein genes provides improved resistance to Fusarium wilt in Solanum lycopersicum. Planta 259, 79 (2024). https://doi.org/10.1007/s00425-024-04360-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-024-04360-y

Keywords

Navigation