Skip to main content

Advertisement

Log in

Advances in bread wheat production through CRISPR/Cas9 technology: a comprehensive review of quality and other aspects

  • Review
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

This review provides a comprehensive overview of the CRISPR/Cas9 technique and the research areas of this gene editing tool in improving wheat quality.

Abstract

Wheat (Triticum aestivum L.), the basic nutrition for most of the human population, contributes 20% of the daily energy needed because of its, carbohydrate, essential amino acids, minerals, protein, and vitamin content. Wheat varieties that produce high yields and have enhanced nutritional quality will be required to fulfill future demands. Hexaploid wheat has A, B, and D genomes and includes three like but not identical copies of genes that influence important yield and quality. CRISPR/Cas9, which allows multiplex genome editing provides major opportunities in genome editing studies of plants, especially complicated genomes such as wheat. In this overview, we discuss the CRISPR/Cas9 technique, which is credited with bringing about a paradigm shift in genome editing studies. We also provide a summary of recent research utilizing CRISPR/Cas9 to investigate yield, quality, resistance to biotic/abiotic stress, and hybrid seed production. In addition, we provide a synopsis of the laboratory experience-based solution alternatives as well as the potential obstacles for wheat CRISPR studies. Although wheat’s extensive genome and complicated polyploid structure previously slowed wheat genetic engineering and breeding progress, effective CRISPR/Cas9 systems are now successfully used to boost wheat development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Because no data sets were generated or analyzed during the current study, data sharing does not apply to this article.

References

  • Aadel H, Udupa S, Abdelwahd R, Gaboun F, Diria G, Douira A, Iraqi D (2021) Agrobacterium-mediated genetic transformation of bread wheat (Triticum aestivum L.) using immature embryos. Rom Agric Res 38:99–107

    Google Scholar 

  • Abdallah NA, Elsharawy H, Abulela HA, Thilmony R, Abdelhadi AA (2022) Elarabi NI (2022) Multiplex CRISPR/Cas9-mediated genome editing to address drought tolerance in wheat. GM Crops Food. https://doi.org/10.1080/216456982120313

    Article  PubMed  PubMed Central  Google Scholar 

  • Abdul R, Ishfaq AH, Imran M, Azhar H (2011) Development of in planta transformation protocol for wheat. Afr J Biotechnol 10:740–750

    Google Scholar 

  • Abe F, Haque E, Hisano H, Tanaka T, Kamiya Y, Mikami M, Kawaura K, Endo M, Onishi K, Hayashi T, Sato K (2019) Genome-edited triple-recessive mutation alters seed dormancy in wheat. Cell Rep 28:1362–1369

    Article  CAS  PubMed  Google Scholar 

  • Abudayyeh OO, Gootenberg JS, Konermann S, Joung J, Slaymaker IM, Cox DB, Shmakov S, Makarova KS, Semanova E, Minakhin L, Severinov K, Regev A, Lander ES, Koonin EV, Zhang F (2016) C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Sci. https://doi.org/10.1126/science.aaf5573

    Article  Google Scholar 

  • Achary V, Reddy MK (2021) CRISPR-Cas9 mediated mutation in GRAIN WIDTH and WEIGHT2 (GW2) locus improves rice’s aleurone layer and grain nutritional quality. Sci Rep 11:1–13

    Article  Google Scholar 

  • Aglawe SB, Barbadikar KM, Mangrauthia SK, Madhav MS (2018) New breeding technique “genome editing” for crop improvement: applications, potentials and challenges. 3 Biotech 8:1–20

    Article  Google Scholar 

  • Ahansal K, Abdelwahd R, Udupa S, Aadel H, Gaboun F, Ibriz M, Iraqi D (2022) Effect of type of mature embryo explants and acetosyringone on Agrobacterium-mediated transformation of moroccan durum wheat. J Biosci 38:e38007

    Article  Google Scholar 

  • Ahmad HM, Iqbal MS, Abdullah M, El-Tabakh MA, Oranab S, Mudassar M, Shimira F, Zahid G (2023) Recent Trends in Genome Editing Technologies for Agricultural Crop Improvement. Sustainable Agriculture in the Era of the OMICs Revolution. Springer International Publishing, Cham, pp 357–379

    Chapter  Google Scholar 

  • Alikina O, Chernobrovkina M, Dolgov S, Miroshnichenko D (2016) Tissue culture efficiency of wheat species with different genomic formulas. Crop Breed Appl Biotechnol 16:307–314

    Article  CAS  Google Scholar 

  • Allahi S, Khodaparast SA, Sohani MM (2014) Agrobacterium-mediated transformation of Indica rice: A non-tissue culture approach. Int J Agric Innov Res 3:2319–1473

    Google Scholar 

  • Amoah BK, Wu H, Sparks C, Jones HD (2001) Factors influencing Agrobacterium-mediated transient expression of uid A in wheat inflorescence tissue. J Exp Bot 52:1135–1142

    Article  CAS  PubMed  Google Scholar 

  • Anas M, Liao F, Verma KK, Sarwar MA, Mahmood A, Chen ZL, Li Q, Zeng XP, Li YR (2020) Fate of nitrogen in agriculture and environment: agronomic, eco-physiological and molecular approaches to improve nitrogen use efficiency. Biol Res 53:1–20

    Article  Google Scholar 

  • Anders C, Niewoehner O, Duerst A, Jinek M (2014) Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513:569–573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Appels R, Eversole K, Feuille C, Keller B, Rogers J, Stein N (2018) The International Wheat Genome Sequencing Consortium (IWGSC). Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361:10–1126

    Google Scholar 

  • Arndell T, Sharma N, Langridge P, Baumann U, Watson-Haigh NS, Whitford R (2019) gRNA validation for wheat genome editing with the CRISPR-Cas9 system. BMC Biotechnol 19:1–12

    Article  CAS  Google Scholar 

  • Arslan E, Agar G, Aydin M (2021) Humic acid as a biostimulant in improving drought tolerance in wheat: The expression patterns of drought-related genes. Plant Mol Biol Rep 39:508–519

    Article  CAS  Google Scholar 

  • Awan MJA, Pervaiz K, Rasheed A, Amin I, Saeed NA, Dhugga KS, Mansoor S (2022) Genome edited wheat-current advances for the second green revolution. Biotechnol Adv 60:108006

    Article  CAS  PubMed  Google Scholar 

  • Aydin M, Tosun M, Haliloglu K (2011) Plant regeneration in wheat mature embryo culture. Afr J Biotechnol 10:15749–15755

    Article  CAS  Google Scholar 

  • Aydin M, Pour AH, Haliloğlu K, Tosun M (2016) Effect of polyamines on somatic embryogenesis via mature embryo in wheat. Turk J Biol 40:1178–1184

    Article  CAS  Google Scholar 

  • Aydin M, Arslan E, Yigider E, Taspinar MS, Agar G (2021) Protection of Phaseolus vulgaris L. from Herbicide 2, 4-D results from exposing seeds to humic acid. Arab J Sci Eng 46:163–173

    Article  CAS  Google Scholar 

  • Badhan S, Ball AS, Mantri N (2021) First report of CRISPR/Cas9 mediated DNA-free editing of 4CL and RVE7 genes in chickpea protoplasts. Int J Mol Sci 22:396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bae S, Park J, Kim JS (2014) Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30:1473–1475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712

    Article  CAS  PubMed  Google Scholar 

  • Baskar G, Aiswarya R (2018) Overview on mitigation of acrylamide in starchy fried and baked foods. J Sci Food Agric 98:4385–4394

    Article  CAS  PubMed  Google Scholar 

  • Bettgenhaeuser J, Krattinger SG (2019) Rapid gene cloning in cereals. Theor Appl Genet 132:699–711

    Article  PubMed  Google Scholar 

  • Blin K, Pedersen LE, Weber T, Lee SY (2016) CRISPy-web: an online resource to design sgRNAs for CRISPR applications. Synth Syst Biotechnol 1:118–121

    Article  PubMed  PubMed Central  Google Scholar 

  • Borrelli VM, Brambilla V, Rogowsky P, Marocco A, Lanubile A (2018) The enhancement of plant disease resistance using CRISPR/Cas9 technology. Front Plant Sci 9:1245

    Article  PubMed  PubMed Central  Google Scholar 

  • Brauer EK, Balcerzak M, Rocheleau H, Leung W, Schernthaner J, Subramaniam R, Ouellet T (2020) Genome editing of a deoxynivalenol-induced transcription factor confers resistance to Fusarium graminearum in wheat. Mol Plant Microbe Interact 33:553–560

    Article  CAS  PubMed  Google Scholar 

  • Caruso SM, Quinn PM, da Costa BL, Tsang SH (2022) CRISPR/Cas therapeutic strategies for autosomal dominant disorders. Clin Drug Investig 132:e158287

    CAS  Google Scholar 

  • Carvalho CHS, Zehr UB, Gunaratna N, Anderson J, Kononowicz HH, Hodges TK, Axtell JD (2004) Agrobacterium-mediated transformation of sorghum: factors that affect transformation efficiency. Genet Mol Biol 27:259–269

    Article  CAS  Google Scholar 

  • Chang H, Yi B, Ma R, Zhang X, Zhao H, Xi Y (2016) CRISPR/cas9, a novel genomic tool to knock down microRNA in vitro and in vivo. Sci Rep 6:1–12

    CAS  Google Scholar 

  • Chanyalew S, Assefa K, Tadele Z (2019) Tef [Eragrostis tef (Zucc.) Trotter] Breeding. Adv Plant Breed Strateg Cereals 5:373–403

    Article  Google Scholar 

  • Chaudhary J, Alisha A, Bhatt V, Chandanshive S, Kumar N, Mir Z, Kumar A, Yadav SK, Shivaraj SM, Sonah H, Deshmukh R (2019) Mutation breeding in tomato: Advances, applicability and challenges. Plants 8:128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chauhan H, Khurana P (2017) Wheat genetic transformation using mature embryos as explants. In Wheat Biotechnology. Humana Press, New York pp. 153–167

  • Chavez M, Chen X, Finn PB, Qi LS (2022) Advances in CRISPR therapeutics. Nat Rev Nephrol 1–14

  • Chen K, Wang Y, Zhang R, Zhang H, Gao C (2019a) CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu Rev Plant Biol 70:667–697

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Zhang H, Zhang Y, Wang Y, Gan J, Ji Q (2019b) Molecular basis for the PAM expansion and fidelity enhancement of an evolved Cas9 nuclease. PLoS Biol 17:e3000496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Ke W, He F, Chai L, Cheng X, Xu H, Wang X, Du D, Zhao Y, Chen X, Xing J, Xin M, Guo W, Hu Z, Su Z, Liu J, Peng H, Yao Y, Sun Q, Ni Z (2022) A single nucleotide deletion in the third exon of FT-D1 increases the spikelet number and delays heading date in wheat (Triticum aestivum L.). Plant Biotechnol J 20:920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Debernardi JM, Dubcovsky J, Gallavotti A (2022a) Recent advances in crop transformation technologies. Nat Plants 1–9

  • Cheng M, Fry JE, Pang S, Zhou H, Hironaka CM, Duncan DR, Conner TW, Wan Y (1997) Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol 115:971–980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng X, Gao C, Liu X, Xu D, Pan X, Gao W, Yan S, Yao H, Cao J, Min X, Lu J, Chang C, Zhang H, Ma C (2022) Characterization of the wheat VQ protein family and expression of candidate genes associated with seed dormancy and germination. BMC Plant Biol 22:1–18

    Article  Google Scholar 

  • Chylinski K, Le Rhun A, Charpentier E (2013) The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems. RNA Biol 10:726–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cram D, Kulkarni M, Buchwaldt M, Rajagopalan N, Bhowmik P, Rozwadowski K, Parkin İAP, Sharpe AG, Kagale S (2019) WheatCRISPR: a web-based guide RNA design tool for CRISPR/Cas9-mediated genome editing in wheat. BMC Plant Biol 19:1–8

    Article  CAS  Google Scholar 

  • Curtis BC, Rajaram S, Gómez Macpherson H (2002) Bread wheat: improvement and production. Food and Agriculture Organization of the United Nations (FAO)

  • Dai SH, Zheng P, Marmey P, Zhang SP, Tian WZ, Chen SY, Beachy RN, Fauquet C (2001) Comparative analysis of transgenic rice plants obtained by Agrobacterium-mediated transformation and particle bombardment. Mol Breed 7:25–33

    Article  CAS  Google Scholar 

  • Dan Y (2008) Biological functions of antioxidants in plant transformation. In Vitro Cell Dev Biol 44:149–161

    Article  CAS  Google Scholar 

  • Das D, Reddy M, Upadhyaya K, Sopory S (2002) An efficient leaf-disc culture method for the regeneration via somatic embryogenesis and transformation of grape (Vitis vinifera L.). Plant Cell Rep 20:999–1005

    Article  CAS  Google Scholar 

  • Dayani S, Sabzalian MR, Mazaheri-Tirani M (2019) CRISPR/Cas9 genome editing in bread wheat (Triticum aestivum L.) genetic improvement. Adv Plant Breed Strateg Cereals 5:453–469

    Article  Google Scholar 

  • De Saeger J, Park J, Chung HS, Hernalsteens JP, Van Lijsebettens M, Inzé D, Montagu MV, Depuydt S (2021) Agrobacterium strains and strain improvement: Present and outlook. Biotechnol Adv 53:107677

    Article  PubMed  Google Scholar 

  • Ding L, Li S, Gao J, Wang Y, Yang G, He G (2009) Optimization of Agrobacterium-mediated transformation conditions in mature embryos of elite wheat. Mol Biol Rep 36:29–36

    Article  CAS  PubMed  Google Scholar 

  • Ding Y, Li H, Chen LL, Xie K (2016) Recent advances in genome editing using CRISPR/Cas9. Front Plant Sci 7:703

    Article  PubMed  PubMed Central  Google Scholar 

  • Doudna JA, Charpentier E (2014) The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096

    Article  PubMed  Google Scholar 

  • Erturk FA, Agar G, Arslan E, Nardemir G (2015) Analysis of genetic and epigenetic effects of maize seeds in response to heavy metal (Zn) stress. Environ Sci Pollut Res 22:10291–10297

    Article  CAS  Google Scholar 

  • Esmail SM, Omar GE, Mourad AM (2023) In-Depth Understanding of the Genetic Control of Stripe Rust Resistance (Puccinia striiformis f. sp. tritici) Induced in Wheat (Triticum aestivum) by Trichoderma asperellum T34. Plant Dis 107:457–472

    Article  CAS  PubMed  Google Scholar 

  • FAO (2022) The state of food security and nutrition in the world 2020: transforming food systems for affordable healthy diets. Food & Agriculture Org. 2022. Available from: https://www.fao.org/3/ca9692en/online/ca9692en.html

  • Fedorova I, Vasileva A, Selkova P, Abramova M, Arseniev A, Pobegalov G, Kazalov M, Musharova O, Goryanin I, Artamonova D, Zyubko T, Shmakov S, Artamonova T, Khodorkovskii M, Severinov K (2020) PpCas9 from Pasteurella pneumotropica—a compact Type II-C Cas9 ortholog active in human cells. Nucleic Acids Res 48:12297–12309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao XQ, Wang N, Wang XL, Zhang XS (2019) Architecture of wheat inflorescence: insights from rice. Trends Plant Sci 24:802–809

    Article  CAS  PubMed  Google Scholar 

  • Garneau JE, Dupuis M-E, Villion M, Romero DA, Barrangou R, Boyaval P, Fremaux C, Horvath P, Magadán AH, Moineau S (2010) The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468:67–71

    Article  CAS  PubMed  Google Scholar 

  • Gasiunas G, Barrangou R, Horvath P, Siksnys V (2012) Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. PNAS 109:E2579–E2586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gil-Humanes J, Wang Y, Liang Z, Shan Q, Ozuna CV, Sánchez-León S, Baltes NJ, Starker C, Barro F, Gao C, Voytas DF (2017) High-efficiency gene targeting in hexaploid wheat using DNA replicons and CRISPR/Cas9. Plant J 89:1251–1262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • González Castro N, Bjelic J, Malhotra G, Huang C, Alsaffar SH (2021) Comparison of the feasibility, efficiency, and safety of genome editing technologies. Int J Mol Sci 22:10355

    Article  PubMed  PubMed Central  Google Scholar 

  • Gootenberg JS, Abudayyeh OO, Kellner MJ, Joung J, Collins JJ, Zhang F (2018) Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science 360:439–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gostimskaya I (2022) CRISPR–Cas9: A History of Its Discovery and Ethical Considerations of Its Use in Genome Editing. Biochem (Moscow) 87:777–788

    Article  CAS  Google Scholar 

  • Greer MS, Kovalchuk I, Eudes F (2009) Ammonium nitrate improves direct somatic embryogenesis and biolistic transformation of Triticum aestivum. N Biotechnol 26:44–52

    Article  CAS  PubMed  Google Scholar 

  • Guha TK, Edgell DR (2017) Applications of alternative nucleases in the age of CRISPR/Cas9. Int J Mol Sci 18:2565

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta D, Bhattacharjee O, Mandal D, Sen MK, Dey D, Dasgupta A, Kazi TA, Gupta R, Sinharoy S, Acharya K, Chattopadhyay D, Ravichandiran V, Roy S, Ghosh D (2019) CRISPR-Cas9 system: A new-fangled dawn in gene editing. Life Sci 232:116636

    Article  CAS  PubMed  Google Scholar 

  • Gupta A, Hua L, Zhang Z, Yang B, Li W (2022) CRISPR‐induced miRNA156‐recognition element mutations in TaSPL13 improve multiple agronomic traits in wheat. Plant Biotechnol J

  • Hahn F, Sanjurjo Loures L, Sparks CA, Kanyuka K, Nekrasov V (2021) Efficient CRISPR/Cas-mediated targeted mutagenesis in spring and winter wheat varieties. Plants 10:1481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hajiahmadi Z, Movahedi A, Wei H, Li D, Orooji Y, Ruan H, Zhuge Q (2019) Strategies to increase on-target and reduce off-target effects of the CRISPR/Cas9 system in plants. Int J Mol Sci 20:3719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hao X, Song S, Zhong Q, Hajano JUD, Guo J, Wu Y (2021) Rescue of an Infectious cDNA Clone of Barley Yellow Dwarf Virus-GAV. Phytopathology 111:2383–2391

    Article  CAS  PubMed  Google Scholar 

  • Hasan Nudin NF, van Kronenburg B, Tinnenbroek I, Krens F (2015) The importance of salicylic acid and an improved plant condition in determining success in Agrobacterium-mediated transformation. In XXV International EUCARPIA Symposium Section Ornamentals: Crossing Borders 1087:65–69

  • Hashemi A (2020) CRISPR–Cas9/CRISPRi tools for cell factory construction in E. coli. World J Microbiol Biotechnol 36:1–13

    Article  Google Scholar 

  • Hayta S, Smedley MA, Demir SU, Blundell R, Hinchliffe A, Atkinson N, Harwood WA (2019) An efficient and reproducible Agrobacterium-mediated transformation method for hexaploid wheat (Triticum aestivum L.). Plant Methods 15:1–15

    Google Scholar 

  • Hayta S, Smedley MA, Clarke M, Forner M, Harwood WA (2021) An efficient Agrobacterium-mediated transformation protocol for hexaploid and tetraploid wheat. Curr Protoc 1:e58

    Article  CAS  PubMed  Google Scholar 

  • He Y, Zhu M, Wang L, Wu J, Wang Q, Wang R, Zhao Y (2018) Programmed self-elimination of the CRISPR/Cas9 construct greatly accelerates the isolation of edited and transgene-free rice plants. Mol Plant 11:1210–1213

    Article  CAS  PubMed  Google Scholar 

  • He F, Wang C, Sun H, Tian S, Zhao G, Liu C, Wan C, Guo J, Huang X, Zhan G, Yu X, Kang Z, Guo J (2022) Simultaneous editing of three homoeologs of TaCIPK14 confers broad-spectrum resistance to stripe rust in wheat. Plant Biotechnol J 21:354–368

    Article  PubMed  PubMed Central  Google Scholar 

  • Hesami M, Jones AMP (2021) Modeling and optimizing callus growth and development in Cannabis sativa using random forest and support vector machine in combination with a genetic algorithm. Appl Microbiol Biotechnol 105:5201–5212

    Article  CAS  PubMed  Google Scholar 

  • Hiei Y, Komari T, Kubo T (1997) Transformation of rice mediated by Agrobacterium tumefaciens. Plant Mol Biol 35:205–218

    Article  CAS  PubMed  Google Scholar 

  • Hillary VE, Ceasar SA (2023) A Review on the Mechanism and Applications of CRISPR/Cas9/Cas12/Cas13/Cas14 Proteins Utilized for Genome Engineering. Mol Biotechnol 65:311–325

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Yu M, Chang Y, Tang H, Wang W, Du L, Wang K, Yan Y, Ye X (2022) Functional analysis of TaPDI genes on storage protein accumulation by CRISPR/Cas9 edited wheat mutants. Int J Biol Macromol 196:131–143

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim S, Saleem B, Rehman N, Zafar SA, Naeem MK, Khan MR (2022) CRISPR/Cas9 mediated disruption of Inositol Pentakisphosphate 2-Kinase 1 (TaIPK1) reduces phytic acid and improves iron and zinc accumulation in wheat grains. J Adv Res 37:33–41

    Article  CAS  PubMed  Google Scholar 

  • Ilhan E, Kasapoğlu AG, Muslu S, Macit M, Sezer B, Mevlütoğulları A, Guler D, Aydın M, Eksi F, Aydın M (2021) CRISPR/Cas9 and its Application in Plant Biotechnology. Nat pro Biotech 1:118–143

    Google Scholar 

  • Isaacson W (2021) The Code Breaker: Jennifer Doudna, Gene Editing, and the Future of the Human Race, Simon & Schuster (New York, USA)

  • Ishida Y, Saito H, Ohta S, Hiei Y, Komari T, Kumashiro T (1996) High efficiency transformation of maize (Zea mays) mediated by Agrobacterium tumefaciens. Nat Biotechnol 4:745–750

    Article  Google Scholar 

  • Ishida Y, Tsunashima M, Hiei Y, Komari T (2015) Wheat (Triticum aestivum L.) transformation using immature embryos. Agrobacterium Protocols: 1:189–198

    Article  Google Scholar 

  • Ishino Y, Shinagawa H, Makino K, Amemura M, Nakatura A (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isoenzyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169:5429–5433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jangra A, Chaturvedi S, Kumar N, Singh H, Sharma V, Thakur M, Tiwari S, Chhokar V (2022) Polyamines: The Gleam of Next-Generation Plant Growth Regulators for Growth, Development, Stress Mitigation, and Hormonal Crosstalk in Plants—A Systematic Review. J Plant Growth Regul 1–25

  • Janik E, Niemcewicz M, Ceremuga M, Krzowski L, Saluk-Bijak J, Bijak M (2020) Various aspects of a gene editing system—crispr–cas9. Int J Mol Sci 21:9604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jarvis P (2020) Environmental technology for the sustainable development goals (SDGs). Environ Technol 41:2155–2156

    Article  CAS  PubMed  Google Scholar 

  • Jayavaradhan R, Pillis DM, Goodman M, Zhang F, Zhang Y, Andreassen PR, Malik P (2019) CRISPR-Cas9 fusion to dominant-negative 53BP1 enhances HDR and inhibits NHEJ specifically at Cas9 target sites. Nat Commun 10:2866

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang F, Doudna JA (2017) CRISPR-Cas9 structures and mechanisms. Annu Rev Biophys 46:505–529

    Article  CAS  PubMed  Google Scholar 

  • Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP (2013a) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res 41:e188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA (2013b) RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31:233–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones HD, Doherty A, Wu H (2005) Review of methodologies and a protocol for the Agrobacterium-mediated transformation of wheat. Plant Methods 1:1–9

    Article  Google Scholar 

  • Jouanin A, Borm T, Boyd LA, Cockram J, Leigh F, Santos BA, Visser RGF, Smulders MJM (2019) Development of the GlutEnSeq capture system for sequencing gluten gene families in hexaploid bread wheat with deletions or mutations induced by γ-irradiation or CRISPR/Cas9. J Cereal Sci 88:157–166

    Article  CAS  Google Scholar 

  • Kapusi E, Stoger E (2022) Molecular farming in seed crops: gene transfer into barley (Hordeum vulgare) and wheat (Triticum aestivum). Methods Mol Biol 2480:49–60

    Article  PubMed  Google Scholar 

  • Karakas FP, Keskin CN, Agil F, Zencirci N (2022) Phenolic composition and antioxidant potential in Turkish einkorn, emmer, durum, and bread wheat grain and grass. S Afr J Bot 149:407–415

    Article  Google Scholar 

  • Ke W, Shi L, Liang X, Zhao P, Wang W, Liu J, Chang Y, Hiei Y, Yanagihara C, Du P, Ishida Y, Guo Y (2021) The gene TaCB1 overcomes genotype dependency in wheat genetic transformation

  • Khanna H, Daggard G (2003) Agrobacterium tumefaciens-mediated transformation of wheat using a superbinary vector and a polyamine-supplemented regeneration medium. Plant Cell Rep 21:429–436

    Article  CAS  PubMed  Google Scholar 

  • Kharb P, Chaudhary R, Tuteja N, Kaushik P (2022) A Genotype-Independent, Simple, Effective and Efficient in Planta Agrobacterium-Mediated Genetic Transformation Protocol. Methods Protoc 5:69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khurana J, Chugh A, Khurana P (2002) Regeneration from mature and immature embryos and transient gene expression via Agrobacterium mediated transformation in emmer wheat (Triticum diccocum Schuble). Indian J Exp Biol 40:1295–1303

    CAS  PubMed  Google Scholar 

  • Kim KH, Kim JY (2021) Understanding Wheat Starch Metabolism in Properties, Environmental Stress Condition, and Molecular Approaches for Value-Added Utilization. Plants 10:2282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim E, Koo T, Park SW, Kim D, Kim K, Cho HY, Song DW, Lee KJ, Jung MH, Kim S, Kim JH, Kim JH, Kim JS (2017) In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni. Nat Commun 8:1–12

    Google Scholar 

  • Kim D, Alptekin B, Budak H (2018) CRISPR/Cas9 genome editing in wheat. Funct Integr Genom 18:31–41

    Article  CAS  Google Scholar 

  • Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, Zheng Z, Joung JK (2016) High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529:490–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koonin EV, Makarova KS, Zhang F (2017) Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol 37:67–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kou H, Zhang Z, Yang Y, Wei C, Xu L, Zhang G (2023) Advances in the Mining of Disease Resistance Genes from Aegilops tauschii and the Utilization in Wheat. Plants 12:880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuluev BR, Mikhailova EV, Kuluev AR, Galimova AA, Zaikina EA, Khlestkina EK (2022) Genome Editing in Species of the Tribe Triticeae with the CRISPR/Cas System. Mol Biol 56:885–901

    Article  CAS  Google Scholar 

  • Kumar V, Jain M (2015) The CRISPR-Cas system for plant genome editing: Advances and opportunities. J Exp Bot 66:47–57

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Mamrutha HM, Kaur A, Grewal A (2017a) Synergistic effect of cefotaxime and timentin to suppress the Agrobacterium overgrowth in wheat (Triticum aestivum L.) transformation. Asian J Microbiol Biotechnol Environm Sci 19:961–967

    Google Scholar 

  • Kumar A, Lal MK, Kar SS, Nayak L, Ngangkham U, Samantaray S, Sharma SG (2017b) Bioavailability of iron and zinc as affected by phytic acid content in rice grain. J Food Biochem 41:e12413

    Article  Google Scholar 

  • Kumar R, Mamrutha HM, Kaur A, Venkatesh K, Sharma D, Singh GP (2019) Optimization of Agrobacterium-mediated transformation in spring bread wheat using mature and immature embryos. Mol Biol Rep 46:1845–1853

    Article  CAS  PubMed  Google Scholar 

  • Labun K, Montague TG, Gagnon JA, Thyme SB, Valen E (2016) CHOPCHOP v2: a web tool for the next generation of CRISPR genome engineering. Nucleic Acids Res 44:W272–W276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langner T, Kamoun S, Belhaj K (2018) CRISPR crops: plant genome editing toward disease resistance. Annu Rev Phytopathol 56:479–512

    Article  CAS  PubMed  Google Scholar 

  • Lawrenson T, Shorinola O, Stacey N, Li C, Østergaard L, Patron N, Uauy C, Harwood W (2015) Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nuclease. Genome Biol 16:258

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee K, Zhang Y, Kleinstiver BP, Guo JA, Aryee MJ, Miller J, Malzahn A, Zarecor S, Lawrence-Dill CJ, Joung JK, Qi Y, Wang K (2019) Activities and specificities of CRISPR/Cas9 and Cas12a nucleases for targeted mutagenesis in maize. Plant Biotechnol J 17:362–372

    Article  CAS  PubMed  Google Scholar 

  • Lee BR, La VH, Park SH, Mamun MA, Bae DW, Kim TH (2022) Dimethylthiourea Alleviates Drought Stress by Suppressing Hydrogen Peroxide-Dependent Abscisic Acid-Mediated Oxidative Responses in an Antagonistic Interaction with Salicylic Acid in Brassica napus Leaves. Antioxidants 11:2283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lei Y, Lu L, Liu HY, Li S, Xing F, Chen LL (2014) CRISPR-P: a web tool for synthetic single-guide RNA design of CRISPR-system in plants. Mol Plant 7:1494–1496

    Article  CAS  PubMed  Google Scholar 

  • Li X, Krasnyanski SF, Korban SS (2002) Optimization of the uidA gene transfer into somatic embryos of rose via Agrobacterium tumefaciens. Plant Physiol Biochem 40:453–459

    Article  CAS  Google Scholar 

  • Li JF, Norville JE, Aach J, McCormack M, Zhang D, Bush J, Church GM, Sheen J (2013) Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31:688–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li GL, Quan R, Wang HQ, Ruan XF, Mo JX, Zhong CL, Yang HQ, Li ZC, Gu T, Liu D, Wu ZF, Cai GY, Zhang XW (2019a) Inhibition of KU70 and KU80 by CRISPR interference, not NgAgo interference, increases the efficiency of homologous recombination in pig fetal fibroblasts. J Integr Agric 18:438–448

    Article  CAS  Google Scholar 

  • Li J, Li Y, Ma L (2019b) CRISPR/Cas9-based genome editing and its applications for functional genomic analyses in plants. Small Methods 3:1800473

    Article  Google Scholar 

  • Li J, Wang Z, He G, Ma L, Deng XW (2020) CRISPR/Cas9-mediated disruption of TaNP1 genes results in complete male sterility in bread wheat. J Genet Genom 47:263–272

    Article  CAS  Google Scholar 

  • Li J, Jiao G, Sun Y, Chen J, Zhong Y, Yan L, Jiang D, Ma Y, Xia L (2021a) Modification of starch composition, structure and properties through editing of TaSBEIIa in both winter and spring wheat varieties by CRISPR/Cas9. Plant Biotechnol J 19:937–951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Li Y, Ma L (2021) Recent advances in CRISPR/Cas9 and applications for wheat functional genomics and breeding. aBIOTECH 2:1–11

    Article  Google Scholar 

  • Li S, Lin D, Zhang Y, Deng M, Chen Y, Lv B, Li B, Lei Y, Wang Y, Zhao L, Liang Y, Liu J, Chen K, Liu Z, Xiao J, Qiu JL, Gao C (2022) Genome-edited powdery mildew resistance in wheat without growth penalties. Nature 602:455–460

    Article  CAS  PubMed  Google Scholar 

  • Liang X, Bie X, Qiu Y, Wang K, Yang Z, Jia Y, Xu Z, Yu M, Du L, Lin Z, Ye X (2022) Development of powdery mildew resistant derivatives of wheat variety Fielder for use in genetic transformation. Crop J

  • Liu L, Fan XD (2014) CRISPR–Cas system: a powerful tool for genome engineering. Plant Mol Biol 85:209–218

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Wei Z, Dominguez A, Li Y, Wang X, Qi LS (2015) CRISPR-ERA: a comprehensive design tool for CRISPR-mediated gene editing, repression and activation. Bioinformatics 31:3676–3678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Wu S, Xu J, Sui C, Wei J (2017) Application of CRISPR/Cas9 in plant biology. Acta Pharm Sin B 7:292–302

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu J, Nannas NJ, Fu FF, Shi J, Aspinwall B, Parrott WA, Dawe RK (2019) Genome-scale sequence disruption following biolistic transformation in rice and maize. Plant Cell 31:368–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu C, Zhong Y, Qi X, Chen M, Liu Z, Chen C, Tian X, Li J, Jiao Y, Wang D, Wang Y, Li M, Xin M, Liu W, Jin W, Chen S (2020a) Extension of the in vivo haploid induction system from diploid maize to hexaploid wheat. Plant Biotechnol J 18:316

    Article  PubMed  Google Scholar 

  • Liu H, Wang K, Jia Z, Gong Q, Lin Z, Du L, Pei X, Ye X (2020b) Efficient induction of haploid plants in wheat by editing of TaMTL using an optimized Agrobacterium-mediated CRISPR system. J Exp Bot 71:1337–1349

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Yang F, Zhang J, Liu H, Rahman S, Islam S, Ma W, She M (2021) Application of CRISPR/Cas9 in crop quality improvement. Int J Mol Sci 22:4206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Chen W, Li Y, Sun L, Chai Y, Chen H, Huang C (2022) CRISPR/Cas9 technology and its utility for crop improvement. Int J Mol Sci 23:10442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu D, Yang H, Zhang Z, Chen Q, Guo W, Rossi V, Xin M, Du J, Hu Z, Liu J, Peng H, Ni Z, Sun Q, Yao Y (2023) An elite γ-gliadin allele improves end-use quality in wheat. New Phytol. https://doi.org/10.1111/nph.18722

    Article  PubMed  Google Scholar 

  • Loureiro A, da Silva GJ (2019) Crispr-cas: Converting a bacterial defence mechanism into a state-of-the-art genetic manipulation tool. Antibiotics 8:18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lv J, Yu K, Wei J, Gui H, Liu C, Liang D, Wang Y, Zhou H, Carlin R, Rich R, Lu T, Que Q, Wang WC, Zhang X, Kelliher T (2020) Generation of paternal haploids in wheat by genome editing of the centromeric histone CENH3. Nat Biotechnol 38:1397–1401

    Article  CAS  PubMed  Google Scholar 

  • Ma C, Ha K, Kim MS, Noh YW, Lin H, Tang L, Chen H, Han S, Zhang P (2018) The anaphase promoting complex promotes NHEJ repair through stabilizing Ku80 at DNA damage sites. Cell Cycle 17:1138–1145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maharajan T, Krishna TP, Rakkammal K, Ceasar SA, Ramesh M (2022) Application of CRISPR/Cas system in cereal improvement for biotic and abiotic stress tolerance. Planta 256:1–17

    Article  Google Scholar 

  • Mahfouz MM, Piatek A, Stewart CN Jr (2014) Genome engineering via TALENs and CRISPR/Cas9 systems: challenges and perspectives. Plant Biotechnol J 12:1006–1014

    Article  CAS  PubMed  Google Scholar 

  • Mahler M, Costa AR, van Beljouw SP, Fineran PC, Brouns SJ (2022) Approaches for bacteriophage genome engineering. Trends Biotechnol. https://doi.org/10.1016/j.tibtech.2022.08.008

    Article  PubMed  Google Scholar 

  • Makarova KS, Grishin NV, Shabalina SA, Wolf YI, Koonin EV (2006) A putative RNA-interferencebased immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol Direct 1:7

    Article  PubMed  PubMed Central  Google Scholar 

  • Makarova KS, Wolf YI, Alkhnbashi OS et al (2015) An updated evolutionary classification of CRISPR–Cas systems. Nat Rev Microbiol 13:722–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS, Brouns SJJ, Charpentier E, Cheng D, Haft DH, Horvath P, Moineau S, Mojica FJM, Scott D, Shah SA, Siksnys V, Terns MP, Venclovas Č, White MF, Yakunin AF, Yan W, Zhang F, Garrett RA, Backofen R, van der Oost J, Barrangou R, Koonin EV (2020) Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol 18:67–83

    Article  CAS  PubMed  Google Scholar 

  • Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Sci 339:823–826

    Article  CAS  Google Scholar 

  • Manghwar H, Li B, Ding X, Hussain A, Lindsey K, Zhang X, Jin S (2020) CRISPR/Cas systems in genome editing: methodologies and tools for sgRNA design, off-target evaluation, and strategies to mitigate off-target effects. Adv Sci 7:1902312

    Article  CAS  Google Scholar 

  • Marraffini LA, Sontheimer EJ (2008) CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322:1843–1845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marwein R, Debbarma J, Sarki YN, Baruah I, Saikia B, Boruah HPD, Velmurugan N, Chikkaputtaiah C, (2019) Genetic engineering/genome editing approaches to modulate signaling processes in abiotic stress tolerance. Plant Signal Mol s 63–82. Woodhead Publishing

  • McLaughlin JE, Darwish NI, Garcia-Sanchez J, Tyagi N, Trick HN, McCormick S, Macky RD, Tumer NE (2021) A lipid transfer protein has antifungal and antioxidant activity and suppresses Fusarium head blight disease and DON accumulation in transgenic wheat. Phytopathology 111:671–683

    Article  CAS  PubMed  Google Scholar 

  • Mühleisen J, Piepho HP, Maurer HP, Longin CFH, Reif JC (2014) Yield stability of hybrids versus lines in wheat, barley, and triticale. Theor Appl Genet 127:309–316

    Article  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Mushke R, Yarra R, Kirti PB (2019) Improved salinity tolerance and growth performance in transgenic sunflower plants via ectopic expression of a wheat antiporter gene (TaNHX2). Mol Biol Rep 46:5941–5953

    Article  CAS  PubMed  Google Scholar 

  • Nasir A, Caetano-Anollés G (2015) A phylogenomic data-driven exploration of viral origins and evolution. Sci Adv 1:e1500527

    Article  PubMed  PubMed Central  Google Scholar 

  • Nassar M, Nassar R, Maki H, Al-Yagoob A, Hachim M, Senok A, Williams D, Hiraishi N (2021) Phytic acid: Properties and potential applications in dentistry. Front Mater 8:638909

    Article  Google Scholar 

  • Natalini A, Acciarri N, Cardi T (2021) Breeding for nutritional and organoleptic quality in vegetable crops: The case of tomato and cauliflower. Agriculture 11:606

    Article  CAS  Google Scholar 

  • Nekrasov V, Staskawicz B, Weigel D, Jones JD, Kamoun S (2013) Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol 31:691–693

    Article  CAS  PubMed  Google Scholar 

  • Nerkar G, Devarumath S, Purankar M, Kumar A, Valarmathi R, Devarumath R, Appunu C (2022) Advances in crop breeding through precision genome editing. Front Genet 13:880195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishimasu H, Ran FA, Hsu PD, Konermann S, Shehata S, Dohmae N, Ishitani R, Zhang F, Nureki O (2015) Crystal Structure of Cas9 in Complex with gRNA and target DNA. 156:935–949.

  • Nonaka S, Yuhashi KI, Takada K, Sugaware M, Minamisawa K, Ezura H (2008) Ethylene production in plants during transformation suppresses vir gene expression in Agrobacterium tumefaciens. New Phytol 178:647–656

    Article  CAS  PubMed  Google Scholar 

  • Nussenzweig PM, Marraffini LA (2020) Molecular mechanisms of CRISPR-Cas immunity in bacteria. Annu Rev Genet 93–120

  • Ober ES, Alahmad S, Cockram J, Forestan C, Hickey LT, Kant J, Watt M (2021) Wheat root systems as a breeding target for climate resilience. Theor Appl Genet 134:1645–1662

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Connell MR (2019) Molecular mechanisms of RNA targeting by Cas13-containing type VI CRISPR–Cas systems. J Mol Biol 431:66–87

    Article  CAS  PubMed  Google Scholar 

  • Okada A, Arndell T, Borisjuk N, Sharma N, Watson-Haigh NS, Tucker EJ, Baumann U, Langridge P, Whitford R (2019) CRISPR/Cas9-mediated knockout of Ms1 enables the rapid generation of male-sterile hexaploid wheat lines for use in hybrid seed production. Plant Biotechnol J 17:1905–1913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Opabode JT (2006) Agrobacterium-mediated transformation of plants: emerging factors that influence efficiency. Biotechnol Mol Biol Rev 1:12–20

    Google Scholar 

  • Ozturk A, Erdem E, Aydin M, Karaoglu MM (2022) The effects of drought after anthesis on the grain quality of bread wheat depend on drought severity and drought resistance of the variety. Cereal Res Commun 50:105–116

    Article  CAS  Google Scholar 

  • Park DH, Mirabella R, Bronstein PA, Preston GM, Haring MA, Lim CK, Collmer A, Schuurink RC (2010) Mutations in γ-aminobutyric acid (GABA) transaminase genes in plants or Pseudomonas syringae reduce bacterial virulence. Plant J 64:318–330

    Article  CAS  PubMed  Google Scholar 

  • Park J, Bae S, Kim JS (2015) Cas-Designer: a web-based tool for choice of CRISPR-Cas9 target sites. Bioinformatics 31:4014–4016

    Article  CAS  PubMed  Google Scholar 

  • Parmar SS, Jaiwal PK, Agarwal N, Kaushik SK (2015) Optimization and validation of Agrobacterium-mediated genetic transformation for commercial indian bread wheat (Triticum aestivum L.) Cultivars using mature embryo. Cell Tissue Res 15:5301

    CAS  Google Scholar 

  • Parry MA, Madgwick PJ, Bayon C, Tearall K, Hernandez-Lopez A, Baudo M, Rakszegi M, Hamada W, Al-Yassin A, Ouabbou H, Labhilili M, Phillips AL (2009) Mutation discovery for crop improvement. J Exp Bot 60:2817–2825

    Article  CAS  PubMed  Google Scholar 

  • Partier A, Gay G, Tassy C, Beckert M, Feuillet C, Barret P (2017) Molecular and FISH analyses of a 53-kbp intact DNA fragment inserted by biolistics in wheat (Triticum aestivum L.) genome. Plant Cell Rep 36:1547–1559

    Article  CAS  PubMed  Google Scholar 

  • Pellegrineschi A, Noguera LM, Skovmand B, Brito RM, Velazquez L, Salgado MM, Hernandez R, Warburton M, Hoisington D (2002) Identification of highly transformable wheat genotypes for mass production of fertile transgenic plants. Genome 45:421–430

    Article  CAS  PubMed  Google Scholar 

  • Pereira R, Oliveira J, Sousa M (2020) Bioinformatics and computational tools for next-generation sequencing analysis in clinical genetics. J Clin Med 9:132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez Rojo F, Nyman RKM, Johnson AAT, Navarro P, Ryan MH, Erskine W, Kaur P (2018) CRISPR-Cas systems: ushering in the new genome editing era. Bioengineered 9:214–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-Piñeiro P, Gago J, Landín M, Gallego PP (2012) Agrobacterium-mediated transformation of wheat: general overview and new approaches to model and identify the key factors involved. Transgenic Plants-Advances and Limitations. Rijeka, Croatia: Intech Open Access Publisher 326

  • Pickar-Oliver A, Gersbach CA (2019) The next generation of CRISPR–Cas technologies and applications. Nat Rev Mol 20:490–507

    Article  CAS  Google Scholar 

  • Pinilla-Redondo R, Mayo-Muñoz D, Russel J, Garrett RA, Randau L, Sørensen SJ, Shah SA (2020) Type IV CRISPR–Cas systems are highly diverse and involved in competition between plasmids. Nucleic Acids Res 48:2000–2012

    Article  CAS  PubMed  Google Scholar 

  • Prykhozhij SV, Rajan V, Gaston D, Berman JN (2015) Correction: CRISPR MultiTargeter: a web tool to find common and unique CRISPR single guide RNA targets in a set of similar sequences. PLoS ONE 10:e0138634

    Article  PubMed  PubMed Central  Google Scholar 

  • Puren H, Reddy BJ, Sarma A, Singh SK, Ansari WA (2023) Molecular Approaches for Biofortification of Cereal Crops. In Biofortification in Cereals: Progress and Prospects 21–58 Singapore: Springer Nature Singapore

  • Qin G, Wu S, Zhang L, Li Y, Liu C, Yu J, Deng L, Xiao G, Zhang Z (2022) An Efficient Modular Gateway Recombinase-Based Gene Stacking System for Generating Multi-Trait Transgenic Plants. Plants 11:488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu F, Xing S, Xue C, Liu J, Chen K, Chai T, Gao C (2022) Transient expression of a TaGRF4-TaGIF1 complex stimulates wheat regeneration and improves genome editing. Sci China Life Sci 65:731–738

    Article  CAS  PubMed  Google Scholar 

  • Que Q, Elumalai S, Li X, Zhong H, Nalapalli S, Schweiner M, Fei X, Nuccio M, Kelliher T, Gu W, Chen Z, Chilton MDM (2014) Maize transformation technology development for commercial event generation. Front Plant Sci 5:279

    Article  Google Scholar 

  • Raffan S, Sparks C, Huttly A, Hyde L, Martignago D, Mead A, Hanley SJ, Wilkinson PA, Barker G, Edwards KJ, Curtis TY, Usher S, Kosik O, Halford NG (2021) Wheat with greatly reduced accumulation of free asparagine in the grain, produced by CRISPR/Cas9 editing of asparagine synthetase gene TaASN2. Plant Biotechnol J 19:1602–1613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raman V, Rojas CM, Vasudevan B, Dunning K, Kolape J, Oh S, Yun J, Yang L, Li G, Pant BD, Jiang Q, Mysore KS (2022) Agrobacterium expressing a type III secretion system delivers Pseudomonas effectors into plant cells to enhance transformation. Nat Commun 13:1–14

    Article  Google Scholar 

  • Ramesh P, Mallikarjuna G, Sameena S, Kumar A, Gurulakshmi K, Reddy BV, Reddy PCO, Sekhar AC (2020) Advancements in molecular marker technologies and their applications in diversity studies. J Biosci. https://doi.org/10.1007/s12038-020-00089-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Rao MJ, Wang L (2021) CRISPR/Cas9 technology for improving agronomic traits and future prospective in agriculture. Planta 254:1–16

    Article  Google Scholar 

  • Reegan AD, Ceasar SA, Paulraj MG, Ignacimuthu S, Al-Dhabi NA (2016) Current status of genome editing in vector mosquitoes: a review. Biosci Trends 10:424–432

    Article  CAS  PubMed  Google Scholar 

  • Ren Q, Sretenovic S, Liu S, Tang X, Huang L, He Y, Liu L, Guo Y, Zhong Z, Liu G, Cheng Y, Zheng X, Pan C, Yin D, Zhang Y, Li W, Qi L, Li C, Qi Y, Zhang Y (2021) PAM-less plant genome editing using a CRISPR–SpRY toolbox. Nat Plants 7:25–33

    Article  CAS  PubMed  Google Scholar 

  • Riesenberg S, Maricic T (2018) Targeting repair pathways with small molecules increase precise genome editing in pluripotent stem cells. Nat Commun 9:2164

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodríguez-Leal D, Lemmon ZH, Man J, Bartlett ME, Lippman ZB (2017) Engineering quantitative trait variation for crop improvement by genome editing. Cell 171:470–480

    Article  PubMed  Google Scholar 

  • Rozov SM, Permyakova NV, Deineko EV (2019) The problem of the low rates of CRISPR/Cas9-mediated knock-ins in plants: approaches and solutions. Int J Mol Sci 20:3371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russel J, Pinilla-Redondo R, Mayo-Muñoz D, Shah SA, Sørensen SJ (2020) CRISPRCasTyper: automated identification, annotation, and classification of CRISPR-Cas Loci. CRISPR J 3:462–469

    Article  CAS  PubMed  Google Scholar 

  • Ryu SM, Hur JW, Kim K (2019) Evolution of CRISPR towards accurate and efficient mammal genome engineering. BMB Rep 52:475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabooni N, Gharaghani A (2022) Induced polyploidy deeply influences reproductive life cycles, related phytochemical features, and phytohormonal activities in blackberry species. Front Plant Sci. https://doi.org/10.3389/fpls.2022.938284

    Article  PubMed  PubMed Central  Google Scholar 

  • Saeed S, Usman B, Shim SH, Khan SU, Nizamuddin S, Saeed S, Shoaib Y, Jeon JS, Jung KH (2022) CRISPR/Cas-mediated editing of cis-regulatory elements for crop improvement. Plant Sci 324:111435

    Article  CAS  PubMed  Google Scholar 

  • Sahu PK, Sao R, Mondal S, Vishwakarma G, Gupta SK, Kumar V, Sing S, Sharma D, Das BK (2020) Next generation sequencing based forward genetic approaches for identification and mapping of causal mutations in crop plants: A comprehensive review. Plants 9:1355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salas M, Park S, Srivatanakul M, Smith R (2001) Temperature influence on stable T-DNA integration in plant cells. Plant Cell Rep 20:701–705

    Article  CAS  Google Scholar 

  • Samson JE, Magadan AH, Moineau S (2015) The CRISPR-Cas immune system and genetic transfers: reaching an equilibrium. Microbiol Spectr 3:3–1

    Article  Google Scholar 

  • Sánchez-León S, Gil-Humanes J, Ozuna CV, Giménez MJ, Sousa C, Voytas DF, Barro F (2018) Low-gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotechnol J 16:902–910

    Article  PubMed  Google Scholar 

  • Sapranauskas R, Gasiunas G, Fremaux C, Barrangou R, Horvath P, Siksnys V (2011) The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res 39:9275–9282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarkhel S, Roy A (2022) Phytic acid and its reduction in pulse matrix: Structure–function relationship owing to bioavailability enhancement of micronutrients. J Food Process Eng 45:e14030

    Article  CAS  Google Scholar 

  • Savadi S, Prasad P, Kashyap PL, Bhardwaj SC (2018) Molecular breeding technologies and strategies for rust resistance in wheat (Triticum aestivum) for sustained food security. Plant Pathol 67:771–791

    Article  CAS  Google Scholar 

  • Scheben A, Wolter F, Batley J, Puchta H, Edwards D (2017) Towards CRISPR/Cas crops–bringing together genomics and genome editing. New Phytolog 216:682–698

    Article  CAS  Google Scholar 

  • Schindele P, Wolter F, Puchta H (2018) Transforming plant biology and breeding with CRISPR/Cas9, Cas12 and Cas13. FEBS Lett 592:1954–1967

    Article  CAS  PubMed  Google Scholar 

  • Schnable PS, Springer NM (2013) Progress toward understanding heterosis in crop plants. Annu Rev Plant Biol 64:71–88

    Article  CAS  PubMed  Google Scholar 

  • Scholz I, Lange SJ, Hein S, Hess WR, Backofen R (2013) CRISPR-Cas systems in the cyanobacterium Synechocystis sp. PCC6803 exhibit distinct processing pathways involving at least two Cas6 and a Cmr2 protein. PloS One 8:e56470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi JJ, Jeff J, Qiu JL, Gao C (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31:686–688

    Article  CAS  PubMed  Google Scholar 

  • Shmakov S, Smargon A, Scott D, Cox D, Pyzocha N, Yan W, Koonin EV (2017) Diversity and evolution of class 2 CRISPR–Cas systems. Nat Rev Microbiol 15:169–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shrawat AK, Lörz H (2006) Agrobacterium-mediated transformation of cereals: a promising approach crossing barriers. Plant Biotechnol J 4:575–603

    Article  CAS  PubMed  Google Scholar 

  • Shrawat AK, Becker D, Lörz H (2007) Agrobacterium tumefaciens-mediated genetic transformation of barley (Hordeum vulgare L.). Plant Sci 172:281–290

    Article  CAS  Google Scholar 

  • Shreni Agrawal ER (2022) A Review: Agrobacterium-mediated gene transformation to increase plant productivity. J Phytopharmacol https://doi.org/10.31254/phyto.2022.11211

  • Shrivastav M, De Haro LP, Nickoloff JA (2008) Regulation of DNA double-strand break repair pathway choice. Cell Res 18:134–147

    Article  CAS  PubMed  Google Scholar 

  • Singh P, Kumar K (2022) Agrobacterium-mediated In-planta transformation of bread wheat (Triticum aestivum L.). J Plant Biochem Biotechnol 31:206–212

    Article  CAS  Google Scholar 

  • Singh M, Kumar M, Albertsen MC, Young JK, Cigan AM (2018) Concurrent modifications in the three homeologs of Ms45 gene with CRISPR-Cas9 lead to rapid generation of male sterile bread wheat (Triticum aestivum L.). Plant Mol Biol 97:371–383

    Article  CAS  PubMed  Google Scholar 

  • Singh P, Kumar K (2021) Agrobacterium-mediated In-planta transformation of bread wheat (Triticum aestivum L.). J Plant Biochem Biotechnol 1–7

  • Singha DL, Das D, Paswan RR, Chikkaputtaiah C, Kumar S (2022) Novel Approaches and Advanced Molecular Techniques for Crop Improvement. In Plant Microbe Interact 1–27. CRC Press.

  • Sinkunas T, Gasiunas G, Fremaux C, Barrangou R, Horvath P, Siksnys V (2011) Cas3 is a single- stranded DNA nuclease and ATP- dependent helicase in the CRISPR/Cas immune system. The EMBO J 30:1335–1342

    Article  CAS  PubMed  Google Scholar 

  • Soda N, Verma L, Giri J (2018) CRISPR-Cas9 based plant genome editing: Significance, opportunities and recent advances. Plant Physiol Biochem 131:2–11

    Article  CAS  PubMed  Google Scholar 

  • Sparks CA, Jones HD (2004) Transformation of wheat by biolistics. Transgenic crops of the world: essential protocols, 19–34

  • Stemmer M, Thumberger T, del Sol KM, Wittbrodt J, Mateo JL (2015) CCTop: an intuitive, flexible and reliable CRISPR/Cas9 target prediction tool. PLoS ONE 10:e0124633

    Article  PubMed  PubMed Central  Google Scholar 

  • Stevanovic M, Piotter E, McClements ME, MacLaren RE (2022) Crispr Systems Suitable for Single Aav Vector Delivery. Curr Gene Ther 22:1–14

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Li J, Xia L (2016) Precise genome modification via sequence-specific nucleases-mediated gene targeting for crop improvement. Front Plant Sci 7:1928

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun W, Liu H, Yin W, Qiao J, Zhao X, Liu Y (2022) Strategies for enhancing the homology-directed repair efficiency of CRISPR-cas systems. CRISPR J 5:7–18

    Article  CAS  PubMed  Google Scholar 

  • Tamulaitis G, Venclovas Č, Siksnys V (2017) Type III CRISPR-Cas immunity: major differences brushed aside. Trends Microbiol 25:49–61

    Article  CAS  PubMed  Google Scholar 

  • Tănăsescu EC, Lite MC (2022) Harmful health effects of pesticides used on museum textile artifacts-overview. Ecotoxicol Environ Saf 247:114240

    Article  PubMed  Google Scholar 

  • Tao LL, Yin GX, Du LP, Shi ZY, She MY, Xu HJ, Ye XG (2011) Improvement of plant regeneration from immature embryos of wheat infected by Agrobacterium tumefaciens. Agr Sci China 10:317–326

    Article  CAS  Google Scholar 

  • Taspinar MS, Aydin M, Sigmaz B, Yildirim N, Agar G (2017) Protective role of humic acids against picloram-induced genomic instability and DNA methylation in Phaseolus vulgaris. Environ Sci Pollut Res 24:22948–22953

    Article  CAS  Google Scholar 

  • Taspinar MS, Sigmaz B, Aydin M, Arslan E, Güleray A (2018) Alleviative role of Β-Estradiol against 2, 4-dichlorophenoxyacetic acid genotoxicity on common bean genome. Yuzuncu Yil Univ J Agric Sci 28:1–9

    Google Scholar 

  • Thiyagarajan K, Noguera LM, Pacheco M, Govindan V, Vikram P (2002) Agrobacterium mediated transformation and deciphering SNPs in TaLr67 gene homeologs for gene editing in wheat. bioRxiv 2022–03

  • Tian X, Qin Z, Zhao Y, Wen J, Lan T, Zhang L, Wang F, Qin D, Yu K, Zhao A, Hu Z, Yao Y, Ni Z, Sun Q, Smet ID, Peng H, Xin M (2022) Stress granule-associated TaMBF1c confers thermotolerance through regulating specific mRNA translation in wheat (Triticum aestivum). New Phytol 233:1719–1731

    Article  CAS  PubMed  Google Scholar 

  • Tran TN, Sanan-Mishra N (2015) Effect of antibiotics on callus regeneration during transformation of IR 64 rice. Biotechnol Rep 7:143–149

    Article  Google Scholar 

  • Turhan S, Taspinar MS, Yigider E, Aydin M, Agar G (2021) The role of long terminal repeat (LTR) responses to drought in selenium-treated wheat. Environ Eng Manag J 20

  • Twyman RM, Christou P (2004) Plant transformation technology: particle bombardment. Handbook of Plant Biotechnology. John Wiley & Sons Ltd, Chichester

    Google Scholar 

  • Ullah A, Nadeem F, Nawaz A, Siddique KH, Farooq M (2022) Heat stress effects on the reproductive physiology and yield of wheat. J Agron Crop Sci 208:1–17

    Article  CAS  Google Scholar 

  • Uniyal AP, Mansotra K, Yadav SK, Kumar V (2019) An overview of designing and selection of sgRNAs for precise genome editing by the CRISPR-Cas9 system in plants. 3 Biotech 9:1–19

    Article  Google Scholar 

  • Unniyampurath U, Pilankatta R, Krishnan M (2016) RNA interference in the age of CRISPR: Will CRISPR interfere with RNAi? Int J Mol Sci 17:291

    Article  PubMed  PubMed Central  Google Scholar 

  • Upadhyay SK, Kumar J, Alok A, Tuli R (2013) RNA-guided genome editing for target gene mutations in wheat. G3 Genes Genom Genet 3:2233–2238

    Article  Google Scholar 

  • Upadhyaya NM, Mago R, Panwar V, Hewitt T, Luo M, Chen J, Sperschneider J, Nguyen-Phuc H, Wang A, Ortiz D, Hac L, Bhatt D, Li F, Zhang J, Ayliffe M, Figueroa M, Kanyuka K, Ellis JG, Dodds PN (2021) Genomics accelerated isolation of a new stem rust avirulence gene–wheat resistance gene pair. Nat Plants 7:1220–1228

    Article  CAS  PubMed  Google Scholar 

  • Usman B, Nawaz G, Zhao N et al (2021) Programmed editing of rice (Oryza sativa l.) osspl16 gene using crispr/cas9 improves grain yield by modulating the expression of pyruvate enzymes and cell cycle proteins. Int J Mol Sci 22:1–19

    Google Scholar 

  • United States Department of Agriculture (2022) Wheat Data. https://www.ers.usda.gov/data-products/wheat-data/ (10.03.2023)

  • Vasil V, Castillo AM, Fromm ME, Vasil IK (1992) Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Nat Biotechnol 10:667–674

    Article  CAS  Google Scholar 

  • Vats S, Bansal R, Rana N, Kumawat S, Bhatt V, Jadhav P, Kale V, Sathe A, Sonah H, Jugdaohsingh R, Sharma TR, Deshmukh R (2022) Unexplored nutritive potential of tomato to combat global malnutrition. Crit Rev Food Sci Nutr 62:1003–1034

    Article  CAS  PubMed  Google Scholar 

  • Waheed S, Zeng L (2020) The critical role of miRNAs in regulation of flowering time and flower development. Genes 11:319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang YL, Xu MX, Yin GX, Tao LL, Wang DW, Ye XG (2009) Transgenic wheat plants derived from Agrobacterium-mediated transformation of mature embryo tissues. Cereal Res Commun 37:1–12

    Article  Google Scholar 

  • Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu JL (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotech 32:947–951

    Article  CAS  Google Scholar 

  • Wang H, La Russa M, Qi LS (2016) CRISPR/Cas9 in genome editing and beyond. Annu Rev Biochem 85:227–264

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Jin W, Wang K (2019a) Centromere histone H3-and phospholipase-mediated haploid induction in plants. Plant Methods 15:1–10

    Article  Google Scholar 

  • Wang W, Pan Q, Tian B, He F, Chen Y, Bai G, Trick HN, Akhunov E (2019b) Gene editing of the wheat homologs of TONNEAU 1-recruiting motif encoding gene affects grain shape and weight in wheat. Plant J 100:251–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Aguirre L, Rodríguez-Leal D, Hendelman A, Benoit M, Lippman ZB (2021) Dissecting cis-regulatory control of quantitative trait variation in a plant stem cell circuit. Nat Plants 7:419–427

    Article  CAS  PubMed  Google Scholar 

  • Wang K, Shi L, Liang X, Zhao P, Wang W, Liu J, Chang Y, Hiei Y, Yanagihara C, Ishida Y, Ye X (2022a) The gene TaWOX5 overcomes genotype dependency in wheat genetic transformation. Nat Plants 8:110–117

    Article  PubMed  Google Scholar 

  • Wang SW, Gao C, Zheng YM, Yi L, Lu JC, Huang XY, Cai JB, Zhang PF, Cui YH, Ke AW (2022b) Current applications and future perspective of CRISPR/Cas9 gene editing in cancer. Mol Cancer 21:1–27

    Article  CAS  Google Scholar 

  • Wang Y, Du F, Wang J, Wang K, Tian C, Qi X, Jiao Y (2022c) Improving bread wheat yield through modulating an unselected AP2/ERF gene. Nat Plants 8:930–939

    Article  CAS  PubMed  Google Scholar 

  • Waqeel J, Khan ST (2022) Microbial biofertilizers and micronutrients bioavailability: approaches to deal with zinc deficiencies. Microbial Biofertilizers and Micronutrient Availability. Springer, Cham, pp 239–297

    Chapter  Google Scholar 

  • Waseem M, Ahmad M, Saqib Naveed M, Pasha A, Hussain M, Ali Zafar S, Mujahid A, Rehman RS (2022) Abscisic acid mediated abiotic stress tolerance in plants. Asian J Crop Sci 1–17

  • Waters CA, Strande NT, Pryor JM, Strom CN, Mieczkowski P, Burkhalter MD, Oh S, Qaqish BF, Moore DT, Hendrickson EA, Ramsden DA (2014) The fidelity of the ligation step determines how ends are resolved during nonhomologous end joining. Nat Commun 5:1–11

    Article  Google Scholar 

  • Wijerathna-Yapa A, Ramtekey V, Ranawaka B, Basnet BR (2022) Applications of in vitro tissue culture technologies in breeding and genetic improvement of wheat. Plants 11:2273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolter F, Schindele P, Puchta H (2019) Plant breeding at the speed of light: the power of CRISPR/Cas to generate directed genetic diversity at multiple sites. BMC Plant Biol 19:176

    Article  PubMed  PubMed Central  Google Scholar 

  • World Health Organization (2020) The state of food security and nutrition in the world 2020: transforming food systems for affordable healthy diets. Food Agric Org

  • Wu H, Sparks C, Amoah B, Jones HD (2003) Factors influencing successful Agrobacterium-mediated genetic transformation of wheat. Plant Cell Rep 21:659–668

    Article  CAS  PubMed  Google Scholar 

  • Wu C, Cui K, Fahad S (2022) Heat stress decreases rice grain weight: Evidence and physiological mechanisms of heat effects prior to flowering. Int J Mol Sci 23:10922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wulff BB, Krattinger SG (2022) The long road to engineering durable disease resistance in wheat. Curr Opin Biotechno 73:270–275

    Article  CAS  Google Scholar 

  • Xiao A, Cheng Z, Kong L, Zhu Z, Lin S, Gao G, Zhang B (2014) CasOT: a genome-wide Cas9/gRNA off-target searching tool. Bioinformatics 30:1180–1182

    Article  CAS  PubMed  Google Scholar 

  • Xiao C, Zhang H, Xie F, Pan ZY, Qiu WM, Tong Z, Wang ZQ, He XJ, Xu YH, Sun ZH (2022) Evolution, gene expression, and protein-protein interaction analyses identify candidate CBL-CIPK signalling networks implicated in stress responses to cold and bacterial infection in citrus. BMC Plant Biol 22:1–17

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu M, Wang Q, Wang G, Zhang X, Liu H, Jiang C (2022) Combatting Fusarium head blight: advances in molecular interactions between Fusarium graminearum and wheat. Phytopathol Res 4:1–16

    Article  Google Scholar 

  • Xue C, Greene EC (2021) DNA repair pathway choices in CRISPR-Cas9-mediated genome editing. Trends Genet 37:639–656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye X, Wang K, Liu H, Tang H, Qiu Y, Gong Q (2022) Genome Editing Toward Wheat Improvement. Genome Editing Technologies for Crop Improvement. Springer, Singapore, pp 241–269

    Chapter  Google Scholar 

  • Yeh CD, Richardson CD, Corn JE (2019) Advances in genome editing through control of DNA repair pathways. Nat Cell Biol 21:1468–1478

    Article  CAS  PubMed  Google Scholar 

  • Yigider E, Taspinar MS, Aydin M, Agar G (2021) Humic acid effects on retrotransposon polymorphisms caused by zinc and iron in the maize (Zea mays L.) genome. Cereal Res Commun 49:193–198

    Article  CAS  Google Scholar 

  • Yimam YT, Zhou J, Akher SA, Zheng X, Qi Y, Zhang Y (2021) Improving a Quantitative Trait in Rice by Multigene Editing with CRISPR-Cas9. Rice Genome Engineering and Gene Editing: Methods and Protocols, 205–219

  • Yu Y, Wang J, Zhu ML, Wei ZM (2008) Optimization of mature embryo-based high frequency callus induction and plant regeneration from elite wheat cultivars grown in China. Plant Breed 127:249–255

    Article  CAS  Google Scholar 

  • Yuan ZC, Edlind MP, Liu P, Saenkham P, Banta LM, Wise AA, Ronzone E, Binns AN, Kerr K, Nester EW (2007) The plant signal salicylic acid shuts down expression of the vir regulon and activates quormone-quenching genes in Agrobacterium. Proc Natl Acad Sci 104:11790–11795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan WX, Yun-Mei YU, Chun-Cai HU, Zhao ZG (2017) Current Issues and Progress in the Application of CRISPR/Cas9 Technique. Biotechnol Bull 33:70–77

    Google Scholar 

  • Zafar K, Sedeek KE, Rao GS, Khan MZ, Amin I, Kamel R, Mukhtar Z, Zafar M, Mahfouz MS, MM, (2020) Genome editing technologies for rice improvement: progress, prospects, and safety concerns. Front Genome Ed 2:5

    Article  PubMed  PubMed Central  Google Scholar 

  • Zarei A, Razban V, Hosseini SE, Tabei SMB (2019) Creating cell and animal models of human disease by genome editing using CRISPR/Cas9. J Gene Med 21:e3082

    Article  PubMed  Google Scholar 

  • Zhang F (2019) Development of CRISPR-Cas systems for genome editing and beyond. Q Rev Biophys 52:e6

    Article  Google Scholar 

  • Zhang F, Huang Z (2021) Mechanistic insights into the versatile class II CRISPR toolbox. Trends Biochem Sci 47:433–450

    Article  PubMed  Google Scholar 

  • Zhang YM, Zhang HM, Liu ZH, Guo XL, Li HC, Li GL, Jiang CZ, Zhang MC (2015) Inhibition of isoflavone biosynthesis enhanced T-DNA delivery in soybean by improving plant–Agrobacterium tumefaciens interaction. Plant Cell Tissue Organ Cult 121:183–193

    Article  CAS  Google Scholar 

  • Zhang Y, Liang Z, Zong Y, Wang Y, Liu J, Chen K, Qui JL, Gao C (2016) Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat Commun 7:1–8

    Google Scholar 

  • Zhang Y, Bai Y, Wu G, Zou S, Chen Y, Gao C, Tang D (2017) Simultaneous modification of three homoeologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat. Plant J 91:714–724

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Li D, Zhang D, Zhao X, Cao X, Dong L, Liu J, Chen K, Zhang H, Gao C, Wang D (2018) Analysis of the functions of Ta GW 2 homoeologs in wheat grain weight and protein content traits. Plant J 94:857–866

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Hua L, Gupta A, Tricoli D, Edwards KJ, Yang B, Li W (2019) Development of an Agrobacterium-delivered CRISPR/Cas9 system for wheat genome editing. Plant Biotechnol J 17:1623–1635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Zhang H, Li S, Li J, Yan L, Xia L (2021a) Increasing yield potential through manipulating of an ARE1 ortholog related to nitrogen use efficiency in wheat by CRISPR/Cas9. J Integr Plant Biol 63:1649–1663

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Shen J, Li D, Cheng Y (2021b) Strategies in the delivery of Cas9 ribonucleoprotein for CRISPR/Cas9 genome editing. Theranostics 11:614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Zhang R, Gao J, Song G, Li J, Li W, Qui Y, Li Y, Li G (2021c) CRISPR/Cas9-mediated genome editing for wheat grain quality improvement. Plant Biotechnol J 19:1684

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao TJ, Zhao SY, Chen HM, Zhao QZ, Hu ZM, Hou BK, Xia GM (2006) Transgenic wheat progeny resistant to powdery mildew generated by Agrobacterium inoculum to the basal portion of wheat seedling. Plant Cell Rep 25:1199–1204

    Article  PubMed  Google Scholar 

  • Zheng M, Lin J, Liu X, Chu W, Li J, Gao Y, An K, Song W, Xin M, Yao Y, Peng H, Ni Z, Sun Q, Hu Z (2021) Histone acetyltransferase TaHAG1 acts as a crucial regulator to strengthen salt tolerance of hexaploid wheat. Plant Physiol 186:1951–1969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhi H, Zhou S, Pan W, Shang Y, Zeng Z, Zhang H (2022) The Promising Nanovectors for Gene Delivery in Plant Genome Engineering. Int J Mol Sci 23:8501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Y (2022) Advances in CRISPR/Cas9. Biomed Res Int 2022

Download references

Acknowledgements

The authors would like to thank Ataturk University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmut Sinan Taspinar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Gerhard Leubner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yigider, E., Taspinar, M.S. & Agar, G. Advances in bread wheat production through CRISPR/Cas9 technology: a comprehensive review of quality and other aspects. Planta 258, 55 (2023). https://doi.org/10.1007/s00425-023-04199-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-023-04199-9

Keywords

Navigation