Skip to main content
Log in

Leaf structural traits mediating pre-existing physical innate resistance to sorghum aphid in sorghum under uninfested conditions

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Key message

We found four indicative traits of innate immunity. Sorghum-resistant varieties had a greater trichome, stomatal and chloroplast density, and smaller mesophyll intercellular width than susceptible varieties.

Abstract

The sorghum aphid (SA), Melanaphis sorghi (Theobald), can severely reduce sorghum yield. The contribution of structural traits to SA resistance has not been extensively studied. Moreover, the current screening method for resistance is inherently subjective for resistance and requires infestation in plants. Quantifying the microanatomical basis of innate SA resistance is crucial for developing reliable screening tools requiring no infestation. The goal of this study was to identify structural traits linked to physical innate SA resistance in sorghum. We conducted controlled environment and field experiments under no SA infestation conditions, with two resistant (R. LBK1 and R. Tx2783) and two susceptible (R. Tx7000 and R. Tx430) varieties. Leaf tissues collected at the fifth leaf stage in the controlled environment experiment were analyzed for the epidermal and mesophyll traits using light and transmission electron microscopy. Leaf tissues collected at physiological maturity in the field experiment were analyzed for surface traits using scanning electron microscopy. Our results showed that stomatal density, trichome density, trichome length, and chloroplast density are key leaf structural traits indicative of physical innate SA resistance. We found that resistant varieties had a greater density of trichomes (39%), stomata (31%), and chloroplast (42%), and smaller mesophyll intercellular width (− 52%) than susceptible varieties. However, the chloroplast, mitochondria, and epidermal cell ultrastructural traits were ineffective indicators of SA resistance. Our findings provide the foundation for developing an objective high-throughput method for SA resistance screening. We suggest a follow-up validation experiment to confirm our outcomes under SA infestation conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data used and analyzed during this study are included in this article.

Abbreviations

SA:

Sorghum aphid

SEM:

Scanning electron microscopy

TEM:

Transmission electron microscopy

References

  • Aravind MB, Kajjidoni ST (2007) Leaf anatomical basis of woolly aphid resistance in sugarcane. Curr Sci 93(7):906–909

    Google Scholar 

  • Armstrong JS, Rooney WL, Peterson GC, Villenueva RT, Brewer MJ, Sekula-Ortiz D (2015) Sugarcane aphid (hemiptera: Aphididae): Host range and sorghum resistance including cross-resistance from greenbug sources. J Econ Entomol 108(2):576–582

    CAS  PubMed  Google Scholar 

  • Avé DA, Gregory P, Tingey WM (1987) Aphid repellent sesquiterpenes in glandular trichomes of Solanum berthaultii and S. tuberosum. Entomol Exp Appl 44(2):131–138

    Google Scholar 

  • Blackman RL, Eastop VF (2000) Aphids on the world's crops: an identification and information guide, 2nd edn. John Wiley & Sons Ltd

  • Chen X, Fan Y, Zhang W, Tian Z, Liu J, Zhao K (2017) Soybean aphid, Aphis glycines (Hemiptera: Aphididae), developmental and reproductive capacity on white clover, Trifolium repens (Rosales: Leguminosae), in northeast China. Appl Entomol Zool 52:491–495

    PubMed  PubMed Central  Google Scholar 

  • De Micco V, Arena C, Vitale L, Aronne G, Virzo De Santo A (2011) Anatomy and photochemical behaviour of Mediterranean Cistus incanus winter leaves under natural outdoor and warmer indoor conditions. Botany 89(10):677–688

    Google Scholar 

  • Emendack Y, Sanchez J, Hayes C, Nesbitt M, Laza H, Burke J (2021) Seed-to-seed early-season cold resiliency in sorghum. Sci Rep 11(1):7801

    CAS  PubMed  PubMed Central  Google Scholar 

  • Faiz M, Hidayat P, Winasa I, Guntoro D (2021) Effect of soybean leaf trichomes on the preference of various soybean pests on field. In: IOP Conference Series: Earth and Environmental Science, vol 1. IOP Publishing, P 012046

  • Goffreda JC, Mutschler MA, Avé DA, Tingey WM, Steffens JC (1989) Aphid deterrence by glucose esters in glandular trichome exudate of the wild tomato, Lycopersicon pennellii. J Chem Ecol 15:2135–2147

    CAS  PubMed  Google Scholar 

  • González MG, Simon JC, Sugio A, Ameline A, Cherqui A (2022) Aphid resistance in Pisum affects the feeding behavior of pea-adapted and non-pea-adapted biotypes of Acyrthosiphon pisum differently. Insects 13(3):268

    PubMed  PubMed Central  Google Scholar 

  • Hayes CM, Armstrong JS, Limaje A, Emendack YE, Bean S, Wilson J, Xin Z (2019) Registration of R. LBK1 and R. LBK2 sorghum germplasm with resistance to the sugarcane aphid [Melanaphis sacchari (Zehntner)]. J Plant Regist 13(1):91–95

    Google Scholar 

  • Hewer A, Becker A, van Bel AJ (2011) An aphid’s Odyssey–the cortical quest for the vascular bundle. J Exp Biol 214(22):3868–3879

    CAS  PubMed  Google Scholar 

  • Holland C, Ryden P, Edwards CH, Grundy MM-L (2020) Plant cell walls: impact on nutrient bioaccessibility and digestibility. Foods 9(2):201

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ibbotson A, Kennedy J (1959) Interaction between walking and probing in Aphis fabae Scop. J Exp Biol 36(2):377–390

    Google Scholar 

  • Jaipargas E-A, Barton KA, Mathur N, Mathur J (2015) Mitochondrial pleomorphy in plant cells is driven by contiguous ER dynamics. Front Plant Sci 6:783

    PubMed  PubMed Central  Google Scholar 

  • Karabourniotis G, Liakopoulos G, Nikolopoulos D, Bresta P (2020) Protective and defensive roles of non-glandular trichomes against multiple stresses: structure–function coordination. J for Res 31(1):1–12

    CAS  Google Scholar 

  • Kariyat RR, Gaffoor I, Sattar S, Dixon CW, Frock N, Moen J, De Moraes CM, Mescher MC, Thompson GA, Chopra S (2019) Sorghum 3-deoxyanthocyanidin flavonoids confer resistance against corn leaf aphid. J Chem Ecol 45:502–514

    CAS  PubMed  Google Scholar 

  • Khan M, Kundu R, Alam M (2000) Impact of trichome density on the infestation of Aphis gossypii Glover and incidence of virus disease in ashgourd [Benincasa hispida (Thunb) Cogn]. Int J Pest Manag 46(3):201–204

    Google Scholar 

  • Kim S-Y, Bengtsson T, Olsson N, Hot V, Zhu L-H, Åhman I (2020) Mutations in two aphid-regulated β-1, 3-glucanase genes by CRISPR/Cas9 do not increase barley resistance to Rhopalosiphum padi L. Front Plant Sci 11:1043

    PubMed  PubMed Central  Google Scholar 

  • Laza HE, Zhao B, Hastert M, Payton P, Chen J (2021) High-throughput imaging of fresh-frozen plant reproductive samples in a variable pressure SEM. MethodsX 8:101392

    CAS  PubMed  PubMed Central  Google Scholar 

  • Levin DA (1973) The role of trichomes in plant defense. Q Rev Biol 48(1):3–15

    Google Scholar 

  • Leybourne D, Aradottir G (2022) Common resistance mechanisms are deployed by plants against sap-feeding herbivorous insects: insights from a meta-analysis and systematic review. Sci Rep 12(1):17836

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leybourne DJ, Valentine TA, Robertson JA, Pérez-Fernández E, Main AM, Karley AJ, Bos JI (2019) Defence gene expression and phloem quality contribute to mesophyll and phloem resistance to aphids in wild barley. J Exp Bot 70(15):4011–4026

    CAS  PubMed  Google Scholar 

  • Limaje A, Hayes C, Armstrong JS, Hoback W, Zarrabi A, Paudyal S, Burke J (2018) Antibiosis and tolerance discovered in USDA-ARS sorghums resistant to the sugarcane aphid (Hemiptera: Aphididae). J Entomol Sci 53(2):230–241

    Google Scholar 

  • Luo K, Yao X-J, Luo C, Hu X-S, Wang C-P, Wang Y, Hu Z-Q, Zhang G-S, Zhao H-Y (2019) Biological and morphological features associated with English grain aphid and bird cherry-oat aphid tolerance in winter wheat line XN98-10-35. J Plant Growth Reg 38:46–54

    CAS  Google Scholar 

  • Maffei ME, Mithöfer A, Boland W (2007) Before gene expression: early events in plant–insect interaction. Trends Plant Sci 12(7):310–316

    CAS  PubMed  Google Scholar 

  • McWhorter CG (1993) Epicuticular wax on johnsongrass (Sorghum halepense) leaves. Weed Sci 41(3):475–482

    Google Scholar 

  • McWhorter CG, Paul RN, Ouzts JC (1995) Bicellular trichomes of johnsongrass (Sorghum halepense) leaves: morphology, histochemistry, and function. Weed Sci 43(2):201–208

    CAS  Google Scholar 

  • Miettinen TP, Björklund M (2017) Mitochondrial function and cell size: an allometric relationship. Trends Cell Biol 27(6):393–402

    CAS  PubMed  Google Scholar 

  • Nalam VJ, Han J, Pitt WJ, Acharya SR, Nachappa P (2021) Location, location, location: feeding site affects aphid performance by altering access and quality of nutrients. PLoS ONE 16(2):e0245380

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nomura H, Shiina T (2014) Calcium signaling in plant endosymbiotic organelles: mechanism and role in physiology. Mol Plant 7(7):1094–1104

    CAS  PubMed  Google Scholar 

  • Paudyal S, Armstrong JS, Giles KL, Payton ME, Opit GP, Limaje A (2019) Categories of resistance to sugarcane aphid (Hemiptera: Aphididae) among sorghum genotypes. J Econ Entomol 112(4):1932–1940

    PubMed  Google Scholar 

  • Paudyal S, Armstrong JS, Giles KL, Hoback W, Aiken R, Payton ME (2020) Differential responses of sorghum genotypes to sugarcane aphid feeding. Planta 252:1–9

    Google Scholar 

  • Peter AJ, Shanower T, Romeis J (1995) The role of plant trichomes in insect resistance: a selective review. Phytophaga 7:41–63

    Google Scholar 

  • Powell G, Hardie J (2000) Host-selection behaviour by genetically identical aphids with different plant preferences. Physiol Entomol 25(1):54–62

    Google Scholar 

  • Powell G, Tosh CR, Hardie J (2006) Host plant selection by aphids: behavioral, evolutionary, and applied perspectives. Annu Rev Entomol 51:309–330

    CAS  PubMed  Google Scholar 

  • Riddick EW, Simmons AM (2014) Do plant trichomes cause more harm than good to predatory insects? Pest Manag Sci 70(11):1655–1665

    CAS  PubMed  Google Scholar 

  • Sarria E, Palomares-Rius FJ, López-Sesé AI, Heredia A, Gómez-Guillamón ML (2010) Role of leaf glandular trichomes of melon plants in deterrence of Aphis gossypii Glover. Plant Biol 12(3):503–511

    PubMed  Google Scholar 

  • Saska P, Skuhrovec J, Tylová E, Platková H, Tuan S-J, Hsu Y-T, Vítámvás P (2021) Leaf structural traits rather than drought resistance determine aphid performance on spring wheat. J Pest Sci 94:423–434

    Google Scholar 

  • Schwarzkopf A, Rosenberger D, Niebergall M, Gershenzon J, Kunert G (2013) To feed or not to feed: plant factors located in the epidermis, mesophyll, and sieve elements influence pea aphid’s ability to feed on legume species. PLoS ONE 8(9):e75298

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma HC, Sharma SP, Munghate RS (2013) Phenotyping for resistance to the sugarcane aphid Melanaphis sacchari (Hemiptera: Aphididae) in Sorghum bicolor (Poaceae). Int J Trop Insect Sci 33(4):227–238

    Google Scholar 

  • Sharma G, Malthankar PA, Mathur V (2021) Insect–plant interactions: a multilayered relationship. Ann Entomol Soc America 114(1):1–16

    CAS  Google Scholar 

  • Singh B, Padmaja P, Seetharama N (2004) Biology and management of the sugarcane aphid, Melanaphis sacchari (Zehntner) (Homoptera: Aphididae), in sorghum: a review. Crop Prot 23(9):739–755

    Google Scholar 

  • Singh B, Simon A, Halsey K, Kurup S, Clark S, Aradottir GI (2020) Characterisation of bird cherry-oat aphid (Rhopalosiphum padi L.) behaviour and aphid host preference in relation to partially resistant and susceptible wheat landraces. Ann Appl Biol 177(2):184–194

    PubMed  PubMed Central  Google Scholar 

  • Tetreault HM, Grover S, Scully ED, Gries T, Palmer NA, Sarath G, Louis J, Sattler SE (2019) Global responses of resistant and susceptible sorghum (Sorghum bicolor) to sugarcane aphid (Melanaphis sacchari). Front Plant Sci 10:145

    PubMed  PubMed Central  Google Scholar 

  • Twayana M, Girija AM, Mohan V, Shah J (2022) Phloem: At the center of action in plant defense against aphids. J Plant Physiol 273:153695

    CAS  PubMed  Google Scholar 

  • Uyi O, Ni X, Buntin D, Jacobson A, Reay-Jones FP, Punnuri S, Toews MD (2023) Management of Melanaphis sorghi (Hemiptera: Aphididae) in grain sorghum with early planting and in-furrow flupyradifurone application. Crop Prot 164:106148

    CAS  Google Scholar 

  • Van den Berg J (2002) Status of resistance of sorghum hybrids to the aphid, Melanaphis sacchari (Zehntner) (Homoptera: Aphididae). South Afr J Plant Soil 19(3):151–155

    Google Scholar 

  • Van Rensburg N (1973) Notes on the occurrence and biology of the sorghum aphid in South Africa. J Entomol Soc Southern Africa 36(2):293–298

    Google Scholar 

  • van Wijk KJ, Kessler F (2017) Plastoglobuli: plastid microcompartments with integrated functions in metabolism, plastid developmental transitions, and environmental adaptation. Annu Rev Plant Biol 68:253–289

    PubMed  Google Scholar 

  • Wang F, Park Y-L, Gutensohn M (2020) Glandular trichome-derived sesquiterpenes of wild tomato accessions (Solanum habrochaites) affect aphid performance and feeding behavior. Phytochemistry 180:112532

    CAS  PubMed  Google Scholar 

  • Webster J, Inayatullah C, Hamissou M, Mirkes K (1994) Leaf pubescence effects in wheat on yellow sugarcane aphids and greenbugs (Homoptera: Aphididae). J Econ Entomol 87(1):231–240

    Google Scholar 

  • Will T, van Bel AJ (2006) Physical and chemical interactions between aphids and plants. J Exp Bot 57(4):729–737

    CAS  PubMed  Google Scholar 

  • Xing Z, Liu Y, Cai W, Huang X, Wu S, Lei Z (2017) Efficiency of trichome-based plant defense in Phaseolus vulgaris depends on insect behavior, plant ontogeny, and structure. Front Plant Sci 8:2006

    PubMed  PubMed Central  Google Scholar 

  • Xiong D, Huang J, Peng S, Li Y (2017) A few enlarged chloroplasts are less efficient in photosynthesis than a large population of small chloroplasts in Arabidopsis thaliana. Sci Rep 7(1):5782

    PubMed  PubMed Central  Google Scholar 

  • Zhang X, van Doan C, Arce CC, Hu L, Gruenig S, Parisod C, Hibbard BE, Hervé MR, Nielson C, Robert CA (2019) Plant defense resistance in natural enemies of a specialist insect herbivore. Proc Natl Acad Sci USA 116(46):23174–23181

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Dr. Zhao and Mary Catherine, from the Imaging Center, at TTU assisting with the microscopy analysis.

Funding

This work was supported by the United States Department of Agriculture-ARS [grant number 58-3096-0-020]; Foundation for Food and Agriculture, [grant number 2013-67013-21108].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haydee E. Laza.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Communicated by Dorothea Bartels.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Triplett, E., Hayes, C., Emendack, Y. et al. Leaf structural traits mediating pre-existing physical innate resistance to sorghum aphid in sorghum under uninfested conditions. Planta 258, 46 (2023). https://doi.org/10.1007/s00425-023-04194-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-023-04194-0

Keywords

Navigation