Skip to main content

Advertisement

Log in

Crop microbiome: their role and advances in molecular and omic techniques for the sustenance of agriculture

  • Review
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

This review is an effort to provide in-depth knowledge of microbe’s interaction and its role in crop microbiome using combination of advanced molecular and OMICS technology to translate this information for the sustenance of agriculture.

Abstract

Increasing population, climate change and exhaustive agricultural practices either influenced nutrient inputs of soil or generating biological and physico-chemical deterioration of the soils and affecting the agricultural productivity and agro-ecosystems. Alarming concerns toward food security and crop production claim for renewed attention in microbe-based farming practices. Microbes are omnipresent (soil, water, and air) and their close association with plants would help to accomplish sustainable agriculture goals. In the last few decades, the search for beneficial microbes in crop production, soil fertilization, disease management, and plant growth promotion is the thirst for eco-friendly agriculture. The crop microbiome opens new paths to utilize beneficial microbes and manage pathogenic microbes through integrated advanced biotechnology. The crop microbiome helps plants acquire nutrients, growth, resilience against phytopathogens, and tolerance to abiotic stresses, such as heat, drought, and salinity. Despite the emergent functionality of the crop microbiome as a complicated constituent of the plant fitness, our understanding of how the functionality of microbiome influenced by numerous factors including genotype of host, climatic conditions, mobilization of minerals, soil composition, nutrient availability, interaction between nexus of microbes, and interactions with other external microbiomes is partially understood. However, the structure, composition, dynamics, and functional contribution of such cultured and uncultured crop microbiome are least explored. The advanced biotechnological approaches are efficient tools for acquiring the information required to investigate the microbiome and extract data to develop high yield producing and resistant variety crops. This knowledge fills the fundamental gap between the theoretical concepts and the operational use of these advanced tools in crop microbiome studies. Here, we review (1) structure and composition of crop microbiome, (2) microbiome-mediated role associated with crops fitness, (3) Molecular and -omics techniques for exploration of crop microbiome, and (4) current approaches and future prospectives of crop microbiome and its exploitation for sustainable agriculture. Recent -omic approaches are influential tool for mapping, monitoring, modeling, and management of crops microbiome. Identification of crop microbiome, using system biology and rhizho-engineering, can help to develop future bioformulations for disease management, reclamation of stressed agro-ecosystems, and improved productivity of crops. Nano-system approaches combined with triggering molecules of crop microbiome can help in designing of nano-biofertilizers and nano-biopesticides. This combination has numerous merits over the traditional bioinoculants. They stimulate various defense mechanisms in plants facing stress conditions; provide bioavailability of nutrients in the soil, helps mitigate stress conditions; and enhance chances of crops establishment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All the data are included in the manuscript.

References

  • Abiraami TV, Singh S, Nain L (2020) Soil metaproteomics as a tool for monitoring functional microbial communities: Promises and challenges. Rev Environ Sci BioTechnol 19:73–102

    Article  CAS  Google Scholar 

  • Acosta-Motos JR, Penella C, Hernández JA, Díaz-Vivancos P, Sánchez-Blanco MJ, Navarro JM et al (2020) Towards a sustainable agriculture: strategies involving phyto protectants against salt stress. Agronomy 10(2):194

    Article  CAS  Google Scholar 

  • Agler MT, Ruhe J, Kroll S, Morhenn C, Kim ST, Weigel D, Kemen EM (2016a) Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol 14:1–31

    Article  Google Scholar 

  • Agler MT, Ruhe J, Kroll S, Morhenn C, Kim ST, Weigel D et al (2016b) Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol 14:e1002352

    Article  Google Scholar 

  • Aguiar-Pulido V, Huang W, Suarez-Ulloa V, Cickovski T, Mathee K, Narasimhan G (2016) Metagenomics, metatranscriptomics, and metabolomics approaches for microbiome analysis. Evol Bioinforma 12:5–16

    Google Scholar 

  • Ahmed V, Verma MK, Gupta S, Mandhan V, Chauhan NS (2018) Metagenomic profiling of soil microbes to mine salt stress tolerance genes. Front Microbiol 9:159

    Article  Google Scholar 

  • Ahmed S, Choudhury AR, Kumar S, Choi J, Sayyed RZ, Sara TM (2021) Biomolecular painstaking utilization and assimilation of phosphorus under indigent stage in agricultural crops. In: Singh HB, Vaishnav A, Sayyed RZ (eds) Antioxidants in plant microbe interaction. Springer, Singapore, pp 565–588

    Chapter  Google Scholar 

  • Akhtar N, Ilyas N, Yasmin H, Sayyed RZ, Hasnain Z, Elsayed EA, El Enshasy HA (2021) Role of Bacillus cereus in improving the growth and phytoextractability of Brassica nigra (L.) K. Koch in chromium contaminated soil. Molecules 26:1569

    Article  CAS  Google Scholar 

  • Anal AKD, Rai S, Singh M, Solanki MK (2020) Plant mycobiome: current research and applications. In: Solanki MK, Kashyap PL, Kumari B (eds) Phytobiomes: current insights and future vistas. Springer, Singapore, pp 81–105

    Chapter  Google Scholar 

  • Aramsirirujiwet Y, Gumlangmak C, Kitpreechavanich V (2016) Studies on antagonistic effect against plant pathogenic fungi from endophytic fungi isolated from Houttuynia cordatathunb and screening for siderophore and Indole-3-acetic acid production. KKU Res J 21(1):55–66

    Google Scholar 

  • Armanhi JSL, de Souza RSC, de Araujo LM, Okura VK, Mieczkowski P, Imperial J et al (2016) Multiplex amplicon sequencing for microbe identification in community-based culture collections. Sci Rep 6:29543

    Article  CAS  Google Scholar 

  • Arora NK, Fatima T, Mishra J, Mishra I, Verma S, Verma R, Vermad M, Bhattacharya A, Verma P, Mishra P, Bharti C (2020) Halo-tolerant plant growth promoting rhizobacteria for improving productivity and remediation of saline soils. J Adv Res 26:69–82

    Article  Google Scholar 

  • Atugala DM, Deshappriya N (2015) Effect of endophytic fungi on plant growth and blast disease incidence of two traditional rice varieties. J Natl Sci Found Sri Lanka 43(2):173–187

    Article  Google Scholar 

  • Ayangbenro AS, Babalola OO (2017) A new strategy for heavy metal polluted environments: a review of microbial biosorbents. Int J Environ Res Public Health 14(1):94

    Article  Google Scholar 

  • Babu AG, Kim SW, Yadav DR, Hyum U, Adhikari M, Lee YS (2015) Penicillium menonorum: a novel fungus to promote growth and nutrient management in cucumber plants. Microbiol 43(1):49–56

    Google Scholar 

  • Banerjee S, Schlaeppi K, Heijden MG (2018) Keystone taxa as drivers of microbiome structure and functioning. Nat Rev Microbiol 16(9):567–576

    Article  CAS  Google Scholar 

  • Barelli L, Waller AS, Behie SW, Bidochka MJ (2020) Plant microbiome analysis after Metarhizium amendment reveals increases in abundance of plant growth- promoting organisms and maintenance of disease-suppressive soil. PLoS ONE 15:1–23

    Article  Google Scholar 

  • Bargaz A, Lyamlouli K, Chtouki M, Zeroual Y, Dhiba D (2018) Soil microbial resources for improving fertilizers efficiency in an integrated plant nutrient management system. Front Microbiol 9:1606

    Article  Google Scholar 

  • Bastami A, Amirnia R, Sayyed RZ, Enshasy HE (2021) The effect of mycorrhizal fungi and organic fertilizers on quantitative and qualitative traits of two important Satureja species. Agronomy 11:1285. https://doi.org/10.3390/agronomy11071285

    Article  CAS  Google Scholar 

  • Basu A, Prasad P, Das SN, Kalam S, Sayyed RZ, Reddy MS, Enshasy HE (2021) Plant growth promoting rhizobacteria (PGPR) as green bioinoculants: recent developments, constraints, and prospects. Sustainability 13:1140

    Article  CAS  Google Scholar 

  • Berg M, Koskella B (2018) Nutrient- and dose-dependent microbiome-mediated protection against a plant pathogen. Curr Biol 28:2487–2492

    Article  CAS  Google Scholar 

  • Berg G, Rybakova D, Grube M, Köberl M (2016) The plant microbiome explored: implications for experimental botany. J Exp Bot 67(4):995–1002

    Article  CAS  Google Scholar 

  • Bergelson J, Mittelstrass J, Horton MW (2019) Characterizing both bacteria and fungi improves understanding of the Arabidopsis root microbiome. Sci Rep 9:24

    Article  Google Scholar 

  • Berlanas C, Berbegal M, Elena G, Laidani M, Cibrian JF, Sagües A et al (2019) The fungal and bacterial rhizosphere microbiome associated with grapevine rootstock genotypes in mature and young vineyards. Front Microbiol 10:1142

    Article  Google Scholar 

  • Bernardo L, Carletti P, Badeck FW, Rizza F, Morcia C, Ghizzoni R, Rouphael Y, Colla G, Terzi V, Lucini L (2019) Metabolomic responses triggered by arbuscular mycorrhiza enhance tolerance to water stress in wheat cultivars. Plant Physiol Biochem 137:203–212

    Article  CAS  Google Scholar 

  • Bertola M, Ferrarini A, Visioli G (2021) Improvement of soil microbial diversity through sustainable agricultural practices and its evaluation by –omics approaches: a perspective for the environment, food quality and human safety. Microorg 9:1400

    Article  CAS  Google Scholar 

  • Bonini P, Rouphael Y, Moreno MBM, Lee B, Cardarelli M, Erice G, Cirino V, Lucini L, Colla G (2020) Microbial-based biostimulant enhances sweet pepper performance by metabolic reprogramming of phytohormone profile and secondary plant metabolism. Front Plant Sci 11:567388

    Article  Google Scholar 

  • Brader G, Compant S, Vescio K, Mitter B, Trognitz F, Ma LJ et al (2017) Ecology and genomic insights into plant-pathogenic and plant-nonpathogenic endophytes. Annu Rev Phytopathol 55:61–83

    Article  CAS  Google Scholar 

  • Brígido C, Singh S, Menéndez E, Tavares MJ, Glick BR, do Rosário Félix M, Oliveira S, Carvalho M (2019) Diversity and functionality of culturable endophytic bacterial communities in chickpea plants. Plant 8:42

    Article  Google Scholar 

  • Buchholz F, Antonielli L, Kostic T, Sessitsch A, Mitter B (2019) The bacterial community in potatoes is recruited from soil and partly inherited across generations. PLoS ONE 14(11):e0223691

    Article  CAS  Google Scholar 

  • Bulgarelli D, Garrido-Oter R, Münch PC, Weiman A, Dröge J, Pan Y et al (2015) Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe 17:392–403

    Article  CAS  Google Scholar 

  • Burns KN, Kluepfel DA, Strauss SL, Bokulich NA, Cantu D, Steenwerth KL (2015) Vineyard soil bacterial diversity and composition revealed by 16S rRNA genes: differentiation by geographic features. Soil Biol Biochem 91:232–247

    Article  CAS  Google Scholar 

  • Busby PE, Soman C, Wagner MR, Friesen ML, Kremer J, Bennett A et al (2017) Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoSBiol 15(3):e2001793

    Article  Google Scholar 

  • Cai F, Pang G, Miao Y, Li R, Li R, Shen Q, Chen W (2016) The nutrient preference of plants influences their rhizosphere microbiome. Agric Ecosyst Environ Appl Soil Ecol 110:146–150

    Article  Google Scholar 

  • Cai F, Pang G, Miao YZ, Li RX, Li RX, Shen QR et al (2017) The nutrient preference of plants influences their rhizosphere microbiome. Appl Soil Ecol 110:146–150

    Article  Google Scholar 

  • Chadha N, Mishra M, Rajpal K, Bajaj R, Choudhary DK, Varma A (2015) An ecological role of fungal endophytes to ameliorate plants under biotic stress. Arch Microbiol 197:869–881

    Article  CAS  Google Scholar 

  • Chandran H, Meena M, Sharma K (2020) Microbial biodiversity and bioremediation assessment through omics approaches. Front Environ Chem 1:9

    Article  Google Scholar 

  • Chen Y, Wang J, Yang N, Wen Z, Sun X, Chai Y, Ma Z (2018) Wheat microbiome bacteria can reduce the virulence of a plant pathogenic fungus by altering histone acetylation. Nat Commun 9:3429

    Article  Google Scholar 

  • Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42(5):669–678

    Article  CAS  Google Scholar 

  • Contreras-Cornejo HA, Macías-Rodríguez L, del Val E, Larsen J (2016) Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: interactions with plants. FEMS Microbiol Ecol 92:036

    Article  Google Scholar 

  • Copeland JK, Yuan L, Layeghifard M, Wang PW, Guttman DS (2015) Seasonal community succession of the phyllosphere microbiome. Mol Plant-Microbe Interact 28:274–285

    Article  CAS  Google Scholar 

  • Dastogeer KMG, Tumpa FH, Sultana A, Akter MA, Chakraborty A (2020) Plant microbiome–an account of the factors that shape community composition and diversity. Curr Plant Biol 23:100161

    Article  Google Scholar 

  • de Vries FT, Griffiths RI, Knight CG, Nicolitch O, Williams A (2020) Harnessing rhizosphere microbiomes for drought-resilient crop production. Science 368:270–274

    Article  Google Scholar 

  • de Vrieze M, Germanier F, Vuille N, Weisskopf L (2018) Combining different potato-associated Pseudomonas strains for improved biocontrol of Phytophthora infestans. Front Microbiol 9:2573

    Article  Google Scholar 

  • Deng S, Wipf HML, Pierroz G, Raab TK, Khanna R, Coleman-Derr D (2019) A plant growth-promoting microbial soil amendment dynamically alters the strawberry root bacterial microbiome. Sci Rep 9:17677

    Article  Google Scholar 

  • Dong CJ, Wang LL, Li Q, Shang QM (2019) Bacterial communities in the rhizosphere, phyllosphere, and endosphere of tomato plants. PLoS ONE 14(11):e0223847

    Article  CAS  Google Scholar 

  • Donn S, Kirkegaard JA, Perera G, Richardson AE, Watt M (2015) Evolution of bacterial communities in the wheat crop rhizosphere. Environ Microbiol 17:610–621

    Article  Google Scholar 

  • Dubey RK, Tripathi V, Prabha R, Chaurasia R, Singh DP, Rao CS, El-Keblawy A, Abhilash PC (2020) Methods for exploring soil microbial diversity. Unravelling the soil microbiome: perspectives for environmental sustainability. Springer, Cham, pp 23–32

    Chapter  Google Scholar 

  • Durán P, Tortella G, Viscardi S, Barra PJ, Carrión VJ, La M et al (2018) Microbial community composition in take-all suppressive soils. Front Microbiol 9:2198

    Article  Google Scholar 

  • Dusengemungu L, Kasali G, Gwanama C, Mubemba B (2021) Overview of fungal bioleaching of metals. Environ Adv 5:100083

    Article  CAS  Google Scholar 

  • Edwards J, Johnson C, Santos-Medellín C, Lurie E, Podishetty NK, Bhatnagar S et al (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. Proc Natl Acad Sci USA 112:E911–E920

    Article  CAS  Google Scholar 

  • Ehrmann J, Ritz K (2014) Plant: soil interactions in temperate multi-cropping production systems. Plant Soil 376:1–29

    Article  CAS  Google Scholar 

  • Eliaspour S, Seyed Sharifi R, Shirkhani A, Farzaneh S (2020) Effects of biofertilizers and iron nano-oxide on maize yield and physiological properties under optimal irrigation and drought stress conditions. Food Sci Nutr 8:5985–5998

    Article  CAS  Google Scholar 

  • Elnahal ASM, El-Saadony MT, Saad AM, El-Sayed DM, El-Tahan AM, Rady MM, Abuqamar SF, El-Tarabily KA et al (2022) The use of microbial inoculants for biological control, plant growth promotion, and sustainable agriculture: a review. Eur J Plant Pathol 24:1–34

    Google Scholar 

  • Faist H, Keller A, Hentschel U, Deeken R (2016) Grapevine (Vitis vinifera) crown galls host distinct microbiota. Appl Environ Microbiol 82:5542–5552

    Article  CAS  Google Scholar 

  • Fallah M, Hadi H, Amirnia R, Ghorttapeh AH, Ali TKZ, Sayyed RZ (2021) Eco-Friendly soil amendments improve growth, antioxidant activities, and root colonization in Lingrain (Linum Usitatissimum L.) under drought condition. PLoS ONE 16(12):e0261225

    Article  CAS  Google Scholar 

  • Fatima A, Singh S, Prasad SM (2020) Interaction between copperoxide nanoparticles and plants: uptake, accumulation and phytotoxicity. Springer, Cham, pp 143–161

    Google Scholar 

  • Fierer N (2017) Embracing the unknown: disentangling the complexities of the soil microbiome. Nature Rev Microbiol 15:579–590

    Article  CAS  Google Scholar 

  • Finzi AC, Austin AT, Cleland EE et al (2011) Coupled biochemical cycles: responses and feedbacks of coupled biogeochemical cycles to climate change: examples from terrestrial ecosystems. Front Ecol Environ 9:61–67

    Article  Google Scholar 

  • Fitzpatrick CRJ, Copeland PW, Wang DS, Guttman PM, Kotanen MTJ, Johnson M (2018) Assembly and ecological function of the root microbiome across angiosperm plant species. Proc Natl Acad Sci USA 115:E1157–E1165

    Article  CAS  Google Scholar 

  • Foo JL, Ling H, Lee YS, Chang MW (2017) Microbiome engineering: current applications and its future. Biotechnol J 12(3):1600099

    Article  Google Scholar 

  • Frohling A, Rademacher A, Rumpold B, Klocke M, Schluter O (2018) Screening of microbial communities associated with endive lettuce during postharvest processing on an industrial scale. Heliyon 4:e00671

    Article  Google Scholar 

  • Gao Z, Han M, Hu Y, Li Z, Liu C, Wang X et al (2019) Effects of continuous cropping of sweet potato on the fungal community structure in rhizospheric soil. Front Microbiol 10:2269

    Article  Google Scholar 

  • Ghani MI, Ali A, Atif MJ, Ali M, Amin B, Anees M, Khurshid H, Cheng Z (2019) Changes in the soil microbiome in eggplant monoculture revealed by high-throughput illumina MiSeq sequencing as influenced by raw garlic stalk amendment. Int J Mol Sci 20:2125

    Article  CAS  Google Scholar 

  • Giovannini L, Palla M, Agnolucci M, Avio L, Sbrana C, Turrini A, Giovannetti M (2020) Arbuscular mycorrhizal fungi and associated microbiota as plant stimulant: research strategies for the selection of the best performing inocula. Agronomy 10:106

    Article  Google Scholar 

  • Glick BR, Gamalero E (2021) Recent development in the study of plant microbiome. Microorganisms 9:1533

    Article  CAS  Google Scholar 

  • Gomes EA, Lana UGP, Quensen JF, de Sousa SM, Oliveira CA, Guo J et al (2018a) The root-associated microbiome of maize genotypes with contrasting phosphorous use efficiency. Phytobiome J 2(3):129–137

    Article  Google Scholar 

  • Gomes T, Pereira JA, Benhadi J, Lino-Neto T, Baptista P (2018b) Endophytic and epiphytic phyllosphere fungal communities are shaped by different environmental factors in a Mediterranean ecosystem. Microb Ecol 76(3):668–679

    Article  Google Scholar 

  • Gómez-Alpizar L, Saalau E, Picado I, Tambong JT, Saborio F (2011) A PCR-RFLP assay for identifying and detecting Pythium myriotylum, causal agent of the cocoyam root rot disease. Lett Appl Microbiol 52(3):185–192

    Article  Google Scholar 

  • Gómez-Expósito R, Bruijn Id, Postma J, Raaijmakers JM (2017) Current insights into the role of rhizosphere bacteria in disease suppressive soils. Front Microbiol 8:2529

    Article  Google Scholar 

  • Hamid B, Zaman M, Farooq S, Fatima S, Sayyed RZ, Baba ZA, Sheikh TA, Reddy MS, Enshasy HE, Gafur A, Suriani NL (2021) Bacterial plant biostimulants: a sustainable way towards improving growth, productivity, and health of crops. Sustainability 21(13):2856

    Article  Google Scholar 

  • Haney CH, Samuel BS, Bush J, Ausubel FM (2015) Associations with rhizosphere bacteria can confer an adaptive advantage to plants. Nat Plants 1:15051

    Article  CAS  Google Scholar 

  • Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A et al (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. MMBR 79:293–320

    Article  Google Scholar 

  • Hartman K, van der Heijden MG, Roussely-Provent V, Walser JC, Schlaeppi K (2017) Deciphering composition and function of the root microbiome of a legume plant. Microbiome. https://doi.org/10.1186/s40168-016-0220-z

    Article  Google Scholar 

  • Hassan TU, Bano A, Naz I (2017) Alleviation of heavy metal toxicity by the application of plant growth-promoting rhizobacteria and effects on wheat grown in the saline-sodic field. Int J Phytoremediation 19:522–529

    Article  Google Scholar 

  • He M, Zhang J, Shen L, Xu L, Luo W, Li D et al (2019) High-throughput sequencing analysis of microbial community diversity in response to indica and japonica bar-transgenic rice paddy soils. PLoS ONE 14(9):e0222191

    Article  CAS  Google Scholar 

  • Hong S, Jv H, Lu M, Wang B, Zhao Y, Ruan Y (2020) Significant decline in banana Fusarium wilt disease is associated with soil microbiome reconstruction under chilli pepper-banana rotation. Eur J Soil Biol 97:103154

    Article  CAS  Google Scholar 

  • Hopkins SR, Wojdak JM, Belden LK (2017) Defensive symbionts mediate host-parasite interactions at multiple scales. Trends Parasitol 33:53–64

    Article  Google Scholar 

  • Hu L, Robert CAM, Cadot S, Zhang X, Ye M, Li B et al (2018) Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nat Commun 9:2738

    Article  Google Scholar 

  • Huang W, Sun D, Fu J, Zhao H, Wang R, An Y (2019) Effects of continuous sugar beet cropping on rhizospheric microbial communities. Genes 11:13

    Article  Google Scholar 

  • Ilyas N, Mumtaz K, Akhtar N, Yasmin H, Sayyed RY, Khan W, El Enshasy HA, Dailin DD, Elsayed EA, Ali Z (2020) Exopolysaccharide producing bacteria for the amelioration of drought stress in wheat. Sustainability 12:8876

    Article  CAS  Google Scholar 

  • Jabborova D, Wirth S, Kannepalli A, Narimanov A, Desouky S, Davranov K, Sayyed RZ, Enshasy HE, Malek RA, Syed A, Bahkali AH (2020) Co-inoculation of rhizobacteria and biochar application improves growth and nutrient in soybean and enriches soil nutrients and enzymes. Agronomy 10:1142

    Article  CAS  Google Scholar 

  • Jackson CR, Stone BWG, Tyler HL (2015) Emerging perspectives on the natural microbiome of fresh produce vegetables. Agriculture 5:170–187

    Article  Google Scholar 

  • Jansson JK, Hofmockel KS (2018) The soil microbiome—from metagenomics to metaphenomics. Curr Opinion Microbiol 43:162–168

    Article  CAS  Google Scholar 

  • Kalam S, Basu A, Ahmad I, Sayyed RZ, Enshasy HE, Dailin DJ, Suriani NL (2020) Recent understanding of soil Acidobacteria and their ecological significance: a critical review. Front Microbiol 11:580024

    Article  Google Scholar 

  • Kannepalli A, Davranov K, Narimanov A, Enakiev Y, Syed A, Elgorban AM, Bahkali AH, Wirth S, Sayyed RZ, Gafur A (2021) Co-inoculation of rhizobacteria promotes growth, yield, and nutrient contents in soybean and improves soil enzymes and nutrients under drought conditions. Sci Rep 11:22081

    Article  Google Scholar 

  • Kapadia C, Sayyed RZ, Enshasy HE, Vaidya H, Sharma D, Patel V, Malek RA, Syed A, Elgorban AM, Ahmad K, Zuan ATK (2021) Halotolerant microbial consortia for sustainable mitigation of salinity stress, growth promotion, and mineral uptake in tomato plant and soil nutrient enrichment. Sustainability 13:8369

    Article  CAS  Google Scholar 

  • Kashyap PL, Rai S, Kumar S, Srivastava AK, Anandaraj M, Sharma AK (2015) Mating type genes and genetic markers to decipher intraspecific variability among Fusarium udum isolates from pigeonpea. J Basic Microbiol 54:846–856

    Article  Google Scholar 

  • Kashyap PL, Rai S, Kumar S, Srivastava AK (2016) Genetic diversity, mating types, and phylogenetic analysis of Indian races of Fusarium oxysporum f. sp. ciceris from chickpea. Arch Phytopathol Pl Protect 49(1920):533–553

    Article  Google Scholar 

  • Kawasaki A, Donn S, Ryan PR, Mathesius U, Devilla R, Jones A et al (2016) Microbiome and exudates of the root and rhizosphere of Brachypodium distachyon, a model for wheat. PLoS ONE 11:e0164533

    Article  Google Scholar 

  • Kecskeméti E, Berkelmann-Löhnertz B, Reineke A, Cantu D (2016) Are epiphytic microbial communities in the carposphere of ripening grape clusters (Vitis vinifera L.) different between conventional, organic, and biodynamic grapes? PLoS ONE 11:e0160852

    Article  Google Scholar 

  • Khan AL, Hussain J, Al-Harrasi A, Al-Rawahi A, Lee IJ (2015) Endophytic fungi: resource for gibberellins and crop abiotic stress resistance. Crit Rev Biotechnol 35:62–74

    Article  CAS  Google Scholar 

  • Khan MY, Haque MM, Molla AH, Rahman MM, Alam MZ (2016) Antioxidant compounds and minerals in tomatoes by Trichoderma enriched biofertilizer and their relationship with the soil environments. J Integr Agric 15:60345–60347

    Google Scholar 

  • Khan A, Sayyed RZ, Seifi S (2019) Rhizobacteria: legendary soil guards in abiotic stress management. In: Sayyed RZ, Arora NK, Reddy MS (eds) Plant growth promoting rhizobacteria for sustainable stress management: abiotic stress management, vol 1. Springer, Singapore, pp 27–342

    Google Scholar 

  • Khan I, Awan SA, Ikram R, Rizwan M, Akhtar N, Yasmin H, Sayyed RZ, Ali S, Ilyas N (2020) 24-Epibrassinolide regulated antioxidants and osmolyte defense and endogenous hormones in two wheat varieties under drought stress. Physiol Plant. https://doi.org/10.1111/ppl.13237

    Article  Google Scholar 

  • Khan N, Ali S, Shahi MA, Mustafa A, Sayyed RZ, Curaá JA (2021) Insights into the Interactions among roots, rhizosphere and rhizobacteria for improving plant growth and tolerance to abiotic stresses: a review. Cells 10(6):1551

    Article  CAS  Google Scholar 

  • Koiv V, Arbo K, Maivali U, Kisand V, Roosaare M, Remm M et al (2019) Endophytic bacterial communities in peels and pulp of five root vegetables. PLoS ONE 14(1):e0210542

    Article  CAS  Google Scholar 

  • Kour D, Sayyed RZ (2019) Drought tolerant phosphorus solubilizing microbes: biodiversity and biotechnological applications for alleviation of drought stress in plant. In: Sayyed RZ, Arora NK, Reddy MS (eds) Plant growth promoting rhizobacteria for sustainable stress management abiotic stress management. Springer, Singapore, pp 255–308

    Google Scholar 

  • Kumar S, Rai S, Maurya DK, Kashyap PL, Srivastava AK, Anandaraj M (2013a) Cross-species transferability of microsatellite markers from Fusarium oxysporum for the assessment of genetic diversity in Fusarium udum. Phytoparasitica 41:615–621

    Article  CAS  Google Scholar 

  • Kumar V, Rai S, Gaur P, Fatima T (2013b) Endophytic fungi: novel sources of anticancer molecules. In: Verma VC, Gange AC (eds) Advance in endophytic research. Springer, Germany, pp 389–422

    Google Scholar 

  • Kumar A, Singh AK, Kaushik MS, Mishra SK, Raj P, Singh PK, Pandey KD (2017) Interaction of turmeric (Curcuma longa L.) with beneficial microbes: a review. Biotech 7:357

    Google Scholar 

  • Kusale SP, Attar YC, Sayyed RZ, Malek RA, Ilyas N, Suriani NL, Khan N, El Enshasy HA (2021) Production of plant beneficial and antioxidants metabolites by Klebsiella variicola under salinity stress. Molecules 26(7):1894

    Article  CAS  Google Scholar 

  • Kuzdralinski A, Kot A, Szczerba H, Nowak M, Muszynska M (2017) A review of conventional PCR assay for the detection of selected phytopathogen of wheat. J Mol Microbiol Biotechnol 27:175–189

    CAS  Google Scholar 

  • Lane B, Sharma S, Niu C, Maina AW, Wagacha JM, Bluhm BH, Woloshuk CP (2018) Changes in the fungal microbiome of maize during hermetic storage in the United States and Kenya. Front Microbiol 9:2336

    Article  Google Scholar 

  • Lee SA, Kim Y, Kim JM, Chu B, Joa JH, Sang MK et al (2019) A preliminary examination of bacterial, archaeal, and fungal communities inhabiting different rhizo-compartments of tomato plants under real-world environments. Sci Rep 9:930

    Google Scholar 

  • Lemanceau P, Blouin M, Muller D, Moe¨nne-Loccoz Y (2017) Let the core microbiota be functional. Trends Plant Sci 22(7):583–595

    Article  CAS  Google Scholar 

  • Li RX, Cai F, Pang G, Shen QR, Li R, Chen W (2015) Solubilization of phosphate and micronutrients by Trichoderma harzianum and its relationship with promoting tomato plant growth. PLoS ONE 10:e0130081

    Article  Google Scholar 

  • Liu K, Newman M, McInroy JA, Hu CH, Kloepper JW (2017) Selection and assessment of plant growth-promoting rhizobacteria for biological control of multiple plant diseases. Phytopathol 107:928–936

    Article  CAS  Google Scholar 

  • Liu C, Yang Z, He P, Munir S, Wu Y, Ho H et al (2018) Deciphering the bacterial and fungal communities in club root-affected cabbage rhizosphere treated with Bacillus Subtilis XF-1. Agric Ecosyst Environ 256:12–22

    Article  Google Scholar 

  • López-Bucio J, Pelagio-Flores R, Herrera-Estrell A (2015) Trichoderma as biostimulant: exploiting the multilevel properties of a plant beneficial fungus. Sci Hortic 196:109–123

    Article  Google Scholar 

  • Lupatini M, Korthals GW, de Hollander M, Janssens TKS, Kuramae EE (2017) Soil Microbiome is more heterogeneous in organic than in conventional farming system. Front Microbiol 7:1–13

    Article  Google Scholar 

  • Maheshwari DK, Kumar S, Kumar B, Pandey P (2010) Co-inoculation of Urea and DAP Tolerant Sinorhizobium meliloti and Pseudomonas aeruginosa as integrated approach for growth enhancement of Brassica juncea. Ind J Microbiol 50:425–431

    Article  CAS  Google Scholar 

  • Manasa M, Ravinder P, Gopalakrishnan S, Srinivas V, Sayyed RZ, Enshasy HE, Yahayu M, Ali TKZ, Kassem HS, Hameeda B (2021) Co-inoculation of Bacillus spp. for growth promotion and iron fortification in sorghum. Sustainability 13:12091

    Article  CAS  Google Scholar 

  • Manici LM, Sacca ML, Caputo F, Zanzotto A, Gardiman M, Fila G (2017) Long-term grapevine cultivation and agro-environment affect the rhizosphere microbiome rather than plant age. Appl Soil Ecol 119:214–225

    Article  Google Scholar 

  • Mark Ibekwe A, Ors S, Ferreira JFS, Liu X, Suarez DL (2017) Seasonal induced changes in spinach rhizosphere microbial community structure with varying salinity and drought. Sci Total Environ 579:1485–1495

    Article  CAS  Google Scholar 

  • Mary Isabella Sonali J, Kavitha R, Kumar PS, Rajagopal R, Gayathri KV, Ghfar AA, Govindaraju S (2022) Application of a novel nanocomposite containing micro-nutrient solubilizing bacterial strains and CeO2 nanocomposite as bio-fertilizer. Chemosphere 286:131800

    Article  CAS  Google Scholar 

  • Mattarozzi M, Di Zinno J, Montanini B, Manfredi M, Marengo E, Fornasier F, Ferrarini A, Careri M, Visioli G (2020) Biostimulants applied to maize seeds modulate the enzymatic activity and metaproteome of the rhizosphere. Appl Soil Ecol 148:103480

    Article  Google Scholar 

  • Meena KK, Sorty AM, Bitla UM, Choudhary K, Gupta P, Pareek A, Singh DP, Prabha R, Sahu PK, Gupta VK, Singh HB, Krishanani KK, Minhas PS (2017) Abiotic stress responses and microbe-mediated mitigation in plants: the omics strategies. Front Plant Sci 8:172

    Article  Google Scholar 

  • Meng L, Zhang A, Wang F, Han X, Wang D, Li S (2015) Arbuscular mycorrhizal fungi and Rhizobium facilitate nitrogen uptake and transfer in the soybean/maize intercropping system. Front Plant Sci 13:339

    Google Scholar 

  • Mitter B, Pfaffenbichler N, Sessitsch A (2016) Plant–microbe partnerships in 2020. Microb Biotechnol 9:635–640

    Article  Google Scholar 

  • Morella NM, Weng FCH, Joubert PM, Jessica C, Lindow S, Koskella B (2020) Successive passaging of a plant-associated microbiome reveals robust habitat and host genotype-dependent selection. Proc Natl Acad Sci USA 117:1148–1159

    Article  CAS  Google Scholar 

  • Nasab BF, Sayyed RZ (2019) Plant growth promoting rhizobacteria and salinity stress: a journey into the soil. In: Sayyed RZ, Arora NK, Reddy MS (eds) Plant growth promoting rhizobacteria for sustainable stress management: abiotic stress management, vol 1. Springer, Singapore, pp 21–34

    Chapter  Google Scholar 

  • Nesme J, Achouak W, Agathos SN, Bailey M, Baldrian P, Brunel D, Frostegard A, Heulin T, Jansson JK, Jurkevitch E, Kruus KL et al (2016) Back to the future of soil metagenomics. Front Microbiol 7:1–5

    Article  Google Scholar 

  • Nielsen LK, Jensen JD, Rodriguez A, Jorgensen LN, Justesen AF (2012) TRI 12 based quantitative real-time PCR assay reveal the distribution of trichothecene genotypes of F. graminearum and F. culmorum isolates in Danish small grain cereals. Int J Food Microbiol 157:384–392

    Article  CAS  Google Scholar 

  • Nilsson RH, Anslan S, Bahram M, Wurzbacher C, Baldrian P, Tedersoo L (2018) Mycobiome diversity: high-throughput sequencing and identification of fungi. Nat Rev Microbiol 17(2):95–109

    Article  Google Scholar 

  • Niu B, Paulson JN, Zheng X, Kolter R (2017) Simplified and representative bacterial community of maize roots. Proc Nat l Acad Sci USA 114:E2450–E2459

    Article  CAS  Google Scholar 

  • Niu X, Song L, Xiao Y, Ge W (2018) Drought-tolerant plant growth-promoting rhizobacteria associated with foxtail millet in a semi-arid agroecosystem and their potential in alleviating drought stress. Front Microbiol 8:2580

    Article  Google Scholar 

  • Orlewska K, Piotrowska-Seget Z, Cycon M (2018) Use of the PCR-DGGE method for the analysis of the bacterial community structure in soil treated with the cephalosporin antibiotic cefuroxime and/or inoculated with a multidrug-resistant Pseudomonas putida strain MC1. Front Microbiol 9:1387

    Article  Google Scholar 

  • Padhi EMT, Maharaj N, Lin SY, Mishchuk DO, Chin E, Godfrey K, Foster E, Polek M, Leveau HJ, Slupsky (2019) Metabolome and microbiome signatures in the roots of citrus affected by Huanglongbing. Phytopathol 109:2022–2032

    Article  CAS  Google Scholar 

  • Pagano MC, Correa EJA, Duarte NF, Yelikbayev B, O’Donovan A, Gupta VK (2017) Advances in eco-efficient agriculture: the plant-soil mycobiome. Agriculture 7:14

    Article  Google Scholar 

  • Pascale A, Proietti S, Pantelides IS, Stringlis IA (2020) Modulation of the root microbiome by plant molecules: the basis for targeted disease suppression and plant growth promotion. Front Plant Sci 10:1741

    Article  Google Scholar 

  • Patel PR, Shaikh SS, Sayyed RZ (2016a) Dynamism of PGPR in bioremediation and plant growth promotion in heavy metal contaminated soil. Indian J Exp Biol 54:286–290

    CAS  Google Scholar 

  • Patel S, Sayyed R, Saraf M (2016b) Bacterial determinants and plant defense induction: their role as bio-control agent in agriculture, plant soil microbes. Springer, Switzerland, pp 187–204

    Google Scholar 

  • Pérez-Jaramillo JE, de Hollander M, Ramírez CA, Mendes R, Raaijmakers JM, Carrión VJ (2019) Deciphering rhizosphere microbiome assembly of wild and modern common bean (Phaseolus vulgaris) in native and agricultural soils from Colombia. Microbiome 7:11

    Article  Google Scholar 

  • Pudake RN, Chauhan N, Kole C (eds) (2019) Nanoscience for sustainable agriculture. Springer, Cham

    Google Scholar 

  • Rai S, Kashyap PL, Kumar S, Srivastava AK, Ramteke PW (2016) Comparative analysis of microsatellites in five different antagonistic Trichoderma species for diversity assessment. World J Microbiol Biotechnol 32(1):8

    Article  Google Scholar 

  • Rai S, Solanki MK, Solanki AC, Surapathrudu K (2019a) Trichoderma as biocontrol agent: molecular prospect and application. In: Ansari RA, Mahmood I (eds) Plant health under biotic stress. Springer, Singapore, pp 129–160

    Chapter  Google Scholar 

  • Rai S, Ramteke PW, Sagar A, Dhusia K, Kesari SK (2019b) Diversity Assessment of Antagonistic Trichoderma Species by Comparative Analysis of Microsatellites. In: Reddy MS, Antonius S (eds) Sayyed RZ. Plant Growth Promoting Rhizobacteria (PGPR), Prospects for Sustainable Agriculture. Springer Singapore, pp 233–254

    Google Scholar 

  • Rai S, Solanki AK, Anal AKD (2020) Modern biotechnological tools: an opportunity to discover complex phytobiomes of horticulture crops. In: Solanki MK, Kashyap PL, Ansari RA, Kumari B (eds) Microbiomes and plant health: panoply and their applications. Elsevier, United States, pp 85–124

    Google Scholar 

  • Rascovan N, Carbonetto B, Perrig D, Díaz M, Canciani W, Abalo M et al (2016) Integrated analysis of root microbiomes of soybean and wheat from agricultural fields. Sci Rep 6:28084

    Article  CAS  Google Scholar 

  • Rashid MI, Mujawara LH, Shahzad T, Almeelbi T, Ismail IMI, Oves M (2016) Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiol Res 183:26–41

    Article  CAS  Google Scholar 

  • Reshma P, Naik MK, Aiyaz M, Niranjana SR, Chennappa G, Shaikh SS, Sayyed RZ (2018) Induced systemic resistance by 2,4diacetylphloroglucinol positive fluorescent Pseudomonas strains against rice sheath blight. Indian J of Exp Biol 56(3):207–212

    CAS  Google Scholar 

  • Rhoads A, Au KF (2015) PacBio sequencing and its applications. Genom Proteom Bioinform 13:178–289

    Article  Google Scholar 

  • Robinson RJ, Fraaije BA, Clark IM, Jackson RW, Hirsch PR, Mauchline TH (2016) Endophytic bacterial community composition in wheat (Triticum aestivum) is determined by plant tissue type, developmental stage, and soil nutrient availability. Pl Soil 405(1–2):381–396

    Article  CAS  Google Scholar 

  • Rossmann M, Perez-Jaramillo JE, Kavamura VN, Chiaramonte JB, Dumack K, Fiore-Donno AM, Mendes LW, Ferreira MMC, Bonkowski M, Raaijmakers JM, Mauchline TH, Mendes R (2020) Multitrophic interactions in the rhizosphere microbiome of wheat: from bacteria and fungi to protists. FEMS Microbiol Ecol. https://doi.org/10.1093/femsec/fiaa032

    Article  Google Scholar 

  • Sagar A, Thomas G, Rai S, Mishra RK, Ramteke PW (2018) Enhancement of growth and yield parameters of wheat variety AAI-W6 by an organic farm isolate of plant growth promoting Erwinia species (KP226572). Int J Agri Environ Biotechnol 11(1):159–171

    Google Scholar 

  • Sagar A, Riyazuddin R, Shukla PK, Ramteke PW, Sayyed RZ (2020a) Heavy metal stress tolerance in Enterobacter sp PR14 is mediated by plasmid. Ind J Exp Biol 58(2):115–121

    CAS  Google Scholar 

  • Sagar A, Sayyed RZ, Ramteke PW, Sharma S, Marraiki N, Elgorban AM, Syed A (2020b) ACC deaminase and antioxidant enzymes producing halophilic Enterobacter sp. PR14 promotes the growth of rice and millets under salinity stress. Physiol Mol Biol Plants 26:1847–1854

    Article  CAS  Google Scholar 

  • Sagar A, Rai S, Ilyas N, Sayyed RZ, Al-Turki AI, Enshasy HE, Simarmata T (2022a) Halotolerant rhizobacteria for salinity stress mitigation: diversity, mechanism and molecular approaches. Sustainability 14:490

    Article  CAS  Google Scholar 

  • Sagar A, Yadav SS, Sayyed RZ, Sharma S, Ramteke PW (2022b) Bacillus subtilis: a multifarious plant growth promoter, biocontrol agent, and bioalleviator of abiotic stress. In: Islam MT, Rahman M, Pandey P (eds) Bacilli in agrobiotechnology. Bacilli in climate resilient agriculture and bioprospecting. Springer, Cham. https://doi.org/10.1007/978-3-030-85465-2_24

    Chapter  Google Scholar 

  • Saha I, Datta S, Biswas D (2020) Exploring the role of bacterial extracellular polymeric substances for sustainable development in agriculture. Curr Microbiol 77:3224–3239

    Article  CAS  Google Scholar 

  • Santhanam R, van Luu T, Weinhold A, Goldberg J, Oh Y, Baldwin IT (2015) Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping. Proc Natl Acad Sci USA 112:E5013–E5020

    Article  CAS  Google Scholar 

  • Santos LF, Olivares FL (2021) Plant microbiome structure and benefits for sustainable agriculture. Curr Pl Biol. https://doi.org/10.1016/j.cpb.2021.100198

    Article  Google Scholar 

  • Santos-Medellín C, Edwards J, Liechty Z, Nguyen B, Sundaresan V (2017) Drought stress results in a compartment-specific restructuring of the rice root-associated microbiomes. Mbio 8:e00764-e817

    Article  Google Scholar 

  • Sarkar D, Sarkar A, Devika OS, Shikha SS, Parihar M, Rakshit A, Sayyed RZ, Gafur A, Ansari MJ, Danish S, Shah F, Datta R (2021) Optimizing nutrient use efficiency, productivity, energetics, and economics of red cabbage following mineral fertilization and biopriming with compatible rhizosphere microbes. Sci Rep 11:15680

    Article  CAS  Google Scholar 

  • Sayyed RZ, Seifi S, Patel PR, Shaikh SS, Jadhav HP, El Enshasy H (2019) Siderophore production in groundnut rhizosphere isolate, Achromobacter sp. RZS2 influenced by physicochemical factors and metal ions. Environ Sustain 1(3):295–301

    Google Scholar 

  • Schlaeppi K, Dombrowski N, Oter RG, van Themaat EVL, Schulze-Lefert P (2014) Quantitative divergence of the bacterial root microbiota in Arabidopsis thaliana Relatives. Proc Natl Acad Sci 111(2):585–592

    Article  CAS  Google Scholar 

  • Schlatter D, Kinkel L, Thomashow L, Weller D, Paulitz T (2017) Disease suppressive soils: new insights from the soil microbiome. Phytopathol 107:1284–1297

    Article  Google Scholar 

  • Schlechter RO, Miebach M, Remus-Emsermann MN (2019) Driving factors of epiphytic bacterial communities: a review. J Adv Res 19:57–65

    Article  CAS  Google Scholar 

  • Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proc Natl Acad Sci USA 109(16):6241–6246

    Article  CAS  Google Scholar 

  • Shah N, Meisel JS, Pop M (2019) Embracing ambiguity in the taxonomic classification of microbiome sequencing data. Front Genet 10:1022

    Article  CAS  Google Scholar 

  • Shahzad R, Khan AL, Bilal S, Waqas M, Kang SM, Lee IJ (2017) Inoculation of abscisic acid-producing endophytic bacteria enhances salinity stress tolerance in Oryza sativa. Environ Exp Bot 136:68–77

    Article  CAS  Google Scholar 

  • Sharma S, Sayyed R, Sonawane M, Trivedi M, Thivakaran G (2016) Neurospora sp SR8, a novel phosphate solubiliser from rhizosphere of soil of Sorghum in Kachh, Gujarat. Indian J Exp Biol 54:644–649

    Google Scholar 

  • Shi W, Li M, Wei G, Tian R, Li C, Wang B et al (2019) The occurrence of potato common scab correlates with the community composition and function of the geocaulosphere soil microbiome. Microbiome 7:14

    Article  Google Scholar 

  • Shoghi-Kalkhoran S, Ghalavand A, Modarres-Sanavy SAM, Bidgoli AM, Akbar P (2013) Integrated fertilization systems enhance the quality and yield of sunflower (Helianthus annuus L.). J Agric Sci Technol 15:1343–1352

    CAS  Google Scholar 

  • Si P, Shao W, Yu H, Yang X, Gao D, Qiao X et al (2018) Rhizosphere microenvironments of eight common deciduous fruit trees were shaped by microbes in northern China. Front Microbiol 9:3147

    Article  Google Scholar 

  • Simonin M, Dasilva C, Terzi V, Ngonkeu ELM, DIouf D, Kane A, Bena G, Moulin L (2020) Influence of plant genotype and soil on the wheat rhizosphere microbiome: evidences for a core microbiome across eight African and European soils. FEMS Microbiol Ecol. https://doi.org/10.1093/femsec/fiaa067

    Article  Google Scholar 

  • Song Z et al (2015) Effort versus reward: preparing samples for fungal community characterization in high-throughput sequencing surveys of soils. PLoS ONE 10:e0127234

    Article  Google Scholar 

  • Song C, Zhu F, Carrión VJ, Cordovez V (2020) Beyond plant microbiome composition: exploiting microbial functions and plant traits via integrated approaches. Front Bioeng Biotechnol 8:896

    Article  Google Scholar 

  • Starke R, Jehmlich N, Bastida F (2019) Using proteins to study how microbes contribute to soil ecosystem services: the current state and future perspectives of soil metaproteomics. J Proteom 198:50–58

    Article  CAS  Google Scholar 

  • Sukmawati D, Family N, Hidayat I, Sayyed RZ, Elsayed EA, Dailin DJ, Hanapi SZ, Wadaan MA, Enshasy HE (2021) Biocontrol Activity of Aureubasidium pullulans and Candida orthopsilosis isolated from Tectona grandis L. Phylloplane against Aspergillus sp. In post-harvested citrus fruit. Sustainability 13:7479. https://doi.org/10.3390/su13137479

    Article  CAS  Google Scholar 

  • Sultana S, Paul SC, Parveen S, Alam S, Rahman N, Jannat B et al (2020) Isolation and identification of salt-tolerant plant-growth-promoting rhizobacteria and their application for rice cultivation under salt stress. Can J Microbiol 66(2):144–60

    Article  CAS  Google Scholar 

  • Suriani N, Suprapta D, Novizar N, Parwanayoni N, Darmadi A, Dewi D, Ni S, Ahmad F, Sayyed RZ, Syed A, Elgorban A, Bahkali AH, Enshasy HE, Dalin DJ (2020) A mixture of piper leaves extracts and rhizobacteria for sustainable plant growth promotion & biocontrol of blast pathogen of organic bali rice. Sustainability 12:8490

    Article  Google Scholar 

  • Tedersoo L, Nilsson RH (2016) Molecular mycorrhizal symbiosis. Wiley, Hoboken, pp 301–322

    Google Scholar 

  • Tellenbach C, Grunig CR, Sieber TN (2010) Suitability of quantitative real-time PCR to estimate the biomass of fungal root endophytes. Appl Environ Microbiol 76:5764–5772

    Article  CAS  Google Scholar 

  • Tetali S, Karpagavalli S, Pavani SL (2015) Management of dry root rot of black gram caused by Macrophomina phaseolina (Tassi) Good using bioagent. Plant Arch 15(2):647–650

    Google Scholar 

  • Thakare M, Sarma H, Datar S, Roy A, Pawar P, Gupta K, Pandit S, Prasad R (2021) Understanding the holistic approach to plant-microbe remediation technologies for removing heavy metals and radionuclides from soil. Curr Res Biotechnol 3:84–98

    Article  CAS  Google Scholar 

  • Tian B, Zhang C, Ye Y, Wen J, Wu Y, Wang H, Li H, Cai S, Cai W, Cheng Z, Lei S, Ma R, Lu C, Cao Y, Xu X, Zhang K (2017) Beneficial traits of bacterial endophytes belonging to the core communities of the tomato root microbiome. Agric Ecosyst Environ 247:149–156

    Article  Google Scholar 

  • Timmusk S, Seisenbaeva G, Behers L (2018) Titania (TiO2) nano-particles enhance the performance of growth-promoting rhizobacteria. Sci Rep 8:1–13

    Article  CAS  Google Scholar 

  • Tiwari S, Lata C (2018) Heavy metal stress, signaling, and tolerance due to plant-associated microbes: An overview. Front Plant Sci 9:452

    Article  Google Scholar 

  • Tripathi P, Singh PC, Mishra A, Tripathi RD, Nautiyal CS (2015) Trichoderma inoculation augments grain amino acids and mineral nutrients by modulating arsenic speciation and accumulation in chickpea (Cicer arietinum L). Ecotoxicol Environ Saf 117:72–80

    Article  CAS  Google Scholar 

  • Trivedi P, Delgado-Baquerizo M, Trivedi C, Hamonts K, Anderson IC, Singh BK (2017) Keystone microbial taxa regulate the invasion of a fungal pathogen in the agroecosystems. Soil Biol Biochem 111:10–14

    Article  CAS  Google Scholar 

  • Trivedi P, Leach JE, Tringe SG, Sa T, Singh BK (2020) Plant-microbiome interactions: from community assembly to plant health. Nat Rev Microbiol 18:607–621

    Article  CAS  Google Scholar 

  • Turrini A, Avio L, Giovannetti M, Agnolucci M (2018) Functional complementarity of arbuscular mycorrhizal fungi and associated microbiota: the challenge of translational research. Front Plant Sci 9:1407

    Article  Google Scholar 

  • van der Heijden MGA, Hartmann M (2016) Networking in the plant microbiome. PLoS Biol 14:e1002378

    Article  Google Scholar 

  • van Doorn R, Szemes M, Bonants P, Kowalchuk GA, Salles JF, Ortenberg E et al (2007) Quantitative multiplex detection of plant pathogens using a novel ligation probe-based system coupled with universal, high-throughput real-time PCR on Open Arrays. BMC Genom 8:276

    Article  Google Scholar 

  • Vassilev N, Vassileva M, Lopez A, Martos V, Reyes A, Maksimovic I et al (2015) Unexploited potential of some biotechnological techniques for biofertilizer production and formulation. Appl Microbiol Biotechnol 99:4983–4996

    Article  CAS  Google Scholar 

  • Vepstaite-Monstavice IV, Luksa J, Staneviˇcien R, Zielien ZS, Yurchenko V, Serva S et al (2018) Distribution of apple and blackcurrant microbiota in Lithuania and the Czech Republic. Microbiol Res 206:1–8

    Article  Google Scholar 

  • Wagner MR, Lundberg DS, Tijana G, Tringe SG, Dangl JL, Mitchell-Olds T (2016) Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nat Commun 7:12151

    Article  CAS  Google Scholar 

  • Wallace J, Kremling KA, Kovar LL, Buckler ES (2018) Quantitative genetics of the maize leaf microbiome. Phytobiomes J. https://doi.org/10.1094/PBIOMES-02-18-0008-R

    Article  Google Scholar 

  • Wang X, Pan Q, Chen F, Yan X, Liao H (2011) Effects of co-inoculation with arbuscular mycorrhizal fungi and rhizobia on soybean growth as related to root architecture and availability of N and P. Mycorrhiza 21:173–181

    Article  Google Scholar 

  • Wen T, Zhao M, Liu T, Huang Q, Yuan J, Shen Q (2020) High abundance of Ralstonia solanacearum changed tomato rhizosphere microbiome and metabolome. BMC Plant Biol 20:1–11

    Article  Google Scholar 

  • Xue C, Penton CR, Shen Z, Zhang R, Huang Q, Li R et al (2015) Manipulating the banana rhizosphere microbiome for biological control of Panama disease. Sci Rep 5:11124

    Article  CAS  Google Scholar 

  • Yao H, Sun X, He C, Maitra P, Li CX, Guo DL (2019) Phyllosphere epiphytic and endophytic fungal community and network structures differ in a tropical mangrove ecosystem. Microbiome 7:57

    Article  Google Scholar 

  • Yuan Y, Brunel C, van Kleunen M, Li J, Jin Z (2019) Salinity-induced changes in the rhizosphere microbiome improve salt tolerance of Hibiscus hamabo. Plant Soil 443:525–537

    Article  CAS  Google Scholar 

  • Yurgel SN, Abbey L, Loomer N (2018) Microbial communities associated with storage onion. Phytobiomes. https://doi.org/10.1094/PBIOMES-12-17-0052-R

    Article  Google Scholar 

  • Zakaria AK, Sayyed RZ, Enshasy HE (2019) Biosynthesis of antibiotics by PGPR and their roles in biocontrol of plant diseases. Plant Growth promoting rhizobacteria for sustainable stress management. Rhizobacteria in biotic stress management, vol II. Springer, Singapore, pp 1–36

    Google Scholar 

  • Zarraonaindia I, Owens SM, Weisenhorn P, West K, Hampton-Marcell J, Lax S et al (2015) The soil microbiome influences grapevine-associated microbiota. Mbio 6:e02527-14

    Article  Google Scholar 

  • Zeilinger S, Gruber S, Bansalb R, Mukherjee PK (2016) Secondary metabolism in Trichoderma chemistry meets genomics. Fungal Biol Rev 30:74–90

    Article  Google Scholar 

  • Zhang B, Bai Z, Hoefel D, Wang X, Zhang L, Li Z (2010) Microbial diversity within the phyllosphere of different vegetable species. Curr Res Technol Educ Top Appl Microbiol 2:1067–1077

    Google Scholar 

  • Zhang Y, Xu J, Riera N, Jin T, Li J, Wang N (2017) Huanglongbing impairs the rhizosphere-to-rhizoplane enrichment process of the citrus root-associated microbiome. Microbiome 5:9

    Article  CAS  Google Scholar 

  • Zhao L, Zhang H, White JC, Chen X, Li H, Qu X, Ji R (2019) Metabolomics reveals that engineered nanomaterial exposure in soil alters both soil rhizosphere metabolite profiles and maize metabolic pathways. Environ Sci Nano 6:1716–1727

    Article  CAS  Google Scholar 

  • Zhou D, Jing T, Chen Y, Wang F, Qi D, Feng R et al (2019) Deciphering microbial diversity associated with Fusarium wilt-diseased and disease-free banana rhizosphere soil. BMC Microbiol 19:161

    Article  Google Scholar 

  • Zhu RF, Tang FL, Liu JL, Liu FQ, Deng XY, Chen JS (2016a) Co-inoculation of arbuscular mycorrhizal and nitrogen-fixing bacteria enhance alfalfa yield under saline conditions. Pak J Bot 48:763–769

    CAS  Google Scholar 

  • Zhu S, Vivanco JM, Manter DK (2016b) Nitrogen fertilizer rate affects root exudation, the rhizosphere microbiome, and nitrogen-use-efficiency of maize. Agric Ecosyst Environ Appl Soil Ecol 107:324–333

    Article  Google Scholar 

  • Zope VP, Enshasy HE, Sayyed RZ (2019) Plant growth promoting rhizobacteria: an overview in agricultural perspectives. In: Sayyed RZ (ed) Plant growth promoting rhizobacteria for sustainable stress management. Rhizobacteria in biotic stress management, vol II. Springer, Singapore, pp 345–362

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education and Saudi Arabia for funding this re-search work through the project number (Qu-IF-1-1- 1). The authors also thank to the technical support of Qassim University, Buraydah, Saudi Arabia.

Funding

This research was funded by the Deputyship for Research & Innovation, Ministry of Education Saudi Arabia for funding this research work through the project number (Qu-IF-1-1- 1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shalini Rai, Ayman F. Omar or R. Z. Sayyed.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Informed consent

Not applicable.

Institutional review board statement

Not applicable.

Additional information

Communicated by Gerhard Leubner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rai, S., Omar, A.F., Rehan, M. et al. Crop microbiome: their role and advances in molecular and omic techniques for the sustenance of agriculture. Planta 257, 27 (2023). https://doi.org/10.1007/s00425-022-04052-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-022-04052-5

Keywords

Navigation