Skip to main content
Log in

Physical mapping of chromosome 7J and a purple coleoptile gene from Thinopyrum intermedium in the common wheat background

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

A physical map of Thinopyrum intermedium chromosome 7J was constructed using translocation mapping, and a new seedling purple coleoptile gene was mapped to the bin of FL 0.35–0.63 of 7JS.

Abstract

Thinopyrum intermedium (2n = 6x = 42, JJJsJsStSt), a wild relative of common wheat, harbors numerous beneficial genes for wheat improvement. Previous studies showed that wheat–Th. intermedium partial amphiploid TAF46 and its derived addition line L1 had a purple coleoptile, which was derived from Th. intermedium chromosome 7J. To identify and physically map the purple coleoptile gene, 12 wheat–Th. intermedium 7J translocation lines were analyzed by sequential multicolor fluorescence in situ hybridization (mc-FISH), PCR-based landmark unique gene (PLUG) and intron targeting (IT) markers. A physical map of the 7J chromosome was constructed, consisting of eight chromosomal bins with 89 markers. Seedling evaluation of the coleoptile colors of all tested materials indicated that the purple coleoptile gene was located to the bin with a fraction length (FL) of 0.35–0.63 on chromosome 7JS. Furthermore, based on the syntenic relationships between Th. intermedium and wheat chromosomes, we developed a new chromosome 7J-specific EST-PCR marker from the chromosomal region corresponding to the purple coleoptile gene through the Triticeae multi-omics database. The approach of designing chromosome-specific markers has facilitated fine mapping of the Thinopyrum-specific purple coleoptile gene, and these translocation lines will be valuable for studying the function of the purple coleoptile gene in anthocyanin biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmed N, Maekawa M, Utsugi S, Rikiishia K, Ahmad A, Noda K (2006) The wheat Rc gene for red coleoptile colour codes for a transcriptional activator of late anthocyanin biosynthesis genes. J Cereal Sci 44:54–58

    Article  CAS  Google Scholar 

  • Bowen-Forbes CS, Zhang Y, Nair MG (2010) Anthocyanin content, antioxidant, anti-inflammatory and anticancer properties of blackberry and raspberry fruits. J Food Compos Anal 23:554–560

    Article  CAS  Google Scholar 

  • Cao D, Ye GJ, Zong Y, Zhang B, Chen WJ, Liu BL, Zhang HG (2017) AetMYC1, the candidate gene controlling the red coleoptile trait in Aegilops tauschii Coss. accession As77. Molecules 22:2259

    Article  Google Scholar 

  • Cao D, Fan JQ, Xi XY, Zong Y, Wang DX, Zhang HG, Liu BL (2019) Transcriptome analysis identifies key genes responsible for red coleoptiles in Triticum monococcum. Molecules 24:932

    Article  Google Scholar 

  • Cauderon Y, Saigne B, Dauge M (1973) The resistance to wheat rusts of Agropyron intermedium and its use in wheat improvement. In: Sears ER, Sears LMS (eds) Proceedings of the 4th international wheat genetics symposium, Columbia, Missouri, pp 401–407

  • Chalker-Scott L (1999) Environmental significance of anthocyanins in plant stress responses. Photochem Photobiol 70:1–9

    Article  CAS  Google Scholar 

  • Chang ZJ, Zhang XJ, Yang ZJ, Zhan HX, Li X, Liu C, Zhang CZ (2010) Characterization of a partial wheat–Thinopyrum intermedium amphiploid and its reaction to fungal diseases of wheat. Hereditas 147:304–312

    Article  Google Scholar 

  • Chen Q, Conner RL, Laroche A, Ji WQ, Armstrong KC, Fedak G (1999) Genomic in situ hybridization analysis of Thinopyrum chromatin in a wheat–Th. intermedium partial amphiploid and six derived chromosome addition lines. Genome 42:1217–1223

    Article  CAS  Google Scholar 

  • Dundas I, Zhang P, Verlin D, Graner A, Shepherd K (2015) Chromosome engineering and physical mapping of the Thinopyrum ponticum translocation in wheat carrying the rust resistance gene Sr26. Crop Sci 55:648–657

    Article  Google Scholar 

  • Endo TR, Gill BS (1996) The deletion stocks of common wheat. J Hered 87:295–307

    Article  CAS  Google Scholar 

  • Forster BP, Reader SM, Forsyth SA, Koebner RMD, Miller TE, Gale MD, Cauderon Y (1987) An assessment of the homoeology of six Agropyron intermedium chromosomes added to wheat. Genet Res 50:91–97

    Article  CAS  Google Scholar 

  • Friebe B, Mukai Y, Gill BS, Cauderon Y (1992) C-banding and in-situ hybridization analyses of Agropyron intermedium, a partial wheat × Ag. intermedium amphiploid, and six derived chromosome addition lines. Theor Appl Genet 84:899–905

    Article  CAS  Google Scholar 

  • Friebe B, Jiang JM, Raupp WJ, McIntosh RA, Gill BS (1996) Characterization of wheat–alien translocations conferring resistance to diseases and pests: current status. Euphytica 91:59–87

    Article  Google Scholar 

  • Fu SL, Chen L, Wang YY, Li M, Yang ZJ, Qiu L, Yan BJ, Ren ZL, Tang ZX (2015) Oligonucleotide probes for ND-FISH analysis to identify rye and wheat chromosomes. Sci Rep 5:10552

    Article  Google Scholar 

  • Gale MD, Law CN, Chojecki AJ, Kempton RA (1983) Genetic control of α-amylase production in wheat. Theor Appl Genet 64:309–316

    Article  CAS  Google Scholar 

  • Ishikawa G, Nakamura T, Ashida T, Saito M, Nasuda S, Endo TR, Wu JZ, Matsumoto T (2009) Localization of anchor loci representing five hundred annotated rice genes to wheat chromosomes using PLUG markers. Theor Appl Genet 118:499–514

    Article  CAS  Google Scholar 

  • Khan IA (1996) Utilization of molecular markers in the selection and characterization of wheat–alien recombinant chromosomes. Ph.D. Thesis, The University of Adelaide, Australia

  • Khan IA (2000) Molecular and agronomic characterization of wheat–Agropyron intermedium recombinant chromosomes. Plant Breed 119:25–29

    Article  CAS  Google Scholar 

  • Khlestkina EK, Pestsova EG, Röder MS, Börner A (2002) Molecular mapping, phenotypic expression and geographical distribution of genes determining anthocyanin pigmentation of coleoptiles in wheat (Triticum aestivum L.). Theor Appl Genet 104:632–637

    Article  CAS  Google Scholar 

  • Lang T, La SX, Li B, Yu ZH, Chen QH, Li JB, Yang EN, Li GR, Yang ZJ (2018) Precise identification of wheat–Thinopyrum intermedium translocation chromosomes carrying resistance to wheat stripe rust in line Z4 and its derived progenies. Genome 61:177–185

    Article  CAS  Google Scholar 

  • Lang T, Li GR, Wang HJ, Yu ZH, Chen QH, Yang EN, Fu SL, Tang ZX, Yang ZJ (2019) Physical location of tandem repeats in the wheat genome and application for chromosome identification. Planta 249:663–675

    Article  CAS  Google Scholar 

  • Li HJ, Wang XM (2009) Thinopyrum ponticum and Th. intermedium: the promising source of resistance to fungal and viral diseases of wheat. J Genet Genom 36:557–565

    Article  CAS  Google Scholar 

  • Li JB, Lang T, Li B, Yu ZH, Wang HJ, Li GR, Yang EN, Yang ZJ (2017) Introduction of Thinopyrum intermedium ssp. trichophorum chromosomes to wheat by trigeneric hybridization involving Triticum secale and Thinopyrum genera. Planta 245:1121–1135

    Article  CAS  Google Scholar 

  • Li GR, Tang LR, Yin Y, Zhang AH, Yu ZH, Yang EN, Tang ZX, Fu SL, Yang ZJ (2020a) Molecular dissection of Secale africanum chromosome 6Rafr in wheat enabled localization of genes for resistance to powdery mildew and stripe rust. BMC Plant Biol 20:134

    Article  CAS  Google Scholar 

  • Li JB, Dundas I, Dong CM, Li GR, Trethowan R, Yang ZJ, Hoxha S, Zhang P (2020b) Identification and characterization of a new stripe rust resistance gene Yr83 on rye chromosome 6R in wheat. Theor Appl Genet 133:1095–1107

    Article  CAS  Google Scholar 

  • Liu WX, Danilova TV, Rouse MN, Bowden RL, Friebe B, Gill BS, Pumphrey MO (2013) Development and characterization of a compensating wheat–Thinopyrum intermedium Robertsonian translocation with Sr44 resistance to stem rust (Ug99). Theor Appl Genet 126:1167–1177

    Article  CAS  Google Scholar 

  • Matsumoto H, Nakamura Y, Tachibanaki S, Kawamura S, Hirayama M (2003) Stimulatory effect of cyanidin 3-glycosides on the regeneration of rhodopsin. J Agric Food Chem 51:3560–3563

    Article  CAS  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  Google Scholar 

  • Shin DH, Choi MG, Kang CS, Park CS, Choi SB, Park YI (2016) A wheat R2R3-MYB protein PURPLE PLANT1 (TaPL1) functions as a positive regulator of anthocyanin biosynthesis. Biochem Biophys Res Commun 469:686–691

    Article  CAS  Google Scholar 

  • Shoeva OY, Gordeeva EI, Arbuzova VS, Khlestkina EK (2017) Anthocyanins participate in protection of wheat seedlings from osmotic stress. Cereal Res Commun 45:1–10

    Article  Google Scholar 

  • Tang ZX, Yang ZJ, Fu SL (2014) Oligonucleotides replacing the roles of repetitive sequences pAs1, pSc119.2, pTa-535, pTa71, CCS1, and pAWRC.1 for FISH analysis. J Appl Genet 55:313–318

    Article  CAS  Google Scholar 

  • Tang SY, Qiu L, Xiao ZQ, Fu SL, Tang ZX (2016) New oligonucleotide probes for ND-FISH analysis to identify barley chromosomes and to investigate polymorphisms of wheat chromosomes. Genes 7:118

    Article  Google Scholar 

  • Wang J, Mazza G (2002) Effects of anthocyanins and other phenolic compounds on the production of tumor necrosis factor alpha in LPS/IFN-gamma-activated RAW 264.7 macrophages. J Agric Food Chem 50:4183–4189

    Article  CAS  Google Scholar 

  • Wang H, Cao GH, Prior RL (1997) Oxygen radical absorbing capacity of anthocyanins. J Agric Food Chem 45:304–309

    Article  CAS  Google Scholar 

  • Wang YQ, Hou XJ, Zhang B, Chen WJ, Liu DC, Liu BL, Zhang HG (2016) Identification of a candidate gene for Rc-D1, a locus controlling red coleoptile colour in wheat. Cereal Res Commun 44:35–46

    Article  Google Scholar 

  • Wang HJ, Yu ZH, Li GR, Yang ZJ (2019) Diversified chromosome rearrangements detected in a wheat–Dasypyrum breviaristatum substitution line induced by gamma-ray irradiation. Plants 8:175

    Article  Google Scholar 

  • Wang HW, Sun SL, Ge WY, Zhao LF, Hou BQ, Wang K et al (2020) Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat. Science 368:eaba5435

    Article  CAS  Google Scholar 

  • Xi W, Tang ZX, Tang SY, Yang ZJ, Luo J, Fu SL (2019) New ND-FISH-positive oligo probes for identifying Thinopyrum chromosomes in wheat backgrounds. Int J Mol Sci 20:2031

    Article  CAS  Google Scholar 

  • Yu ZH, Wang HJ, Xu YF, Li YS, Lang T, Yang ZJ, Li GR (2019) Characterization of chromosomal rearrangement in new wheat–Thinopyrum intermedium addition lines carrying Thinopyrum-specific grain hardness genes. Agronomy 9:18

    Article  CAS  Google Scholar 

  • Zhang XD, Wei X, Xiao J, Yuan CX, Wu YF, Cao AZ et al (2017) Whole genome development of intron targeting (IT) markers specific for Dasypyrum villosum chromosomes based on next-generation sequencing technology. Mol Breed 37:115

    Article  CAS  Google Scholar 

  • Zhang JP, Zhang P, Hewitt T, Li JB, Dundas I, Schnippenkoetter W et al (2019) A strategy for identifying markers linked with stem rust resistance in wheat harbouring an alien chromosome introgression from a non-sequenced genome. Theor Appl Genet 132:125–135

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Key Research and Development Program of China (2016YFD0102000) and National Natural Science Foundation of China (No. 31971886).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ian Dundas or Zujun Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Communicated by Anastasios Melis.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Yu, Z., Zhang, A. et al. Physical mapping of chromosome 7J and a purple coleoptile gene from Thinopyrum intermedium in the common wheat background. Planta 253, 22 (2021). https://doi.org/10.1007/s00425-020-03552-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-020-03552-6

Navigation