Skip to main content
Log in

Non-invasive diagnostics of Liberibacter disease on tomatoes using a hand-held Raman spectrometer

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Hand-held Raman spectroscopy can be used for confirmatory, non-invasive and non-destructive detection and identification of two haplotypes of Liberibacter disease on tomatoes. Using this spectroscopic approach, structural changes in carotenoids, xylan, cellulose and pectin that are associ-ated with this bacterial disease can be determined.

Abstract

Candidatus Liberibacter solanacearum’ (Lso) is a phloem-limited Gram-negative bacterium that infects crops worldwide. In North America, two haplotypes of Lso (LsoA and LsoB) are transmitted by the potato psyllid, Bactericera cockerelli (Sulč), and infect many solanaceous crops such as potato and tomato. Infected plants exhibit chlorosis, severe stunting, leaf cupping, and scorching. Polymerase chain reaction (PCR) and potato tuber frying are commonly used methods for diagnostics of the plant disease caused by Lso. However, they are time-consuming, costly, destructive to the sample, and often not sensitive enough to detect the pathogen in the early infection stage. Raman spectroscopy (RS) is a noninvasive, nondestructive, analytical technique, which probes chemical composition of analyzed samples. In this study, we demonstrate that Lso infection can be diagnosed by non-invasive spectroscopic analysis of tomato leaves three weeks following infection, before the development of aerial symptoms. In combination with chemometric analyses, Raman spectroscopy allows for 80% accurate diagnostics of Liberibacter disease caused by each of the two different haplotypes. This diagnostics approach is portable and sample agnostic, suggesting that it could be utilized for other crops and could be conducted autonomously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adar F (2017) Carotenoids—their resonance Raman spectra and how they can be helpful in characterizing a number of biological systems. Spectroscopy 32(6):12–20

    Google Scholar 

  • Agarwal UP (2006) Raman imaging to investigate ultrastructure and composition of plant cell walls: distribution of lignin and cellulose in black spruce wood (Picea mariana). Planta 224(5):1141–1153. https://doi.org/10.1007/s00425-006-0295-z

    Article  CAS  PubMed  Google Scholar 

  • Agarwal UP (2014) 1064 nm FT-Raman spectroscopy for investigations of plant cell walls and other biomass materials. Front Plant Sci 5:1–12

    Article  Google Scholar 

  • Almeida MR, Alves RS, Nascimbem LB, Stephani R, Poppi RJ, de Oliveira LF (2010) Determination of amylose content in starch using Raman spectroscopy and multivariate calibration analysis. Anal Bioanal Chem 397(7):2693–2701. https://doi.org/10.1007/s00216-010-3566-2

    Article  CAS  PubMed  Google Scholar 

  • Alvarez AM, Benedict AA, Mizumoto CY, Pollard LW, Civerolo EL (1991) Analysis of Xanthomonas campestris pv citri and X. c. citrumelo with monoclonal-antibodies. Phytopathology 81:857–865

    Article  Google Scholar 

  • Cao Y, Shen D, Lu Y, Huang J (2006) A Raman-scattering study on the net orientation of biomacromolecules in the outer epidermal walls of mature wheat stems (Triticum aestivum). Ann Bot 97:1091–1094

    Article  CAS  Google Scholar 

  • Civerolo EL, Fan F (1982) Xanthomonas campestris pv citri detection and identification by enzyme-linked immunosorbent-assay. Plant Dis 66:231–236

    Article  Google Scholar 

  • Cubero J, Graham JH (2002) Genetic relationship among worldwide strains of Xanthomonas causing canker in citrus species and de-sign of new primers for their identification by PCR. Appl Environ Microbiol 68:1257–1264

    Article  CAS  Google Scholar 

  • Devitt G, Howard K, Mudher A, Mahajan S (2018) Raman spectroscopy: an emerging tool in neurodegenerative disease research and diagnosis. ACS Chem Neurosci 9:404–420. https://doi.org/10.1021/acschemneuro.7b00413

    Article  CAS  PubMed  Google Scholar 

  • Edwards HGM, Farwell DW, Webster D (1997a) FT Raman microscopy of untreated natural plant fibres. Spectrochim Acta A 53A(13):2383–2392

    Article  CAS  Google Scholar 

  • Edwards HGM, Farwell DW, Webster D (1997b) FT Raman microscopy of untreated natural plant fibres. Spectrochim Acta A 53(13):2383–2392. https://doi.org/10.1016/S1386-1425(97)00178-9

    Article  Google Scholar 

  • Egging V, Nguyen J, Kurouski D (2018) Detection and identification of fungal infections in intact wheat and sorghum grain using a hand-held Raman spectrometer. Anal Chem 90(14):8616–8621. https://doi.org/10.1021/acs.analchem.8b01863

    Article  CAS  PubMed  Google Scholar 

  • Farber C, Kurouski D (2018) Detection and identification of plant pathogens on maize kernels with a hand-held Raman spectrometer. Anal Chem 90(5):3009–3012. https://doi.org/10.1021/acs.analchem.8b00222

    Article  CAS  PubMed  Google Scholar 

  • Glynn J, Islam M, Bai Y, Lan S, Wen A, Gudmestad N, Civerolo E, Lin H (2012) Multilocus sequence typing of ‘Candidatus Liberibacter solanacearum’ isolates from North America and New Zealand. Plant Pathol J 94(1):223–228

    Google Scholar 

  • Golmohammadi M, Cubero J, Penalver J, Quesada JM, Lopez MM, Llop P (2007) Diagnosis of Xanthomonas axonopodis pv. citri, causal agent of citrus canker, in commercial fruits by isolation and PCR-based methods. J Appl Microbiol 103(6):2309–2315. https://doi.org/10.1111/j.1365-2672.2007.03484.x

    Article  CAS  PubMed  Google Scholar 

  • Haapalainen ML, Wang J, Latvala S, Lehtonen MT, Pirhonen M, Nissinen AI (2018) Genetic variation of ‘Candidatus Liberibacter solanacearum’ haplotype C and identification of a novel haplotype from Trioza urticae and stinging nettle. Phytopathology 108:925–934

    Article  CAS  Google Scholar 

  • Harrison K, Tamborindeguy C, Scheuring DC, Herrera AM, Silva A, Badillo-Vargas IE, Miller JC, Levy JG (2019) Differences in zebra chip severity between ‘Candidatus Liberibacter solanacearum’ haplotypes in Texas. Am J Potato Res 96(1):86–93

    Article  CAS  Google Scholar 

  • Kang L, Wang K, Li X, Zou B (2016) High pressure structural investigation of benzoic acid: Raman spectroscopy and x-ray diffraction. J Phys Chem C 120(27):14758–14766. https://doi.org/10.1021/acs.jpcc.6b05001

    Article  CAS  Google Scholar 

  • Kurouski D, Van Duyne RP, Lednev IK (2015) Exploring the structure and formation mechanism of amyloid fibrils by Raman spectroscopy: a review. Analyst 140(15):4967–4980. https://doi.org/10.1039/c5an00342c

    Article  CAS  PubMed  Google Scholar 

  • Levy J, Ravindran A, Gross D, Tamborindeguy C, Pierson E (2011) Translocation of ‘Candidatus Liberibacter solanacearum’, the zebra chip pathogen, in potato and tomato. Phytopathology 101(11):1285–1291

    Article  Google Scholar 

  • Li W, Abad JA, French-Monar RD, Rascoe J, Wen A, Gudmestad NC, Secor GA, Lee M, Duan Y, Levy L (2009) Multiplex real-time PCR for detection, identification and quantification of ‘Candidatus Liberibacter solanacearum’ in potato plants with zebra chip. J Microbiol Methods 78(1):59–65

    Article  CAS  Google Scholar 

  • Liefting LW, Sutherland PW, Ward LI, Paice KL, Weir BS, Clover GR (2009a) A new ‘Candidatus Liberibacter’ species associated with diseases of solanaceous crops. Plant Dis 93(3):208–214

    Article  CAS  Google Scholar 

  • Liefting LW, Weir BS, Pennycook SR, Clover GR (2009b) ‘Candidatus Liberibacter solanacearum’, associated with plants in the family Solanaceae. Int J Syst Evol Microbiol 59(9):2274–2276

    Article  CAS  Google Scholar 

  • Lin H, Islam MS, Bai Y, Wen A, Lan S, Gudmestad NC, Civerolo EL (2012) Genetic diversity of ‘Cadidatus Liberibacter solanacearum’ strains in the United States and Mexico revealed by simple sequence repeat markers. Eur J Plant Pathol 132(2):297–308

    Article  Google Scholar 

  • Liu D, Trumble JT (2004) Tomato psyllid behavioral responses to tomato plant lines and interactions of plant lines with insecticides. J Econ Entomol 97(3):1078–1085

    Article  CAS  Google Scholar 

  • Mahnke M, Farber C, Sanchez L, Kurouski D (2019a) Advanced spectroscopic techniques for plant disease diagnostics: a review. Trends Analyt Chem 118:43–49

    Article  Google Scholar 

  • Mahnke M, Farber C, Sanchez L, Kurouski D (2019b) Advanced spectroscopic techniques for plant disease diagnostics: a review. Trends Anal Chem 118:43–49

    Article  Google Scholar 

  • Mary YS, Panicker CY, Varghese HT (2012) Vibrational Spectroscopic Investigations of 4-nitropyrocatechol. Orient J Chem 28(2):937–941

    Article  CAS  Google Scholar 

  • Nachappa P, Levy J, Pierson E, Tamborindeguy C (2014) Correlation between “Candidatus Liberibacter solanacearum” infection levels and fecundity in its psyllid vector. J Invertebr Pathol 115:55–61

    Article  Google Scholar 

  • Nelson WR, Sengoda VG, Alfaro-Fernandez AO, Font MI, Crosslin JM, Munyaneza JE (2013) A new haplotype of “Candidatus Liberibacter solanacearum” identified in the Mediterranean region. Eur J Plant Pathol 135(4):633–639

    Article  Google Scholar 

  • Ravindran A, Levy J, Pierson E, Gross DC (2012) Development of a loop-mediated isothermal amplification procedure as a sensitive and rapid method for detection of 'candidatus Liberibacter solanacearum' in potatoes and Psyllids. Phytopathology 102(9):899–907. https://doi.org/10.1094/phyto-03-12-0055-r

    Article  CAS  PubMed  Google Scholar 

  • Sanchez L, Farber C, Lei J, Zhu-Salzman K, Kurouski D (2019a) Noninvasive and nondestructive detection of cowpea bruchid within cowpea seeds with a hand-held Raman spectrometer. Anal Chem 91(3):1733–1737. https://doi.org/10.1021/acs.analchem.8b05555

    Article  CAS  PubMed  Google Scholar 

  • Sanchez L, Pant S, Xing Z, Mandadi K, Kurouski D (2019b) Rapid and noninvasive diagnostics of Huanglongbing and nutrient deficits on citrus trees with a handheld Raman spectrometer. Anal Bioanal Chem 411:3125–3133

    Article  CAS  Google Scholar 

  • Swisher Grimm K, Garczynski S (2019) Identification of a New Haplotype of ‘Candidatus Liberibacter solanacearum’ in Solanum tuberosum. Plant Dis 103(3):468–474

    Article  CAS  Google Scholar 

  • Synytsya A, Čopíková J, Matějka P, Machovič V (2003) Fourier transform Raman and infrared spectroscopy of pectins. Carbohydr Polym 54:97–106

    Article  CAS  Google Scholar 

  • Tamborindeguy C, Huot OB, Ibanez F, Levy J (2017) The influence of bacteria on multi-trophic interactions among plants, psyllids, and pathogen. Insect Sci 24:961–974

    Article  Google Scholar 

  • Trumble J (2009) Potato psyllid. Center for Invasive Species Research, University of California Riverside, California

    Google Scholar 

  • Tschirner N, Brose K, Schenderlein M, Zouni A, Schlodder E, Mroginski MA, Hildebrandt P, Thomsen C (2009) The anomaly of the ν1-resonance Raman band of bβ-carotene in solution and in photosystem I and II. Phys Status Solidi (b) 246(11–12):2790–2793. https://doi.org/10.1002/pssb.200982299

    Article  CAS  Google Scholar 

  • Yao J, Saenkham P, Levy J, Ibanez F, Noroy C, Mendoza A, Huot O, Meyer DF, Tamborindeguy C (2016) Interactions ‘Candidatus Liberibacter solanacearum’—Bactericera cockerelli: haplotype effect on vector fitness and gene expression analyses. Front Cell Infect Microbiol 6:62

    Article  Google Scholar 

  • Yu MM, Schulze HG, Jetter R, Blades MW, Turner RF (2007) Raman microspectroscopic analysis of triterpenoids found in plant cuticles. Appl Spectrosc 61(1):32–37. https://doi.org/10.1366/000370207779701352

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by funds from Texas A&M AgriLife Research, Texas A&M University Governor’s University Research Initiative (GURI) grant program of (12-2016/M1700437) (DK) and T3 grant from Texas A&M University (DK and CT), Texas A&M AgriLife Research (Controlling Exotic and Invasive Insect-Transmitted Pathogens) (CT) and Hatch project TEX0-1-9381 Accession Number 1015773. Xiaotian Tang received the Herb Dean’40 Endowed Scholarship from the Department of Entomology at Texas A&M University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Kurouski.

Additional information

Communicated by Anastasios Melis.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 763 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanchez, L., Ermolenkov, A., Tang, XT. et al. Non-invasive diagnostics of Liberibacter disease on tomatoes using a hand-held Raman spectrometer. Planta 251, 64 (2020). https://doi.org/10.1007/s00425-020-03359-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-020-03359-5

Keywords

Navigation