Skip to main content
Log in

Knockdown of PCBER1, a gene of neolignan biosynthesis, resulted in increased poplar growth

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Poplar trees displayed an increased plant height due to the transgenic knockdown of PCBER1, a gene of lignan biosynthesis. The wood composition was slightly altered in both overexpression and knockdown lines.

The gene PHENYLCOUMARAN BENZYLIC ETHER REDUCTASE1 (PCBER1) is well known as an important gene in the synthesis of lignans, a group of diverse phenylpropanoid derivatives. They are widely distributed in the plant kingdom and may have a role in both plant defense and growth regulation. To analyze its role in biomass formation and wood composition in poplar, both overexpression and knockdown approaches have been performed. Transgenic lines were analyzed on genetic and phenotypic levels, and partly in regard to their biomass composition. While the PCBER1 overexpression approach remained unremarkable concerning the plant height, biomass composition of obtained transgenic lines was modified. They had a significantly increased amount of ethanol extractives. The PCBER1 knockdown resulted in significantly deviating plants; after 17 months of greenhouse cultivation, transgenic plants were up to 38% higher compared to non-transgenic wild type. Most examined transgenic lines did not reveal a significantly enhanced stem diameter after three vegetation periods in the greenhouse. Significant changes were not obtained with regard to the three major wood components, lignin, cellulose and hemicelluloses. As a slight but not significant reduction in ethanol extractives was detected, the hypothesis arises that the lignan content could be influenced. Lignans become important in the pharmaceutical industry and clinical studies concerning cancer and other diseases, thus further investigations on lignan formation in poplar and its connection to biomass formation seem promising.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • ASTM E1690-08 (2016) Standard test method for determination of ethanol extractives in biomass. http://www.astm.org/cgi-bin/resolver.cgi?E1690-08. Accessed 30 May 2018

  • Ayres DC, Loike JD (1990) Lignans: chemical, biological and clinical properties. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Baucher M, Petit-Conil M, Boerjan W (2003) Lignin: genetic engineering and impact on pulping. Crit Rev Biochem Mol Biol 38:305–350

    Article  CAS  PubMed  Google Scholar 

  • Boerjan W, Polle A, Vander Mijnsbrugge K (2003a) Role in lignification and growth for plant phenylcoumaran benzylic ether reductase. US Patent Application No. 10/531,479, Publication US20060015967 A1

  • Boerjan W, Ralph J, Baucher M (2003b) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546

    Article  CAS  PubMed  Google Scholar 

  • Brügmann T (2016) Genetische Modifikation von SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1), FRUITFULL (FUL) und weiterer Kandidatengene in Pappelhybriden (Populus spec.). Dissertation, University of Hamburg

  • Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55(4):611–622

    Article  CAS  PubMed  Google Scholar 

  • Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11(2):113–116

    Article  CAS  Google Scholar 

  • Davin LB, Jourdes M, Patten AM, Kim KW, Vassão DG, Lewis NG (2008) Dissection of lignin macromolecular configuration and assembly: comparison to related biochemical processes in allyl/propenyl phenol and lignan biosynthesis. Nat Prod Rep 25(6):1015–1090

    Article  CAS  PubMed  Google Scholar 

  • Demura T, Ye ZH (2010) Regulation of plant biomass production. Curr Opin Plant Biol 13(3):298–303

    Article  Google Scholar 

  • Dumolin S, Demesure B, Petit RJ (1995) Inheritance of chloroplast and mitochondrial genomes on pedunculate oak investigated with an efficient PCR method. Theor Appl Genet 91:1253–1256

    Article  CAS  PubMed  Google Scholar 

  • Fairley P (2011) Introduction: next generation biofuels. Nature 474(7352):S2–S5

    Article  CAS  PubMed  Google Scholar 

  • Fladung M, Ahuja MR (1995) “Sandwich” method for nonradioactive hybridization. Biotechniques 18(5):800–802

    CAS  PubMed  Google Scholar 

  • Fladung M, Polak O (2012) Ac/Ds-transposon activation tagging in poplar: a powerful tool for gene discovery. BMC Genom 13:61

    Article  CAS  Google Scholar 

  • Fladung M, Kumar S, Ahuja MR (1997) Genetic transformation of Populus genotypes with different chimaeric gene constructs: transformation efficiency and molecular analysis. Transgenic Res 6:111–121

    Article  CAS  Google Scholar 

  • FNR (2014) Basisdaten Bioenergie Deutschland 2014. Fachagentur Nachwachsende Rohstoffe, Gülzow

    Google Scholar 

  • Gang DR, Kasahara H, Xia ZQ, Vander Mijnsbrugge K, Bauw G, Boerjan W, Van Montagu M, Davin LB, Lewis NG (1999) Evolution of plant defense mechanisms. Relationships of phenylcoumaran benzylic ether reductases to pinoresinol-lariciresinol and isoflavone reductases. J Biol Chem 274(11):7516–7527

    Article  CAS  PubMed  Google Scholar 

  • Kauter D, Lewandowski I, Claupein W (2001) Pappeln in Kurzumtriebswirtschaft: Eigenschaften und Qualitätsmanagement bei der Festbrennstoffbereitstellung—Ein Überblick. Pflanzenbauwissenschaften 5(2):64–74

    Google Scholar 

  • Leple JC, Brasileiro ACM, Michel MF, Delmotte F, Jouanin L (1992) Transgenic poplars: expression of chimeric genes using four different constructs. Plant Cell Rep 11(3):137–141

    Article  CAS  PubMed  Google Scholar 

  • Lewis NG, Davin LB (1999) Lignans: biosynthesis and function. In: Barton DHR, Nakanishi K, Meth-Cohn O (eds) Comprehensive natural products chemistry. Elsevier, London, pp 639–712

    Chapter  Google Scholar 

  • Liu YG, Mitsukawa N, Oosumi T, Whittier RF (1995) Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J 8(3):457–463

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25(4):402–408

    Article  CAS  Google Scholar 

  • MacRae WD, Towers GN (1984) Biological activities of lignans. Phytochemistry 23(6):1207–1220

    Article  CAS  Google Scholar 

  • Mitchell CP, Stevens EA, Watters MP (1999) Short-rotation forestry—operations, productivity and costs based on experience gained in the UK. For Ecol Manag 121(1):123–136

    Article  Google Scholar 

  • Niculaes C, Morreel K, Kim H, Lu F, McKee LS, Ivens B, Haustraete J, Vanholme B, De Rycke R, Hertzberg M, Fromm J, Bulone V, Polle A, Ralph J, Boerjan W (2014) Phenylcoumaran benzylic ether reductase prevents accumulation of compounds formed under oxidative conditions in poplar xylem. Plant Cell 26(9):3775–3791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nieminen K, Robischon M, Immanen J, Helariutta Y (2012) Towards optimizing wood development in bioenergy trees. New Phytol 194(1):46–53

    Article  CAS  PubMed  Google Scholar 

  • Nuoendagula Kamimura N, Mori T, Nakabayashi R, Tsuji Y, Hishiyama S, Saito K, Masai E, Kajita S (2016) Expression and functional analyses of a putative phenylcoumaran benzylic ether reductase in Arabidopsis thaliana. Plant Cell Rep 35:513–526

    Article  CAS  PubMed  Google Scholar 

  • Pohjamo SP, Willför S, Reunanen M, Hemming J, Holmbom B (2002) Bioactive phenolic substances in fast-growing tree species. Report B1-02. Åbo Akademi University, Process Chemistry Group, Åbo

    Google Scholar 

  • Saguez J, Attoumbré J, Giordanengo P, Baltora-Rosset S (2013) Biological activities of lignans and neolignans on the aphid Myzus persicae (Sulzer). Arthropod Plant Interact 7(2):225–233

    Article  Google Scholar 

  • Satake H, Koyama T, Bahabadi SE, Matsumoto E, Ono E, Murata J (2015) Essences in metabolic engineering of lignan biosynthesis. Metabolites 5(2):270–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schirmer R (2009) Sortenprüfung von Pappelklonen-Voraussetzung für einen erfolgreichen Energieholzanbau. Holzproduktion auf forstgenetischer Grundlage im Hinblick auf Klimawandel und Rohstoffverknappung 28:123–129

    Google Scholar 

  • Schomburg D (2005) Nomenklatur der Lignane und Neolignane. Angew Chem 117:2339–2351

    Article  Google Scholar 

  • Shoji T, Winz R, Iwase T, Nakajima K, Yamada Y, Hashimoto T (2002) Expression patterns of two tobacco isoflavone reductase-like genes and their possible roles in secondary metabolism in tobacco. Plant Mol Biol 50:427–440

    Article  CAS  PubMed  Google Scholar 

  • Sixto H, Gil P, Ciria P, Camps F, Sánchez M, Cañellas I, Voltas J (2014) Performance of hybrid poplar clones in short rotation coppice in mediterranean environments: analysis of genotypic stability. GCB Bioenergy 6(6):661–671

    Article  Google Scholar 

  • Stafford HA (2000) The evolution of phenolics in plants. In: Romeo JT, Ibrahim R, Varin L, De Luca V (eds) Evolution of metabolic pathways. Elsevier, Oxford, pp 25–54

    Chapter  Google Scholar 

  • Tuskan GA, DiFazio S, Jansson S et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604

    Article  CAS  PubMed  Google Scholar 

  • Umezawa T (1997) Lignans. In: Higuchi T (ed) Biochemistry and molecular biology of wood. Springer, Berlin, pp 181–194

    Google Scholar 

  • Umezawa T (2003) Diversity in lignan biosynthesis. Phytochem Rev 2(3):371–390

    Article  CAS  Google Scholar 

  • Vander Mijnsbrugge K, Beeckman H, De Rycke R, Van Montagu M, Engler G, Boerjan W (2000a) Phenylcoumaran benzylic ether reductase, a prominent poplar xylem protein, is strongly associated with phenylpropanoid biosynthesis in lignifying cells. Planta 211(4):502–509

    Article  CAS  PubMed  Google Scholar 

  • Vander Mijnsbrugge K, Meyermans H, Van Montagu M, Bauw G, Boerjan W (2000b) Wood formation in poplar: identification, characterization, and seasonal variation of xylem proteins. Planta 210(4):589–598

    Article  CAS  PubMed  Google Scholar 

  • Vanholme R, Morreel K, Ralph J, Boerjan W (2008) Lignin engineering. Curr Opin Plant Biol 11(3):278–285

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Lu J, Chen H et al (2017) Comparative analyses of transcriptome and proteome in response to cotton bollworm between a resistant wild soybean and a susceptible soybean cultivar. Plant Cell Tissue Organ Cult 129(3):511–520

    Article  CAS  Google Scholar 

  • Willför S, Nisula L, Hemming J, Reunanen M, Holmbom B (2004) Bioactive phenolic substances in industrially important tree species. Part 2: knots and stemwood of fir species. Holzforschung 58(6):650–659

    Article  CAS  Google Scholar 

  • Xue LJ, Alabady MS, Mohebbi M, Tsai CJ (2015) Exploiting genome variation to improve next-generation sequencing data analysis and genome editing efficiency in Populus tremula × alba 717–1B4. Tree Genet Genomes 11(4):1–8

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Guido Jach (Phytowelt, Cologne, Germany) for providing the amiRNA transformation vectors. Thanks to Susanne Jelkmann, Olaf Polak, Jonas Schönfeld, Jakob Fromme, Gundel Wiemann, Monika Spauszus, and Rainer Ebbinghaus for technical assistance. This work was part of the joint project “PopMass”, founded by the German Federal Ministry of Education and Research (BMBF) under the funding number 0315972A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Bruegmann.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bruegmann, T., Wetzel, H., Hettrich, K. et al. Knockdown of PCBER1, a gene of neolignan biosynthesis, resulted in increased poplar growth. Planta 249, 515–525 (2019). https://doi.org/10.1007/s00425-018-3021-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-018-3021-8

Keywords

Navigation