Skip to main content

Advertisement

Log in

High-level production of single chain monellin mutants with enhanced sweetness and stability in tobacco chloroplasts

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Plastid-based MNEI protein mutants retain the structure, stability and sweetness of their bacterial counterparts, confirming the attractiveness of the plastid transformation technology for high-yield production of recombinant proteins.

The prevalence of obesity and diabetes has dramatically increased the industrial demand for the development and use of alternatives to sugar and traditional sweeteners. Sweet proteins, such as MNEI, a single chain derivative of monellin, are the most promising candidates for industrial applications. In this work, we describe the use of tobacco chloroplasts as a stable plant expression platform to produce three MNEI protein mutants with improved taste profile and stability. All plant-based proteins were correctly expressed in tobacco chloroplasts, purified and subjected to in-depth chemical and sensory analyses. Recombinant MNEI mutants showed a protein yield ranging from 5% to more than 50% of total soluble proteins, which, to date, represents the highest accumulation level of MNEI mutants in plants. Comparative analyses demonstrated the high similarity, in terms of structure, stability and function, of the proteins produced in plant chloroplasts and bacteria. The high yield and the extreme sweetness perceived for the plant-derived proteins prove that plastid transformation technology is a safe, stable and cost-effective production platform for low-calorie sweeteners, with an estimated production of up to 25–30 mg of pure protein/plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Apel W, Schulze WX, Bock R (2010) Identification of protein stability determinants in chloroplasts. Plant J 63:636–650

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boyhan D, Daniell H (2011) Low-cost production of proinsulin in tobacco and lettuce chloroplasts for injectable or oral delivery of functional insulin and C-peptide. Plant Biotechnol J 9:585–598

    Article  PubMed  CAS  Google Scholar 

  • Cai C, Li L, Lu N, Zheng W, Yang L, Liu B (2016) Expression of a high sweetness and heat-resistant mutant of sweet-tasting protein, monellin, in Pichia pastoris with a constitutive GAPDH promoter and modified N-terminus. Biotechnol Lett 38:1941–1946

    Article  PubMed  CAS  Google Scholar 

  • Castiglia D, Sannino L, Marcolongo L, Ionata E, Tamburino R, De Stradis A, Cobucci-Ponzano B, Moracci M, La Cara F, Scotti N (2016) High-level expression of thermostable cellulolytic enzymes in tobacco transplastomic plants and their use in hydrolysis of an industrially pretreated Arundo donax L. biomass. Biotechnol Biofuels 9:154

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen Z, Heng C, Li Z, Liang X, Xinchen S (2007) Expression and secretion of a single-chain sweet protein monellin in Bacillus subtilis by sacB promoter and signal peptide. Appl Microbiol Biotechnol 73:1377–1381

    Article  PubMed  CAS  Google Scholar 

  • Chen Z, Li Z, Yu N, Yan L (2011) Expression and secretion of a single-chain sweet protein, monellin, in Saccharomyces cerevisiae by an α-factor signal peptide. Biotechnol Lett 33:721–725

    Article  PubMed  CAS  Google Scholar 

  • Cui M, Jiang P, Maillet E, Max M, Margolskee RF, Osman R (2006) The heterodimeric sweet taste receptor has multiple potential ligand binding sites. Curr Pharm Des 12:4591–4600

    Article  PubMed  CAS  Google Scholar 

  • De Lorenzo C, Cozzolino R, Carpentieri A, Pucci P, Laccetti P, D’Alessio G (2005) Biological properties of a human compact anti-ErbB2 antibody. Carcinogenesis 26:1890–1895

    Article  PubMed  CAS  Google Scholar 

  • Demain AL, Vaishnav P (2009) Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv 27:297–306

    Article  PubMed  CAS  Google Scholar 

  • Di Monaco R, Miele NA, Picone D, Masi P, Cavella S (2013) Taste detection and recognition thresholds of the modified monellin sweetener: MNEI. J Sens Stud 28:25–33

    Article  Google Scholar 

  • Di Monaco R, Miele NA, Volpe S, Picone D, Cavella S (2014) Temporal sweetness profile of MNEI and comparison with commercial sweeteners. J Sens Stud 29:385–394

    Article  Google Scholar 

  • Esposito V, Gallucci R, Picone D, Saviano G, Tancredi T, Temussi PA (2006) The importance of electrostatic potential in the interaction of sweet proteins with the sweet taste receptor. J Mol Biol 360:448–456

    Article  PubMed  CAS  Google Scholar 

  • Giglione C, Vallon O, Meinnel T (2003) Control of protein life-span by N-terminal methionine excision. EMBO J 22:13–23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Giglione C, Boularot A, Meinnel T (2004) Protein N-terminal methionine excision. Cell Mol Life Sci 61:1455–1474

    Article  PubMed  CAS  Google Scholar 

  • Higginbotham JD, Snodin DJ, Eaton KK, Daniel JW (1983) Safety evaluation of thaumatin (Talin protein). Food Chem Toxicol Int J Publ Br Ind Biol Res Assoc 21:815–823

    Article  CAS  Google Scholar 

  • Hirai T, Kurokawa N, Duhita N, Hiwasa-Tanase K, Kato K, Kato K, Ezura H (2011) The HSP terminator of Arabidopsis thaliana induces a high level of miraculin accumulation in transgenic tomatoes. J Agric Food Chem 59:9942–9949

    Article  PubMed  CAS  Google Scholar 

  • Hiwasa-Tanase K, Hirai T, Kato K, Duhita N, Ezura H (2012) From miracle fruit to transgenic tomato: mass production of the taste-modifying protein miraculin in transgenic plants. Plant Cell Rep 31:513–525

    Article  PubMed  CAS  Google Scholar 

  • Hobbs JR, Munger SD, Conn GL (2007) Monellin (MNEI) at 1.15 Å resolution. Acta Crystallogr, Sect F Struct Biol Cryst Commun 63:162–167

    Article  CAS  Google Scholar 

  • Inglett GE, May JF (1969) Serendipity berries–source of a new intense sweetener. J Food Sci 34:408–411

    Article  CAS  Google Scholar 

  • Kant R (2005) Sweet proteins-Potential replacement for artificial low calorie sweeteners. Nutr J 4:5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kaul T, Reddy CS, Pandey S (2018) Transgenics with monellin. In: Mérillon JM, Ramawat KG (eds) Sweeteners. Pharmacology, biotechnology and applications. Springer, Cham, pp 211–222

    Google Scholar 

  • Kim IH, Lim KJ (1996) Large-scale purification of recombinant monellin from yeast. J Ferment Bioeng 82:180–182

    Article  CAS  Google Scholar 

  • Kim SH, Kang CH, Kim R, Cho JM, Lee YB, Lee TK (1989) Redesigning a sweet protein: increased stability and renaturability. Protein Eng Des Sel 2:571–575

    Article  CAS  Google Scholar 

  • Kuroda H, Maliga P (2001a) Complementarity of the 16S rRNA penultimate stem with sequences downstream of the AUG destabilizes the plastid mRNAs. Nucleic Acids Res 29:970–975

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kuroda H, Maliga P (2001b) Sequences downstream of the translation initiation codon are important determinants of translation efficiency in chloroplasts. Plant Physiol 125:430–436

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lamphear BJ, Barker DK, Brooks CA, Delaney DE, Lane JR, Beifuss K, Love R, Thompson K, Mayor J, Clough R, Harkey R, Poage M, Drees C, Horn ME, Streatfield SJ, Nikolov Z, Woodard SL, Hood EE, Jilka JM, Howard JA (2005) Expression of the sweet protein brazzein in maize for production of a new commercial sweetener. Plant Biotechnol J 3:103–114

    Article  PubMed  CAS  Google Scholar 

  • Lee S-B, Kim Y, Lee J, Oh K-J, Byun M-O, Jeong M-J, Bae S-C (2012) Stable expression of the sweet protein monellin variant MNEI in tobacco chloroplasts. Plant Biotechnol Rep 6:285–295

    Article  Google Scholar 

  • Lentz EM, Segretin ME, Morgenfeld MM, Wirth SA, Dus Santos MJ, Mozgovoj MV, Wigdorovitz A, Bravo-Almonacid FF (2010) High expression level of a foot and mouth disease virus epitope in tobacco transplastomic plants. Planta 231:387–395

    Article  PubMed  CAS  Google Scholar 

  • Lenzi P, Scotti N, Alagna F, Tornesello ML, Pompa A, Vitale A, De Stradis A, Monti L, Grillo S, Buonaguro FM, Maliga P, Cardi T (2008) Translational fusion of chloroplast-expressed human papillomavirus type 16 L1 capsid protein enhances antigen accumulation in transplastomic tobacco. Transgenic Res 17:1091–1102

    Article  PubMed  CAS  Google Scholar 

  • Leone S, Sannino F, Tutino ML, Parrilli E, Picone D (2015) Acetate: friend or foe? Efficient production of a sweet protein in Escherichia coli BL21 using acetate as a carbon source. Microb Cell Fact 14:106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leone S, Pica A, Merlino A, Sannino F, Temussi PA, Picone D (2016) Sweeter and stronger: enhancing sweetness and stability of the single chain monellin MNEI through molecular design. Sci Rep 6:34045

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leone S, Picone D (2016) Molecular dynamics driven design of pH-stabilized mutants of MNEI, a sweet protein. PLoS One 11:e0158372

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu Q, Li L, Yang L, Liu T, Cai C, Liu B (2016) Modification of the sweetness and stability of sweet-tasting protein monellin by gene mutation and protein engineering. Biomed Res Int. https://doi.org/10.1155/2016/3647173

    Article  PubMed  PubMed Central  Google Scholar 

  • Lomonossoff GP, D’Aoust MA (2016) Plant-produced biopharmaceuticals: a case of technical developments driving clinical deployment. Science 16:1237–1240

    Article  CAS  Google Scholar 

  • Masuda T, Kitabatake N (2006) Developments in biotechnological production of sweet proteins. J Biosci Bioeng 102:375–389

    Article  PubMed  CAS  Google Scholar 

  • Masuda T, Ohta K, Ojiro N, Murata K, Mikami B, Tani F, Temussi PA, Kitabatake N (2016) A hypersweet protein: removal of the specific negative charge at Asp21 enhances thaumatin sweetness. Sci Rep 6:20255

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Merlin M, Gecchele E, Capaldi S, Pezzotti M, Avesani L (2014) Comparative evaluation of recombinant protein production in different biofactories: the green perspective. Biomed Res Int. https://doi.org/10.1155/2014/136419

    Article  PubMed  PubMed Central  Google Scholar 

  • Miele NA, Cabisidan EK, Blaiotta G, Leone S, Masi P, Monaco RD, Cavella S (2017a) Rheological and sensory performance of a protein-based sweetener (MNEI), sucrose, and aspartame in yogurt. J Dairy Sci 100:9539–9550

    Article  PubMed  CAS  Google Scholar 

  • Miele NA, Di Monaco R, Dell’Amura F, Rega MF, Picone D, Cavella S (2017b) A preliminary study on the application of natural sweet proteins in agar-based gels. J Texture Stud 48:103–113

    Article  PubMed  Google Scholar 

  • Morini G, Bassoli A, Temussi PA (2005) From small sweeteners to sweet proteins: anatomy of the binding sites of the human T1R2_T1R3 receptor. J Med Chem 48:5520–5529

    Article  PubMed  CAS  Google Scholar 

  • Morris JA, Cagan RH (1972) Purification of monellin, the sweet principle of Dioscoreophyllum cumminsii. Biochim Biophys Acta 261:114–122

    Article  PubMed  CAS  Google Scholar 

  • Moustafa K, Makhzoum A, Trémouillaux-Guiller J (2016) Molecular farming on rescue of pharma industry for next generations. Crit Rev Biotechnol 36:840–850

    Article  PubMed  CAS  Google Scholar 

  • Murzin AG (1993) Sweet-tasting protein Monellin is related to the cystatin family of thiol proteinase inhibitors. J Mol Biol 230:689–694

    Article  PubMed  CAS  Google Scholar 

  • Oey M, Lohse M, Kreikemeyer B, Bock R (2009) Exhaustion of the chloroplast protein synthesis capacity by massive expression of a highly stable protein antibiotic. Plant J 57:436–445

    Article  PubMed  CAS  Google Scholar 

  • Ogata C, Hatada M, Tomlinson G, Shin W-C, Kim S-H (1987) Crystal structure of the intensely sweet protein monellin. Nature 328:739–742

    Article  PubMed  CAS  Google Scholar 

  • Peñarrubia L, Kim R, Giovannoni J, Kim S-H, Fischer RL (1992) Production of the sweet protein monellin in transgenic plants. Nat Biotechnol 10:561–564

    Article  Google Scholar 

  • Petersen K, Bock R (2011) High-level expression of a suite of thermostable cell wall-degrading enzymes from the chloroplast genome. Plant Mol Biol 76:311–321

    Article  PubMed  CAS  Google Scholar 

  • Pham NB, Schäfer H, Wink M (2012) Production and secretion of recombinant thaumatin in tobacco hairy root cultures. Biotechnol J 7:537–545

    Article  PubMed  CAS  Google Scholar 

  • Pica A, Leone S, Di Girolamo R, Donnarumma F, Emendato A, Rega MF, Merlino A, Picone D (2018) pH driven fibrillar aggregation of the super-sweet protein Y65R-MNEI: a step-by-step structural analysis. Biochim Biophys Acta 1862:808–815

    Article  PubMed  CAS  Google Scholar 

  • Picone D, Temussi PA (2012) Dissimilar sweet proteins from plants: oddities or normal components? Plant Sci 195:135–142

    Article  PubMed  CAS  Google Scholar 

  • Reddy CS, Vijayalakshmi M, Kaul T, Islam T, Reddy MK (2015) Improving flavour and quality of tomatoes by expression of synthetic gene encoding sweet protein monellin. Mol Biotechnol 57:448–453

    Article  PubMed  CAS  Google Scholar 

  • Rega MF, Di Monaco R, Leone S, Donnarumma F, Spadaccini R, Cavella S, Picone D (2015) Design of sweet protein based sweeteners: hints from structure-function relationships. Food Chem 173:1179–1186

    Article  PubMed  CAS  Google Scholar 

  • Rega MF, Siciliano A, Gesuele R, Lofrano G, Carpentieri A, Picone D, Guida M (2017) Ecotoxicological survey of MNEI and Y65R-MNEI proteins as new potential high-intensity sweeteners. Environ Sci Pollut Res 24:9734–9740

    Article  CAS  Google Scholar 

  • Roh KH, Shin K-S, Lee Y-H, Seo S-C, Park H-G, Daniell H, Lee S-B (2006) Accumulation of sweet protein monellin is regulated by the psbA 5′UTR in tobacco chloroplasts. J Plant Biol 49:34–43

    Article  CAS  Google Scholar 

  • Sanchez-Garcia L, Martín L, Mangues R, Ferrer-Miralles N, Vázquez E, Villaverde A (2016) Recombinant pharmaceuticals from microbial cells: a 2015 update. Microb Cell Fact 15:33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Scotti N, Alagna F, Ferraiolo E, Formisano G, Sannino L, Buonaguro L, De Stradis A, Vitale A, Monti L, Grillo S, Buonaguro FM, Cardi T (2009) High-level expression of the HIV-1 Pr55gag polyprotein in transgenic tobacco chloroplasts. Planta 229:1109–1122

    Article  PubMed  CAS  Google Scholar 

  • Scotti N, Cardi T (2012) Plastid transformation as an expression tool for plant-derived biopharmaceuticals. In: Dunwell JM, Wetten AC (eds) Transgenic plants. Methods and protocols, 2nd edn. Humana Press, New York, pp 451–466

    Chapter  Google Scholar 

  • Spadaccini R, Crescenzi O, Tancredi T, De Casamassimi N, Saviano G, Scognamiglio R, DonatoA Di, Temussi PA (2001) Solution structure of a sweet protein: NMR study of MNEI, a single chain monellin. J Mol Biol 305:505–514

    Article  PubMed  CAS  Google Scholar 

  • Spadaccini R, Leone S, Rega MF, Richter C, Picone D (2016) Influence of pH on the structure and stability of the sweet protein MNEI. FEBS Lett 590:3681–3689

    Article  PubMed  CAS  Google Scholar 

  • Sun H-J, Cui M, Ma B, Ezura H (2006) Functional expression of the taste-modifying protein, miraculin, in transgenic lettuce. FEBS Lett 580:620–626

    Article  PubMed  CAS  Google Scholar 

  • Sun H-J, Kataoka H, Yano M, Ezura H (2007) Genetically stable expression of functional miraculin, a new type of alternative sweetener, in transgenic tomato plants. Plant Biotechnol J 5:768–777

    Article  PubMed  CAS  Google Scholar 

  • Tancredi T, Iijima H, Saviano G, Amodeo P, Temussi PA (1992) Structural determination of the active site of a sweet protein A 1H NMR investigation of pMNEI. FEBS Lett 310:27–30

    Article  PubMed  CAS  Google Scholar 

  • Tancredi T, Pastore A, Salvadori S, Esposito V, Temussi PA (2004) Interaction of sweet proteins with their receptor. Eur J Biochem 271:2231–2240

    Article  PubMed  CAS  Google Scholar 

  • Temussi PA (2002) Why are sweet proteins sweet? Interaction of brazzein, monellin and thaumatin with the T1R2-T1R3 receptor. FEBS Lett 526:1–4

    Article  PubMed  CAS  Google Scholar 

  • Temussi PA (2011a) New insights into the characteristics of sweet and bitter taste receptors. In: Jeon KW (ed) International Review of Cell and Molecular Biology, vol 291. Academic Press, San Diego, pp 191–226

    Google Scholar 

  • Temussi PA (2011b) Determinants of sweetness in proteins: a topological approach. J Mol Recognit 24:1033–1042

    Article  PubMed  Google Scholar 

  • Tschofen M, Knopp D, Hood E, Stöger E (2016) Plant molecular farming: much more than medicines. Annu Rev Anal Chem 9:271–294

    Article  Google Scholar 

  • van der Wel H, Loeve K (1972) Isolation and characterization of thaumatin I and II, the sweet-tasting proteins from Thaumatococcus daniellii Benth. Eur J Biochem 31:221–225

    Article  PubMed  Google Scholar 

  • Waheed MT, Ismail H, Gottschamel J, Mirza B, Lössl AG (2015) Plastids: the green frontiers for vaccine production. Front Plant Sci 6:1005

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng W, Yang L, Cai C, Ni J, Liu B (2018) Expression, purification and characterization of a novel double-site mutant of the single-chain sweet-tasting protein monellin (MNEI) with both improved sweetness and stability. Protein Expr Purif 143:52–56

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y, Lu Z, Wang X, Selvaraj JN, Zhang G (2018) Genetic engineering modification and fermentation optimization for extracellular production of recombinant proteins using Escherichia coli. Appl Microbiol Biotechnol 102:1545–1556

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially funded by Fondazione con il Sud, Project 2011-PDR-19, and POR Campania FESR207-2013, Project “Bio Industrial Processes (BIP)”. Technical assistance of Mr. G. Guarino, Ms. S. Arcari and Mr. R. Nocerino (CNR-IBBR, Portici, Italy) with artworks and plant growth is gratefully acknowledged. The authors declare that they have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nunzia Scotti.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 5020 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castiglia, D., Leone, S., Tamburino, R. et al. High-level production of single chain monellin mutants with enhanced sweetness and stability in tobacco chloroplasts. Planta 248, 465–476 (2018). https://doi.org/10.1007/s00425-018-2920-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-018-2920-z

Keywords

Navigation