Skip to main content
Log in

Lettuce flavonoids screening and phenotyping by chlorophyll fluorescence excitation ratio

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Environmentally induced variation and the genotypic differences in flavonoid and phenolic content in lettuce can be reliably detected using the appropriate parameters derived from the records of rapid non-invasive fluorescence technique.

The chlorophyll fluorescence excitation ratio method was designed as a rapid and non-invasive tool to estimate the content of UV-absorbing phenolic compounds in plants. Using this technique, we have assessed the dynamics of accumulation of flavonoids related to developmental changes and environmental effects. Moreover, we have tested appropriateness of the method to identify the genotypic differences and fluctuations in total phenolics and flavonoid content in lettuce. Six green and two red genotypes of lettuce (Lactuca sativa L.) grown in pots were exposed to two different environments for 50 days: direct sunlight (UV-exposed) and greenhouse conditions (low UV). The indices based on the measurements of chlorophyll fluorescence after red, green and UV excitation indicated increase of the content of UV-absorbing compounds and anthocyanins in the epidermis of lettuce leaves. In similar, the biochemical analyses performed at the end of the experiment confirmed significantly higher total phenolic and flavonoid content in lettuce plants exposed to direct sun compared to greenhouse conditions and in red compared to green genotypes. As the correlation between the standard fluorescence indices and the biochemical records was negatively influenced by the presence of red genotypes, we proposed the use of a new parameter named Modified Flavonoid Index (MFI) taking into an account both absorbance changes due to flavonol and anthocyanin content, for which the correlation with flavonoid and phenolic content was relatively good. Thus, our results confirmed that the fluorescence excitation ratio method is useful for identifying the major differences in phenolic and flavonoid content in lettuce plants and it can be used for high-throughput pre-screening and phenotyping of leafy vegetables in research and breeding applications towards improvement of vegetable health effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ANTH :

Fluorescence-based index for estimation of anthocyanin content in plant tissues

Anth :

Anthocyanins

DW:

Dry weight

FER:

Fluorescence excitation ratio

FLAV :

Fluorescence-based index for estimation of flavonol content in plant tissues

Flav :

Flavonoids

FLAVC :

Corrected fluorescence-based index for estimation of flavonol content

FRF:

Far-red fluorescence, fluorescence with wavelength ~730 nm

FRF G :

Far-red fluorescence emitted after excitation by green light

FRF R :

Far-red fluorescence emitted after excitation by red light

FRF UV :

Far-red fluorescence emitted after excitation by UV

MFI:

Modified flavonoid index

References

  • Agati G, Tattini M (2010) Multiple functional roles of flavonoids in photoprotection. New Phytol 186:786–793

    Article  CAS  PubMed  Google Scholar 

  • Agati G, Pinelli P, Cortes-Ebner S, Romani A, Cartelat A, Cerovic ZG (2005) Nondestructive evaluation of anthocyanins in olive (Olea europaea) fruits by in situ chlorophyll fluorescence spectroscopy. J Agric Food Chem 53:1354–1363

    Article  CAS  PubMed  Google Scholar 

  • Agati G, Meyer S, Matteini P et al (2007) Assessment of anthocyanins in grape (Vitis vinifera L.) berries using a non-invasive chlorophyll fluorescence method. J Agric Food Chem 55:1053–1061

    Article  CAS  PubMed  Google Scholar 

  • Agati G, Cerovic ZG, Pinelli P, Tattini M (2011) Light-induced accumulation of ortho-dihydroxylated flavonoids as non-destructively monitored by chlorophyll fluorescence excitation techniques. Environ Exp Bot 73:3–9

    Article  CAS  Google Scholar 

  • Altunkaya A, Gökmen V (2009) Effect of anti-browning agents on phenolic compounds profile of fresh lettuce (L. sativa). Food Chem 117:122–126

    Article  CAS  Google Scholar 

  • Amarowicz R, Weidner S, Wojtowicz I, Karmać M, Kosińska A, Rybarczyk A (2010) Influence of low-temperature stress on changes in the composition of grapevine leaf phenolic compounds and their antioxidant properties. Funct Plant Sci Biotechnol 4:90–96

    Google Scholar 

  • Asseng S, Turner NC (2007) Modelling genotype × environment × management interactions to improve yield, water use efficiency and grain protein in wheat. In: Spiertz JHJ, Struik PC, van Laar HH (eds) Scale and complexity in plant systems research—gene–plant–crop relations. Springer, Berlin, pp 93–103

    Chapter  Google Scholar 

  • Bassman JH (2004) Ecosystem consequences of enhanced solar ultraviolet radiation: secondary plant metabolites as mediators of multiple trophic interactions in terrestrial plant communities. Photochem Photobiol 79:382–398

    Article  CAS  PubMed  Google Scholar 

  • Behn H, Tittmann S, Walter A, Schurr U, Noga G, Ulbrich A (2010) UV-B transmittance of greenhouse covering materials affects growth and flavonoid content of lettuce seedlings. Eur J Hortic Sci 75:259–268

    Google Scholar 

  • Bidel LPR, Meyer S, Goulas Y, Cadot Y, Cerovic ZG (2007) Responses of epidermal phenolic compounds to light acclimation: in vivo qualitative and quantitative assessment using chlorophyll fluorescence excitation spectra in leaves of three ligneous species. J Photochem Photobiol B 88:163–179

    Article  CAS  PubMed  Google Scholar 

  • Bidel LP, Chomicki G, Bonini F, Mondolot L, Soulé J, Coumans M, La Fisca P, Baissac Y, Petit V, Loiseau A, Cerovic ZG, Gould KS, Jay-Allemand C (2015) Dynamics of flavonol accumulation in leaf tissues under different UV-B regimes in Centella asiatica (Apiaceae). Planta 242:545–559

    Article  CAS  PubMed  Google Scholar 

  • Bilger W, Johnsen T, Schreiber U (2001) UV-excited chlorophyll fluorescence as a tool for the assessment of UV-protection by the epidermis of plants. J Exp Bot 52:2007–2014

    Article  CAS  PubMed  Google Scholar 

  • Brestic M, Zivcak M (2013) PSII fluorescence techniques for measurement of drought and high temperature stress signal in crop plants: protocols and applications. In: Rout GR, Das AB (eds) Molecular stress physiology of plants. Springer, India, pp 87–131

    Chapter  Google Scholar 

  • Brestic M, Zivcak M, Kalaji HM, Carpentier R, Allakhverdiev SI (2012) Photosystem II thermostability in situ: environmentally induced acclimation and genotype-specific reactions in Triticum aestivum L. Plant Physiol Biochem 57:93–105

    Article  CAS  PubMed  Google Scholar 

  • Burchard P, Bilger W, Weissenböck G (2000) Contribution of hydroxycinnamates and flavonoids to epidermal shielding of UV-A and UV-B radiation in developing rye primary leaves as assessed by ultraviolet-induced chlorophyll fluorescence measurements. Plant Cell Environ 23:1373–1380

    Article  CAS  Google Scholar 

  • Cerovic ZG, Ounis A, Cartelat A, Latouche G, Goulas Y, Meyer S, Moya I (2002) The use of chlorophyll fluorescence excitation spectra for the non-destructive in situ assessment of UV-absorbing compounds in leaves. Plant Cell Environ 25:1663–1676

    Article  CAS  Google Scholar 

  • Cerovic ZG, Ghozlen NB, Milhade C, Obert M, Debuisson S, Moigne ML (2015) Nondestructive diagnostic test for nitrogen nutrition of grapevine (Vitis vinifera L.) based on dualex leaf-clip measurements in the field. J Agric Food Chem 63:3669–3680

    Article  CAS  PubMed  Google Scholar 

  • Chandrasekara A, Shahidi F (2010) Content of insoluble bound phenolics in millets and their contribution to antioxidant capacity. J Agric Food Chem 58:6706–6714

    Article  CAS  PubMed  Google Scholar 

  • Cook NC, Samman S (1996) Flavonoids—chemistry, metabolism, cardioprotective effects, and dietary sources. J Nutr Biochem 7:66–76

    Article  CAS  Google Scholar 

  • Crozier A, Lean MEJ, McDonald MS, Black C (1997) Quantitative analysis of the flavonoid content of commercial tomatoes, onions, lettuce and celery. J Agric Food Chem 45:590–595

    Article  CAS  Google Scholar 

  • Dumpert K, Knacker T (1985) A comparison of the effects of enhanced UV-B radiation on crop plants exposed to greenhouse and field conditions. Biochemy Physiol Pflanzen 180:599–612

    Article  CAS  Google Scholar 

  • Furbank RT, Tester M (2011) Phenomics–technologies to relieve the phenotyping bottleneck. Trends Plant Sci 16:635–644

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Macias P, Ordidge M, Vysini E, Waroonphan S, Battey NH, Gordon MH, Hadley P, John P, Lovegrove JA, Wagstaffe A (2007) Changes in the flavonoid and phenolic acid contents and antioxidant activity of red leaf lettuce (Lollo Rosso) due to cultivation under plastic films varying in ultraviolet transparency. J Agric Food Chem 55:10168–10172

    Article  CAS  PubMed  Google Scholar 

  • Ghozlen NB, Cerovic ZG, Germain C, Toutain S, Latouche G (2010) Non-destructive optical monitoring of grape maturation by proximal sensing. Sensors 10:10040–10068

    Article  PubMed  PubMed Central  Google Scholar 

  • Gould KS, McKelvie J, Markham KR (2002) Do anthocyanins function as antioxidants in leaves? Imaging of H2O2 in red and green leaves after mechanical injury. Plant Cell Environ 25:1261–1269

    Article  CAS  Google Scholar 

  • Harbinson J, Prinzenburg AE, Kruijer W, Aarts MGM (2012) High throughput screening with chlorophyll fluorescence imaging and its use in crop improvement. Curr Opin Biotechnol 23:221–226

    Article  CAS  PubMed  Google Scholar 

  • Havaux M, Kloppstech K (2001) The protective functions of carotenoid and flavonoid pigments against excess visible radiation at chilling temperature investigated in Arabidopsis npq and tt mutants. Planta 213:953–966

    Article  CAS  Google Scholar 

  • Jordan BR (2002) Review: molecular response of plant cells to UV-B stress. Funct Plant Biol 29:909–916

    Article  CAS  Google Scholar 

  • Kalaji MH, Jajoo A, Oukarroum A, Brestic M, Zivcak M, Samborska AI, Cetner DM, Lukasik I, Goltsev V, Ladle JR (2016) Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol Plant 38:102

    Article  Google Scholar 

  • Kalaji HM, Schansker G, Ladle RJ et al (2017) Frequently asked questions about in vivo chlorophyll fluorescence: the sequel. Photosynth Res. doi:10.1007/s11120-016-0318-y

    Google Scholar 

  • Karageorgou P, Manetas Y (2006) The importance of being red when young: anthocyanins and the protection of young leaves of Quercus coccifera from insect herbivory and excess light. Tree Physiol 26(5):613–621

    Article  CAS  PubMed  Google Scholar 

  • Kaushik P, Andújar I, Vilanova S, Plazas M, Gramazio P, Herraiz FJ, Brar NS, Prohens J (2015) Breeding vegetables with increased content in bioactive phenolic acids. Molecules 20:18464–18481

    Article  CAS  PubMed  Google Scholar 

  • Kolb CA, Pfündel E (2005) Origins of non-linear and dissimilar relationships between epidermal UV absorbance and UV absorbance of extracted phenolics in leaves of grapevine and barley. Plant Cell Environ 25:580–590

    Article  Google Scholar 

  • Kolb C, Käser M, Kopecký J, Zotz G, Riederer M, Pfündel E (2001) Effects of natural intensities of visible and UV radiation on epidermal UV-screening and photosynthesis in grape leaves (Vitis vinifera cv. Silvaner). Plant Physiol 127:863–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krizek DT, Britz SJ, Mirecki RM (1998) Inhibitory effects of ambient levels of solar UV-A and UV-B radiation on growth of cv. New Red Fire lettuce. Physiol Plantarum 103:1–7

    Article  CAS  Google Scholar 

  • Król A, Amarowicz R, Weidner S (2014) Changes in the composition of phenolic compounds and antioxidant properties of grapevine roots and leaves (Vitis vinifera L.) under continuous of long-term drought stress. Acta Physiol Plant 36:1491–1499

    Article  Google Scholar 

  • Kumar S, Pandey AK (2013) Chemistry and biological activities of flavonoids: an overview. Sci World J 2013:1–16

    Google Scholar 

  • Lachman J, Proněk D, Hejtmánková A, Dudjak J, Pivec V, Faitová K (2003) Total polyphenol and main flavonoid antioxidants in different onion (Allium cepa L.) varieties. Sci Hortic 30:142–147

    Google Scholar 

  • Latouche G, Bellow S, Poutaraud A, Meyer S, Cerovic ZG (2013) Influence of constitutive phenolic compounds on the response of grapevine (Vitis vinifera L.) leaves to infection by Plasmopara viticola. Planta 237:351–361

    Article  CAS  PubMed  Google Scholar 

  • Lejealle S, Evain S, Cerovic ZG (2010) Multiplex: a new diagnostic tool for management of nitrogen fertilization of turfgrass. In: 10th International conference on precision agriculture, vol 15, Denver

  • Lindoo SJ, Caldwell MM (1978) UV-B radiation induced inhibition of leaf expansion and promotion of anthocyanidin production. Plant Physiol 61:278–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Llorach R, Martínez-Sánchez A, Tomás-Barberán FA, Gil MI, Ferreres F (2008) Characterisation of polyphenols and antioxidant properties of five lettuce varieties and escarole. Food Chem 108:1028–1038

    Article  CAS  PubMed  Google Scholar 

  • Lovdal T, Olsen KM, Slimestad R, Verheul M, Lillo C (2010) Synergetic effects of nitrogen depletion, temperature, and light on the content of phenolic compounds and gene expression in leaves of tomato. Phytochemistry 71:605–613

    Article  CAS  PubMed  Google Scholar 

  • Mabry TJ, Markham KR, Thomas MB (1970) The systematic identification of flavonoids. Springer, Berlin

    Book  Google Scholar 

  • Mendez M, Jones DG, Manetas Y (1999) Enhanced UV-B radiation under field conditions increases anthocyanin and reduces the risk of photoinhibition but does not affect growth in the carnivorous plant Pinguicula vulgaris. New Phytol 144:275–282

    Article  CAS  Google Scholar 

  • Meyer S, Louis J, Moise N et al (2009) Developmental changes in spatial distribution of in vivo fluorescence and epidermal UV absorbance over Quercus petraea leaves. Ann Bot Lond 104:621–633

    Article  CAS  Google Scholar 

  • Morales LO, Tegelberg R, Brosche M, Keinanen M, Linfors A, Aphalo PJ (2010) Effects of solar UV-A and UV-B radiation on gene expression and phenolic accumulation in Betula pendula leaves. Tree Phisyol 30:923–934

    Article  CAS  Google Scholar 

  • Morales LO, Tegelberg R, Brosché M, Lindfors A, Siipola S, Aphalo PJ (2011) Temporal variation in epidermal flavonoids due to altered solar UV radiation is moderated by the leaf position in Betula pendula. Physiol Plant 143:261–270

    Article  CAS  PubMed  Google Scholar 

  • Müller V, Albert A, Winkler JB, Lankes C, Noga G, Hunsche M (2013) Ecologically relevant UV-B dose combined with high PAR intensity distinctly affect plant growth and accumulation of secondary metabolites in leaves of Centella asiatica L. Urban. J Photochem Photobiol B Biol 127:161–169

    Article  Google Scholar 

  • Murata N, Takahashi S, Nishiyama Y, Allakhverdiev SI (2007) Photoinhibition of photosystem II under environmental stress. Biochim Biophys Acta 1767:414–421

    Article  CAS  PubMed  Google Scholar 

  • Nicolle C, Carnat A, Fraisse D, Lamaison JL, Rock E, Michel H, Amouroux P, Remesy C (2004) Characterisation and variation of antioxidant micronutrients in lettuce (Lactuca sativa folium). J Sci Food Agric 84:2061–2069

    Article  CAS  Google Scholar 

  • Nishiyama Y, Yamamoto H, Allakhverdiev SI, Inaba M, Yokota A, Murata N (2001) Oxidative stress inhibits the repair of photodamage to the photosynthetic machinery. EMBO J 20:5587–5594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishiyama Y, Allakhverdiev SI, Murata N (2006) A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II. Biochim Biophys Acta 1757:742–749

    Article  CAS  PubMed  Google Scholar 

  • Ozgen S, Sekerci S (2011) Effect of leaf position on the distribution of phytochemicals and antioxidant capacity among green and red lettuce cultivars. Spanish J Agric Res 9:801–809

    Article  Google Scholar 

  • Parr AJ, Bolwell GP (2000) Phenols in the plant and in man. The potential for possible nutritional enhancement of the diet by modifying the phenols content in profile. J Sci Food Agric 80:985–1012

    Article  CAS  Google Scholar 

  • Pfündel EE, Ghozlen NB, Meyer S, Cerovic ZG (2007) Investigating UV screening in leaves by two different types of portable UV fluorimeters reveals in vivo screening by anthocyanins and carotenoids. Photosynth Res 93:205–221

    Article  PubMed  Google Scholar 

  • Qin C, Li Y, Niu W, Ding Y, Zhang R, Shang X (2010) Analysis and characterisation of anthocyanins in mulberry fruit. Czech J Food Sci 28:117–126

    CAS  Google Scholar 

  • Romani A, Pimnelli P, Galardi C, Sani G, Cimato A, Heimler D (2002) Polyphenols in greenhouse and open-air-grown lettuce. Food Chem 79:337–342

    Article  CAS  Google Scholar 

  • Scalbert A, Williamson G (2000) Dietary intake and bioavailability of polyphenols. J Nutr 130:2073–2085

    Google Scholar 

  • Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16:144–158

    CAS  Google Scholar 

  • Sivankalyani V, Feygenberg O, Diskin S, Wright B, Alkan N (2016) Increased anthocyanin and flavonoids in mango fruit peel are associated with cold and pathogen resistance. Postharvest Biol Technol 111:132–139

    Article  CAS  Google Scholar 

  • Skaar I, Adaku C, Jordheim M, Byamukama R, Kiremire B, Andersen ØM (2014) Purple anthocyanin colouration on lower (abaxial) leaf surface of Hemigraphis colorata (Acanthaceae). Phytochemistry 105:141–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suthaparan A, Stensvand A, Solhaug KA, Torre S, Mortensen LM, Gadoury DM, Seem RC, Gislerød HR (2012) Suppression of powdery mildew (Podosphaera pannosa) in greenhouse roses by brief exposure to supplemental UV-B radiation. Plant Dis 96:1653–1660

    Article  CAS  Google Scholar 

  • Sytar O, Brestic M, Rai M, Shao HB (2012) Plant phenolic compounds for food, pharmaceutical and cosmetics production. J Med Plants Res 6:2526–2539

    CAS  Google Scholar 

  • Sytar O, Kosyan A, Taran N, Smetanska I (2014) Antocyanins as marker for selection of buckwheat plants with high rutin content. Gesunde Pflanz 66:165–169

    Article  CAS  Google Scholar 

  • Sytar O, Bruckova K, Hunkova E, Zivcak M, Konate K, Brestic M (2015) The application of multiplex fluorimetric sensor for the analysis of flavonoids content in the medicinal herbs family Asteraceae, Lamiaceae, Rosaceae. Biol Res 48:1–9

    Article  Google Scholar 

  • Sytar O, Zivcak M, Brestic M (2016) Noninvasive methods to support metabolomic studies targeted at plant phenolics for food and medicinal use. In: Hakeem KR, Tombuloglu H, Tombuloğlu G (eds) Plant omics: trends and applications. Springer, Switzerland, pp 406–432

    Google Scholar 

  • Teramura AH, Murali NS (1986) Intraspecific differences in growth and yield of soybean exposed to ultraviolet-B radiation under greenhouse and field conditions. Environ Exp Bot 26:89–95

    Article  Google Scholar 

  • Tevini M, Braun J, Fieser G (1991) The protective function of the epidermal layer of rye seedlings against ultraviolet-B radiation. Photochem Photobiol 53:329–333

    Article  CAS  Google Scholar 

  • Tremblay N, Wang Z, Bélec C (2007) Evaluation of the Dualex for the assessment of corn nitrogen status. J Plant Nutr 30:1355–1369

    Article  CAS  Google Scholar 

  • Tsormpatsidis E, Henbest RGC, Battey NH, Hadley P (2010) The influence of ultraviolet radiation on growth, photosynthesis and phenolic levels of green and red lettuce: potential for exploiting effects of ultraviolet radiation in a production system. Ann Appl Biol 156:357–366

    Article  CAS  Google Scholar 

  • Tuccio L, Remorini D, Pinelli P, Fierini E, Tonutti P, Scalabrelli G, Agati G (2011) Rapid and non-destructive method to assess in the vineyard grape berry anthocyanins under different seasonal and water conditions. Aust J Grape Wine Res 17:181–189

    Article  CAS  Google Scholar 

  • Weidner S, Frączek E, Amarowicz R, Abe S (2001) Alternations in phenolic acids content in developing rye grains in normal environment and during enforced dehydration. Acta Physiol Plant 23:475–482

    Article  CAS  Google Scholar 

  • Weidner S, Karamać M, Amarowicz R, Szypulska E, Golgowska A (2007) Changes in composition of phenolic compounds and antioxidant properties of Vitis amurensis seeds germinated under osmotic stress. Acta Physiol Plant 29:238–290

    Article  Google Scholar 

  • Wróbel M, Karmać M, Amarowicz R, Frączek E, Weidner S (2005) Metabolism of phenolic compounds in Vitis riparia seeds during stratification and during germination under optimal and low temperature stress conditions. Acta Physiol Plant 27:313–320

    Article  Google Scholar 

  • Zhang WJ, Björn LO (2009) The effect of ultraviolet radiation on the accumulation of medicinal compounds in plants. Fitoterapia 80:207–218

    Article  CAS  PubMed  Google Scholar 

  • Zivcak M, Olsovska K, Slamka P, Galambosova J, Rataj V, Shao HB, Brestic M (2014) Application of chlorophyll fluorescence performance indices to assess the wheat photosynthetic functions influenced by nitrogen deficiency. Plant Soil Environ 60:210–215

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the research projects VEGA-1-0923-16, APVV-15-0721,  by the EC project no. 26220220180: “Construction of the “AgroBioTech” Research Centre”, by Grants from the Russian Foundation for Basic Research, and by the Molecular and Cell Biology Programs of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marian Brestic or Suleyman I. Allakhverdiev.

Additional information

M. Zivcak and K. Brückova contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zivcak, M., Brückova, K., Sytar, O. et al. Lettuce flavonoids screening and phenotyping by chlorophyll fluorescence excitation ratio. Planta 245, 1215–1229 (2017). https://doi.org/10.1007/s00425-017-2676-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-017-2676-x

Keywords

Navigation