Skip to main content
Log in

Glandular trichomes of Tussilago Farfara (Senecioneae, Asteraceae)

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

The glandular trichomes are developed on the aerial organs of Tussilago farfara ; they produce phenols and terpenoids. Smooth endoplasmic reticulum and leucoplasts are the main organelles of the trichome secretory cells.

The aim of this study was to characterise the morphology, anatomy, histochemistry and ultrastructure of the trichomes in Tussilago farfara as well as to identify composition of the secretory products. Structure of trichomes located on the peduncles, bracts, phyllaries, and leaves were studied by light and electron microscopy. The capitate glandular trichomes consist of a multicellular head and a biseriate long stalk. Histochemical tests and fluorescence microscopy reveal phenols and terpenoids in the head cells. During secretory stage, the head cells contain smooth and rough endoplasmic reticulum, Golgi apparatus, diversiform leucoplasts with opaque contents in lamellae, chloroplasts, mitochondria, and microbodies. In the capitate glandular trichomes of T. farfara subcuticular cavity is absent, unlike glandular trichomes in other Asteraceae species. For the first time, content of metabolites in the different vegetative and reproductive organs as well as in the isolated capitate glandular trichomes was identified by GC–MS. Forty-five compounds, including organic acids, sugars, polyols, phenolics, and terpenoids were identified. It appeared that metabolite content in the methanol extracts from peduncles, bracts and phyllaries is biochemically analogous, and similar to the metabolites from leaves, in which photosynthesis happens. At the same time, the metabolites from trichome extracts essentially differ and refer to the above-mentioned secondary substances. The study has shown that the practical value of the aerial organs of coltsfoot is provided with flavonoids produced in the capitate glandular trichomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ACGT:

Capitate glandular trichomes collected in April

CGT:

Capitate glandular trichomes

FM:

Fluorescent microscopy

GC–MS:

Gas chromatography–mass spectrometry

LM:

Light microscopy

MCGT:

Capitate glandular trichomes collected in May

MSD:

Mass selective detector

NGH:

Non-glandular hairs

PCA:

Principal component analysis

SEM:

Scanning electron microscopy

TIC:

Total ion chromatograms

References

  • Adedeji O, Jewoola OA (2008) Importance of leaf epidermal characters in the Asteraceae family. Not Bot Hort Agrobot Cluj 36:7–16

    Google Scholar 

  • Afolayan AJ, Meyer JJM (1995) Morphology and ultrastructure of secreting and nonsecreting foliar trichomes of Helichrysum aureonitens (Asteraceae). Int J Plant Sci 156:481–487

    Article  Google Scholar 

  • Alves KCM, Gobbo-Neto L, Lopes NP (2008) Sesquiterpene lactones and flavonoids from Lychnophora reticulata Gardn. (Asteraceae). Biochem Syst Ecol 36:434–436

    Article  CAS  Google Scholar 

  • Andreucci AC, Ciccarelli D, Desideri I, Pagni AM (2008) Glandular hairs and secretory ducts of Matricaria chamomilla (Asteraceae): morphology and histochemistry. Ann Bot Fennici 45:11–18

    Article  Google Scholar 

  • Appezzato-Da-Glória B, Hayashi AH, Cury G, Soares MKM, Rocha R (2008) Occurrence of secretory structures in underground systems of seven Asteraceae species. Bot J Linn Soc 157:789–796

    Article  Google Scholar 

  • Appezzato-da-Glória B, Da Costa FB, da Silva VC, Gobbo-Neto L, Rehder VLG, Hayashi AH (2012) Glandular trichomes on aerial and underground organs in Chrysolaena species (Vernonieae–Asteraceae): structure, ultrastructure and chemical composition. Flora 207:878–887

    Article  Google Scholar 

  • Ascensäo L, Pais MSS (1987) Glandular trichomes of Artemisia campestris (ssp. maritima): ontogeny and histochemistry of the secretory product. Bot Gaz 148:221–227

    Article  Google Scholar 

  • Bardy G, Virsolvy A, Quignard JF, Ravier MA, Bertrand G, Dalle S, Cros G, Magous R, Richard S, Oiry C (2013) Quercetin by direct activation of L-type calcium channels in pancreatic beta cells. Br J Pharmacol 169:1102–1113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calderon-Montaño JM, Burgos-Moron E, Perez-Guerrero C, Lopez-Lazaro M (2011) A review on the dietary flavonoid kaempferol. Mini Rev Med Chem 11:298–344

    Article  PubMed  Google Scholar 

  • Carlquist S (1958) Structure and ontogeny of glandular trichomes of Madinae (Compositae). Am J Bot 45:675–682

    Article  Google Scholar 

  • Castro MM, Leitão-Filho HF, Monteiro WR (1997) Utilização de estruturas secretoras na identificação dos gêneros de Asteraceae de uma vegetação de cerrado. Rev bras Bot 20:163–174

    Article  Google Scholar 

  • Chanaj-Kaczmarek J, Wojcińska M, Matławska I (2013) Phenolics in the Tussilago farfara leaves. Herba Pol 89:35–43

    Google Scholar 

  • Cheniclet C, Carde J-P (1985) Presence of leucoplasts in secretory cells and of monoterpenes in the essential oil: a correlative study. Isr J Bot 34:219–238

    Google Scholar 

  • Ciccarelli D, Garbari F, Pagni AM (2007) Glandular hairs of the ovary: a helpful character for Asteroideae (Asteraceae) taxonomy? Ann Bot Fennici 44:1–7

    Google Scholar 

  • Clark G (1981) Miscellaneous methods. In: Clark G (ed) Staining procedures. Williams and Wilkins, London, pp 171–215

    Google Scholar 

  • Cron GV, Balkwill K, Knox EB (2006) Two new species of Cineraria (Senecioneae, Asteraceae) from KwaZulu-Natal, South Africa. SAJB 72:34–39

    Article  Google Scholar 

  • David R, Carde J-P (1964) Coloration differentiele des inclusions lipidique et terpeniques des pseudophilles du pin maritime au moyen du reactif nadi. CR Acad Sci D 258:1338–1340

    CAS  Google Scholar 

  • Duke SO, Paul RN (1993) Development and fine structure of the glandular trichomes of Artemisia annua L. Int J Plant Sci 154:107–118

    Article  Google Scholar 

  • Eller BM, Willi P (1977) The significance of leaf pubescence for the absorption of global radiation by Tussilago farfara L. Oecologia 29:179–187

    Article  Google Scholar 

  • Emons AMC (1987) The cytoskeleton and secretory vesicles in root hairs of Equisetum and Limnobium and cytoplasmic streaming in root hairs of Equisetum. Ann Bot 60:625–632

    Google Scholar 

  • Favi F, Cantrell CL, Mebrahtu T, Kraemer MBE (2008) Leaf peltate glandular trichomes of Vernonia galamensis ssp. galamensis var. ethiopica Gilbert: development, ultrastructure, and chemical composition. Int J Plant Sci 169:605–614

    Article  CAS  Google Scholar 

  • Figueiredo AC, Pais MS (1994) Ultrastructural aspects of the glandular cells from the secretory trichomes and from the cell suspension cultures of Achillea millefolium L. ssp. millefolium. Ann Bot 74:179–190

    Article  Google Scholar 

  • Furst GG (1979) Methods of anatomical and histochemical studies of plant tissues. Nauka, Moscow

    Google Scholar 

  • Gahan PB (1984) Plant histochemistry and cytochemistry. Academic Press, London

    Google Scholar 

  • Gang DR, Wang J, Dudareva N, Nam KH, Simon JE, Lewinsohn E, Pichersky E (2001) An investigation of the storage and biosynthesis of phenylpropenes in sweet basil. Plant Physiol 125:539–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao H, Yi-Na Huang, Gao Bo Xu, Pei-Yu Inagaki C, Kawabata J (2008) α-Glucosidase inhibitory effect by the flower buds of Tussilago farfara L. Food Chem 106:1195–1201

    Article  CAS  Google Scholar 

  • Gersbach PV (2002) The essential oil secretory structures of Prostanthera ovalifolia (Lamiaceae). Ann Bot 89:255–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gershenzon J, McCaskill D, Rajaonarivony JIM, Mihaliak C, Karp F, Croteau R (1992) Isolation of secretory cells from plant glandular trichomes and their use in biosynthetic studies of monoterpenes and other gland products. Anal Biochem 200:130–138

    Article  CAS  PubMed  Google Scholar 

  • Göpfert JC, Heil N, Conrad J, Spring O (2005) Cytological development and sesquiterpene lactone secretion in capitate glandular trichomes of sunflower. Plant Biol 7:148–155

    Article  PubMed  Google Scholar 

  • Gutmann M (1995) Improved staining procedures for photographic documentation of phenolic deposits in semithin sections of plant tissue. J Microscopy 179:277–281

    Article  CAS  Google Scholar 

  • Halket JM, Waterman D, Przyborowska AM, Patei RK, Fraser PD, Bramley PM (2005) Chemical derivatization and mass spectral libraries in metabolic profiling by GC/MS and LC/MS/MS. J Exp Bot 56:219–243

    Article  CAS  PubMed  Google Scholar 

  • Harborne JH, Williams CA (2000) Advances in flavonoid research since 1992. Phytochemistry 55:481–504

    Article  CAS  PubMed  Google Scholar 

  • Hariri EB, Salle G, Andary C (1991) Involvement of flavonoids in the resistance of two poplar cultivars to mistletoe (Viscum album L.). Protoplasma 162:20–26

    Article  CAS  Google Scholar 

  • Heinrich G, Pfeifhofer HW, Stabentheiner E, Sawidis T (2002) Glandular hairs of Sigesbeckia jorullensis Kunth (Asteraceae): morphology, histochemistry and composition of essential oil. Ann Bot 89:459–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanani H, Chrysanthopoulo PK, Klap MI (2008) Standardizing GC-MS metabolomics. J Chromatogr B 871:191–201

    Article  CAS  Google Scholar 

  • Kelsey RG, Shafizadeh F (1980) Glandular trichomes and sesquiterpene lactones of Artemisia nova (Asteraceae). Biochem Syst Ecol 8:371–377

    Article  CAS  Google Scholar 

  • Kindl HH (1993) Fatty acid degradation in plant peroxisomes: function and biosynthesis of enzymes involved. Biochimie 75:225–230

    Article  CAS  PubMed  Google Scholar 

  • Kokoska L, Polesny Z, Rada V, Nepovim A, Vanek T (2002) Screening of some Siberian medicinal plants for antimicrobial activity. J Ethnopharmacol 82:51–53

    Article  CAS  PubMed  Google Scholar 

  • Krak K, Mráz P (2008) Trichomes in the tribe Lactuceae (Asteraceae)–taxonomic implications. Biologia 63:616–630

    Article  Google Scholar 

  • Li Z-Y, Hai-Juan Zhi, Fu-Sheng Zhang, Hai-Feng Sun, Li-Zeng Zhang, Jin-Ping Jia, Jie Xing, Xue-Mei Qin (2013) Metabolomic profiling of the antitussive and expectorant plant Tussilago farfara L. by nuclear magnetic resonance spectroscopy and multivariate data analysis. J Pharm Biomed Anal 75:158–164

    Article  CAS  PubMed  Google Scholar 

  • Markham KR, Ryan KG, Gould KS, Rickards GK (2000) Cell wall sited flavonoids in lisianthus flower petals. Phytochemistry 54:681–687

    Article  CAS  PubMed  Google Scholar 

  • McCaskill DM, Croteau R (1995) Monoterpene and sesquiterpene biosynthesis in glandular trichomes of peppermint (Mentha × piperita) rely exclusively on plastid-derived isopentenyl diphosphate. Planta 197:49–56

    Article  CAS  Google Scholar 

  • Milan P, Hayashi AH, Appezzato-da-Glória B (2006) Comparative leaf morphology and anatomy of three Asteraceae species. Braz Arch Biol Technol 49:135–144

    Article  Google Scholar 

  • Monteiro WR, Castro MM, Mazzoni-Viveiros SC (2001) Development and some histochemical aspects of foliar glandular trichomes of Stevia rebaudiana (Bert.) Bert.–Asteraceae. Rev Bras Bot 24:349–357

    Article  CAS  Google Scholar 

  • Munien P, Naidoo Y, Naidoo G (2015) Micromorphology, histochemistry and ultrastructure of the foliar trichomes of Withania somnifera (L.) Dunal (Solanaceae). Planta 242:1107–1122

    Article  CAS  PubMed  Google Scholar 

  • Muravnik LE, Shavarda AL (2011) Pericarp peltate trichomes in Pterocarya rhoifolia: histochemistry, ultrastructure, and chemical composition. Int J Plant Sci 172:159–172

    Article  CAS  Google Scholar 

  • Muravnik LE, Shavarda AL (2012) Leaf glandular trichomes in Empetrum nigrum: morphology, histochemistry, ultrastructure and secondary metabolites. Nord J Bot 30:470–481

    Article  Google Scholar 

  • Naidoo Y, Karim T, Heneidak S, Sadashiva CT, Naidoo G (2012) Glandular trichomes of Ceratotheca triloba (Pedaliaceae): morphology, histochemistry and ultrastructure. Planta 236:1215–1226

    Article  CAS  PubMed  Google Scholar 

  • Napp-Zinn K, Eble M (1980) Beiträge zur Systematischen Anatomie der Asteraceae—Anthemideae: Die Trichome. Plant Syst Evol 136:169–207

    Article  Google Scholar 

  • Natural Medicines Comprehensive Database (2007) Tussilago farfara Linn. Indian Medicinal Plants. Springer, New York

    Google Scholar 

  • Nikolakaki A, Christodoulakis NS (2004) Leaf structure and cytochemical investigation of secretory tissues in Inula viscosa. Bot J Linn Soc 144:437–448

    Article  Google Scholar 

  • NIST (National Institute of Standards and Technology) (2014) NIST/EPA/NIH mass spectral library (NIST 14). US Department of Commerce, Gaithersburg

    Google Scholar 

  • Pagni AM, Orlando R, Masini A, Ciccarelli D (2003) Secretory structures of Santolina ligustica Arrigoni (Asteraceae), an Italian endemic species. Isr J Plant Sci 51:185–192

    Article  Google Scholar 

  • Rieseberg LH, Soltis DE, Arnold D (1987) Variation and localization of flavonoid aglycones in Helianthus annuus (Compositae). Am J Bot 74:224–233

    Article  CAS  Google Scholar 

  • Schnepf E (1969) Über den Feinbau von Öldrüsen. III. Die Ölgänge von Solidago canadensis und die Exkretschläuche von Arctium lappa. Protoplasma 67:205–212

    Article  Google Scholar 

  • Schopker H, Kneisel M, Beerhues L, Robenek H, Wiermann R (1995) Phenylalanine ammonia-lyase and chalkone synthase in glands of Primula kewensis (W. Wats): immunofluorescence and immunogold localization. Planta 196:712–719

    Article  Google Scholar 

  • Schreiber L (2005) Polar paths of diffusion across plant cuticles: new evidence for an old hypothesis. Ann Bot 95:1069–1073

    Article  PubMed  PubMed Central  Google Scholar 

  • Seaman F (1982) Sesquiterpene lactones as taxonomic characters in the Asteraceae. Bot Rev 48:121–594

    Article  CAS  Google Scholar 

  • Spring O (2000) Chemotaxonomy based on metabolites from glandular trichomes. Adv Bot Res 31:153–174

    Article  CAS  Google Scholar 

  • Swenson U (1995) Systematics of Abrotanella an amphi-pacific genus of Asteraceae (Senecioneae). Plant Syst Evol 197:149–193

    Article  Google Scholar 

  • Tateo F, Cornara L, Bononi M, Mariotti MG, Serrato-Valenti G (2001) Trichomes on vegetative and reproductive organs of Stevia rebaudiana (Asteraceae). Structure and secretory products. Plant Biosyst 135:25–37

    Article  Google Scholar 

  • Tattini M, Gravano E, Pinelli P, Mulinacci N, Romani A (2000) Flavonoids accumulate in leaves and glandular trichomes of Phillyrea latifolia exposed to excess solar radiation. New Phytol 148:69–77

    Article  CAS  Google Scholar 

  • Thomas MM, Rudall PJ, Ellis AG, Savolainen V, Glover BJ (2009) Development of a complex floral trait: the pollinator-attracting petal spots of the beetle daisy, Gorteria diffusa (Asteraceae). Am J Bot 96:2184–2196

    Article  PubMed  Google Scholar 

  • Turner GW, Gershenzon J, Croteau RB (2000) Development of peltate glandular trichomes of peppermint. Plant Physiol 124:665–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valkama E, Salminen J-P, Koricheva J, Pihlaja K (2003) Comparative analysis of leaf trichome structure and composition of epicuticular flavonoids in finnish birch species. Ann Bot 91:643–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vassilyev AE (2000) Quantitative ultrastructural data of secretory duct epithelial cells in Rhus toxicodendron. Int J Plant Sci 161:615–630

    Article  CAS  Google Scholar 

  • Vermeer J, Peterson RL (1979) Glandular trichomes on the inforescence of Chrysanthemum morifolium cv. Dramatic (Compositae). II. Ultrastructure and histochemistry. Can J Bot 57:714–729

    Google Scholar 

  • Werker E, Fahn A (1981) Secretory hairs of Inula viscosa (L.) Ait.- Development, ultrastructure and secretion. Bot Gaz 142:461–476

    Article  Google Scholar 

  • Winkel-Shirley B (1999) Evidence for enzyme complexes in the phenylpropanoid and flavonoid pathways. Physiol Plant 107:142–149

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Core Centre ‘Cell and Molecular Technology in the Plant Science’ at the Komarov Botanical Institute (St. Petersburg, Russia) for provision of equipment for light and electron microscopy and the Resource Centre at the St. Petersburg State University for providing with GC–MS equipment. The present study was carried out within the framework of the institutional research project (01201255608) of the Komarov Botanical Institute of the Russian Academy of Sciences and supported by the Russian Foundation of Basic Research (Grant 13-04-00797).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lyudmila E. Muravnik.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muravnik, L.E., Kostina, O.V. & Shavarda, A.L. Glandular trichomes of Tussilago Farfara (Senecioneae, Asteraceae). Planta 244, 737–752 (2016). https://doi.org/10.1007/s00425-016-2539-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-016-2539-x

Keyword

Navigation