Skip to main content
Log in

Sunflower (Helianthus annuus) fatty acid synthase complex: β-hydroxyacyl-[acyl carrier protein] dehydratase genes

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Two sunflower hydroxyacyl-[acyl carrier protein] dehydratases evolved into two different isoenzymes showing distinctive expression levels and kinetics’ efficiencies.

β-Hydroxyacyl-[acyl carrier protein (ACP)]-dehydratase (HAD) is a component of the type II fatty acid synthase complex involved in ‘de novo’ fatty acid biosynthesis in plants. This complex, formed by four intraplastidial proteins, is responsible for the sequential condensation of two-carbon units, leading to 16- and 18-C acyl-ACP. HAD dehydrates 3-hydroxyacyl-ACP generating trans-2-enoyl-ACP. With the aim of a further understanding of fatty acid biosynthesis in sunflower (Helianthus annuus) seeds, two β-hydroxyacyl-[ACP] dehydratase genes have been cloned from developing seeds, HaHAD1 (GenBank HM044767) and HaHAD2 (GenBank GU595454). Genomic DNA gel blot analyses suggest that both are single copy genes. Differences in their expression patterns across plant tissues were detected. Higher levels of HaHAD2 in the initial stages of seed development inferred its key role in seed storage fatty acid synthesis. That HaHAD1 expression levels remained constant across most tissues suggest a housekeeping function. Heterologous expression of these genes in E. coli confirmed both proteins were functional and able to interact with the bacterial complex ‘in vivo’. The large increase of saturated fatty acids in cells expressing HaHAD1 and HaHAD2 supports the idea that these HAD genes are closely related to the E. coli FabZ gene. The proposed three-dimensional models of HaHAD1 and HaHAD2 revealed differences at the entrance to the catalytic tunnel attributable to Phe166/Val1159, respectively. HaHAD1 F166V was generated to study the function of this residue. The ‘in vitro’ enzymatic characterization of the three HAD proteins demonstrated all were active, with the mutant having intermediate K m and V max values to the wild-type proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ACP:

Acyl carrier protein

DAF:

Days after flowering

DAG:

Days after germination

ENR:

Enoyl-ACP reductase

FAS:

Fatty acid synthase

HAD:

β-Hydroxyacyl-ACP dehydratase

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brock DJH, Kass LR, Bloch K (1967) Beta-hydroxydecanoyl thioester dehydrase.II, Mode of action. J Biol Chem 242:4432–4440

    CAS  PubMed  Google Scholar 

  • Brown A, Affleck V, Kroon J, Slabas A (2009) Proof of function of a putative 3-hydroxyacyl-acyl carrier protein dehydratase from higher plants by mass spectrometry of product formation. FEBS Lett 583:363–368

    Article  CAS  PubMed  Google Scholar 

  • Cronan JE, Gelmann EP (1973) Estimate of minimum amount of unsaturated fatty-acid required for growth of Escherichia coli. J Biol Chem 248:1188–1195

    CAS  PubMed  Google Scholar 

  • Dautu G, Ueno A, Munyaka B, Carmen G, Makino S, Kobayashi Y, Igarashi M (2008) Molecular and biochemical characterization of Toxoplasma gondii β-hydroxyacyl-acyl carrier protein dehydratase (FABZ). Parasitol Res 102:1301–1309

    Article  PubMed  Google Scholar 

  • Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2:953–971. doi:10.1038/nprot.2007.131

    Article  CAS  PubMed  Google Scholar 

  • Garwin JL, Klages AL, Cronan JE (1980) Beta-ketoacyl-acyl carrier protein synthase-II of Escherichia coli. Evidence for function in the thermal regulation of fatty acid synthesis. J Biol Chem 255:3263–3265

    CAS  PubMed  Google Scholar 

  • Goksøyr J (1967) Evolution of eucaryotic cells. Nature 214:1161. doi:10.1038/2141161a0

    Article  PubMed  Google Scholar 

  • González-Mellado D, von Wettstein-Knowles P, Garcés R, Martínez-Force E (2010) The role of beta-ketoacyl-acyl carrier protein synthase III in the condensation steps of fatty acid biosynthesis in sunflower. Planta 231:1277–1289. doi:10.1007/s00425-010-1131-z

    Article  PubMed  Google Scholar 

  • González-Thuillier I, Venegas-Calerón M, Garcés R, von Wettstein-Knowles P, Martínez-Force E (2015) Sunflower (Helianthus annuus) fatty acid synthase complex: enoyl-[acyl carrier protein]-reductase genes. Planta 241:43–56. doi:10.1007/s00425-014-2162-7

    Article  PubMed  Google Scholar 

  • Harwood J (2005) Fatty acid biosynthesis. In: Murphy DJ (ed) Plant lipids: Biology, utilisation and manipulation. Blackwell Publishing, Oxford, pp 27–66

    Google Scholar 

  • Heath RJ, Rock CO (1996) Roles of the FabA and FabZ beta-hydroxyacyl-acyl carrier protein dehydratases in Escherichia coli fatty acid biosynthesis. J Biol Chem 271:27795–27801

    Article  CAS  PubMed  Google Scholar 

  • Høj PB, Mikkelsen JD (1982) Partial separation of individual enzyme-activities of an ACP-dependent fatty-acid synthetase from barley chloroplasts. Carlsberg Res Commun 47:119–141. doi:10.1007/Bf02914031

    Article  Google Scholar 

  • Kimber MS, Martin F, Lu YJ, Houston S, Vedadi M, Dharamsi A, Fiebig KM, Schmid M, Rock CO (2004) The structure of (3R)-hydroxyacyl-acyl carrier protein dehydratase (FabZ) from Pseudomonas aeruginosa. J Biol Chem 279:52593–52602. doi:10.1074/jbc.M408105200

    Article  CAS  PubMed  Google Scholar 

  • Kostrewa D, Winkler FK, Folkers G, Scapozza L, Perozzo R (2005) The crystal structure of PfFabZ, the unique beta-hydroxyacyl-ACP dehydratase involved in fatty acid biosynthesis of Plasmodium falciparum. Protein Sci 14:1570–1580. doi:10.1110/Ps.051373005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and clustal X version 2.0. Bioinformatics 23:2947–2948. doi:10.1093/bioinformatics/btm404

    Article  CAS  PubMed  Google Scholar 

  • Li MJ, Li AQ, Xia H, Zhao CZ, Li CS, Wan SB, Bi YP, Wang XJ (2009) Cloning and sequence analysis of putative type II fatty acid synthase genes from Arachis hypogaea L. J Biosciences 34:227–238

    Article  CAS  Google Scholar 

  • Liu WZ, Luo C, Han C, Peng SY, Yang YM, Yue JM, Shen X, Jiang HL (2005) A new beta-hydroxyacyl-acyl carrier protein dehydratase (FabZ) from Helicobacter pylori: molecular cloning, enzymatic characterization, and structural modeling. Biochem Bioph Res Comm 333:1078–1086

    Article  CAS  Google Scholar 

  • Maity K, Venkata BS, Kapoor N, Surolia N, Surolia A, Suguna K (2011) Structural basis for the functional and inhibitory mechanisms of β-hydroxyacyl-acyl carrier protein dehydratase (FabZ) of Plasmodium falciparum. J Struct Biol 176:238–249. doi:10.1016/j.jsb.2011.07.018

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Force E, Cantisan S, Serrano-Vega MJ, Garcés R (2000) Acyl-acyl carrier protein thioesterase activity from sunflower (Helianthus annuus L.) seeds. Planta 211:673–678

    Article  PubMed  Google Scholar 

  • May T, Soll J (2000) 14-3-3 proteins form a guidance complex with chloroplast precursor proteins in plants. Plant Cell 12:53–63. doi:10.1105/Tpc.12.1.53

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mayer KM, Shanklin J (2005) A structural model of the plant acyl-acyl carrier protein thioesterase FatB comprises two helix/4-stranded sheet domains, the N-terminal domain containing residues that affect specificity and the C-terminal domain containing catalytic residues. J Biol Chem 280:3621–3627. doi:10.1074/jbc.M411351200

    Article  CAS  PubMed  Google Scholar 

  • Mohan S, Kelly TM, Eveland SS, Raetz CR, Anderson MS (1994) An Escherichia coli gene (FabZ) encoding (3R)-hydroxymyristoyl acyl carrier protein dehydrase. Relation to FabA and suppression of mutations in lipid A biosynthesis. J Biol Chem 269:32896–32903

    CAS  PubMed  Google Scholar 

  • Moreno-Perez A, Sánchez-García A, Salas JJ, Garcés R, Martínez-Force E (2011) Acyl-ACP thioesterases from macadamia (Macadamia tetraphylla) nuts: cloning, characterization and their impact on oil composition. Plant Physiol Biochem 49:82–87

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method—a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Scholkopf B, Weigel D, Lohmann JU (2005) A gene expression map of Arabidopsis thaliana development. Nat Genet 37:501–506. doi:10.1038/Ng1543

    Article  CAS  PubMed  Google Scholar 

  • Serrano-Vega MJ, Garcés R, Martínez-Force E (2005) Cloning, characterization and structural model of a FatA-type thioesterase from sunflower seeds (Helianthus annuus L.). Planta 221:868–880. doi:10.1007/s00425-005-1502-z

    Article  CAS  PubMed  Google Scholar 

  • Sharma SK, Kapoor M, Ramya TNC, Kumar S, Kumar G, Modak R, Sharma S, Surolia N, Surolia A (2003) Identification, characterization, and inhibition of Plasmodium falciparum beta-hydroxyacyl-acyl carrier protein dehydratase (FabZ). J Biol Chem 278:45661–45671. doi:10.1074/jbc.M304283200

    Article  CAS  PubMed  Google Scholar 

  • Shimakata T, Stumpf PK (1982a) The procaryotic nature of the fatty-acid synthetase of developing Carthamus tinctorius L (safflower) seeds. Arch Biochem Biophys 217:144–154. doi:10.1016/0003-9861(82)90488-X

    Article  CAS  PubMed  Google Scholar 

  • Shimakata T, Stumpf PK (1982b) Purification and characterizations of β-ketoacyl-[acyl-carrier-protein] reductase, β-hydroxyacyl-[acyl-carrier-protein] dehydrase, and enoyl-[acyl-carrier-protein] reductase from Spinacia oleracea leaves. Arch Biochem Biophys 218:77–91. doi:10.1016/0003-9861(82)90323-X

    Article  CAS  PubMed  Google Scholar 

  • Smith S, Witkowski A, Joshi AK (2003) Structural and functional organization of the animal fatty acid synthase. Prog Lipid Res 42:289–317. doi:10.1016/S0163-7827(02)00067-X

    Article  CAS  PubMed  Google Scholar 

  • Swarnamukhi PL, Sharma SK, Bajaj P, Surolia N, Surolia A, Suguna K (2006) Crystal structure of dimeric FabZ of Plasmodium falciparum reveals conformational switching to active hexamers by peptide flips. FEBS Lett 580:2653–2660. doi:10.1016/j.febslet.2006.04.014

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599. doi:10.1093/molbev/msm092

    Article  CAS  PubMed  Google Scholar 

  • Venegas-Calerón M, Muro-Pastor AM, Garcés R, Martínez-Force E (2006) Functional characterization of a plastidial omega-3 desaturase from sunflower (Helianthus annuus) in cyanobacteria. Plant Physiol Biochem 44:517–525. doi:10.1016/j.plaphy.2006.09.005

    Article  PubMed  Google Scholar 

  • White SW, Zheng J, Zhang YM, Rock CO (2005) The structural biology of type II fatty acid biosynthesis. Annu Rev Biochem 74:791–831. doi:10.1146/annurev.biochem.74.082803.133524

    Article  CAS  PubMed  Google Scholar 

  • Yasuno R, von Wettstein-Knowles P, Wada H (2004) Identification and molecular characterization of the β-ketoacyl-[acyl carrier protein] synthase component of the Arabidopsis mitochondrial fatty acid synthase. J Biol Chem 279:8242–8251. doi:10.1074/jbc.M308894200

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Liu WZ, Hu TC, Du L, Luo C, Chen KX, Shen X, Jiang HL (2008) Structural basis for catalytic and inhibitory mechanisms of beta-hydroxyacyl-acyl carrier protein dehydratase (FabZ). J Biol Chem 283:5370–5379

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Alicia M. Muro-Pastor for help with Southern blot analysis and A. González-Callejas and B. Lopez-Cordero for skilful technical assistance. This work was supported by the “Ministerio de Economia y Competitividad” and FEDER project, AGL2011-23187. IGT was supported by a JAE-CSIC contract, in part financed by the European Social Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mónica Venegas-Calerón.

Electronic supplementary material

Below is the link to the electronic supplementary material.

425_2015_2410_MOESM1_ESM.tif

Fig. S1 Phylogenetic comparison of plant and algae β-hydroxyacyl-[ACP]- dehydratase homologues of the E. coli FabZ protein. H. annuus sequences are shown in bold (TIFF 59094 kb)

425_2015_2410_MOESM2_ESM.tif

Fig. S2 Purification of H. annuus recombinant HAD proteins. Coomassie blue-stained SDS-PAGE of empty pQE80L vector, recombinant HaHAD1, HaHAD2 and HaHAD F166V from XL1-Bl grown at 37 °C. S, soluble fraction; AF, affinity purified using one passage through a Ni2+-charged HisTrap FF column; kDa, size markers (TIFF 781 kb)

425_2015_2410_MOESM3_ESM.tif

Fig. S3 Activity of H. annuus β-hydroxyacyl-[ACP]-dehydratase proteins, HaHAD1, HaHAD2 and HaHAD1. The in vitro reverse reactions were performed in 17.9 mM potassium phosphate buffer, 1.6 mM DTT at pH 6.8, 25 °C with HaHAD1 (5 μg ml−1), HaHAD2 (5 μg ml−1) and HaHAD1 F166V (5 μg ml−1). The reaction was started by adding the substrate (crotonyl-CoA) at different concentrations (20-100 μM) and following the decrease in absorbance at 260 nm as crotonyl-CoA was hydrated. Results correspond to the average of three independent determinations (TIFF 31640 kb)

425_2015_2410_MOESM4_ESM.tif

Fig. S4 Schematic representation of E. coli fatty acid biosynthesis comparing the effect on the ratio of saturated to unsaturated fatty acids expressing H. annuus β-hydroxyacyl-[ACP]-dehydratases, HaHAD1 or HaHAD2 with functional EcFabZ. Proteins involved in fatty acid biosynthesis in E. coli are represented. FabZ, β-hydroxyacyl-[ACP]-dehydratase Z; FabA, β-hydroxydecanoyl-[ACP]-dehydratase A; FabB, β-ketoacyl-[ACP]-synthase I; FabI, enoyl-[ACP]-reductase. Symbols in grey define the bacterial pathway; in black represent the effect of expression of H. annuus β-hydroxyacyl-[ACP]-dehydratases in the E. coli cells (TIFF 1684 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González-Thuillier, I., Venegas-Calerón, M., Sánchez, R. et al. Sunflower (Helianthus annuus) fatty acid synthase complex: β-hydroxyacyl-[acyl carrier protein] dehydratase genes. Planta 243, 397–410 (2016). https://doi.org/10.1007/s00425-015-2410-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-015-2410-5

Keywords

Navigation