Skip to main content
Log in

Salt intolerance in Arabidopsis: shoot and root sodium toxicity, and inhibition by sodium-plus-potassium overaccumulation

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Arabidopsis plants in NaCl suffering half growth inhibition do not suffer osmotic stress and seldom shoot Na + toxicity; overaccumulation of Na + plus K + might trigger the inhibition.

It is widely assumed that salinity inhibits plant growth by osmotic stress and shoot Na+ toxicity. This study aims to examine the growth inhibition of Arabidopsis thaliana by NaCl concentrations that allow the completion of the life cycle. Unaffected Col-0 wild-type plants were used to define nontoxic Na+ contents; Na+ toxicities in shoots and roots were analyzed in hkt1 and sos1 mutants, respectively. The growth inhibition of Col-0 plants at 40 mM Na+ was mild and equivalent to that produced by 8 and 4 mM Na+ in hkt1 and sos1 plants, respectively. Therefore, these mutants allowed to study the toxicity of Na+ in the absence of an osmotic challenge. Col-0 and Ts-1 accessions showed very different Na+ contents but similar growth inhibitions; Ts-1 plants showed very high leaf Na+ contents but no symptoms of Na+ toxicity. Ak-1, C24, and Fei-0 plants were highly affected by NaCl showing evident symptoms of shoot Na+ toxicity. Increasing K+ in isotonic NaCl/KCl combinations dramatically decreased the Na+ content in all Arabidopsis accessions and eliminated the signs of Na+ toxicity in most of them but did not relieve growth inhibition. This suggested that the dominant inhibition in these conditions was either osmotic or of an ionic nature unspecific for Na+ or K+. Col-0 and Ts-1 plants growing in sorbitol showed a clear osmotic stress characterized by a notable decrease of their water content, but this response did not occur in NaCl. Overaccumulation of Na+ plus K+ might trigger growth reduction in NaCl-treated plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Achard P, Cheng H, De Grauwe L et al (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science 311:91–94

    Article  PubMed  CAS  Google Scholar 

  • Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2007) Molecular biology of the cell, 5th edn. Garland Science, New York

    Google Scholar 

  • Alemán F, Nieves-Cordones M, Martínez V, Rubio F (2009) Potassium/sodium steady-state homeostasis in Thelungiella halophila and Arabidopsis thaliana under long-term salinity conditions. Plant Sci 176:768–774

    Article  CAS  Google Scholar 

  • Algeo TJ, Scheckler SE (1998) Terrestrial-marine teleconnections in the Devonian: links between the evolution of land plants, weathering process, and marine anoxic events. Phil Trans R Soc Lond B 353:113–130

    Article  Google Scholar 

  • Amtmann A, Sanders D (1998) Mechanisms of Na+ uptake by plant cells. Adv Bot Res 29:75–112

    Article  Google Scholar 

  • Attia H, Arnaud N, Karray N, Lachaâl M (2008) Long-term effects of mild salt stress on growth, ion accumulation and superoxide dismutase expression of Arabidopsis rosette leaves. Physiol Plant 132:293–305

    Article  PubMed  CAS  Google Scholar 

  • Baxter I, Brazelton JN, Yu D et al (2010) A coastal cline in sodium accumulation in Arabidopsis thaliana is driven by natural variation of the sodium transporter AtHKT1;1. PLoS Genet 6(11):e1001193

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Benito B, Garciadeblás B, Schreier P, Rodríguez-Navarro A (2004) Novel P-type ATPases mediate high-affinity potassium or sodium uptake in fungi. Eukaryot Cell 3:359–368

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Benito B, Garciadeblás B, Pérez-Martín J, Rodríguez-Navarro A (2009) Growth at high pH and sodium and potassium tolerance in media above the cytoplasmic pH depend on ENA ATPases in Ustilago maydis. Eukaryot Cell 8:821–829

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Benito B, Gaciadeblás B, Fraile-Escanciano A, Rodríguez-Navarro A (2011) Potassium and sodium uptake in fungi. The transporter diversity in Magnaporthe oryzae. Fungal Genet Biol 48:812–822

    Article  PubMed  CAS  Google Scholar 

  • Benito B, Garciadeblás B, Rodríguez-Navarro A (2012) Hak transporters from Physcomitrella patens and Yarrowia lipolytica mediate sodium uptake. Plant Cell Physiol 53:1117–1123

    Article  PubMed  CAS  Google Scholar 

  • Benlloch M, Ojeda MA, Ramos J, Rodriguez-Navarro A (1994) Salt sensitivity and low discrimination between potassium and sodium in bean plants. Plant Soil 166:117–123

    Article  CAS  Google Scholar 

  • Bennett TH, Flowers TJ, Bromham L (2013) Repeated evolution of salt-tolerance in grasses. Biol Lett 9:20130029

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Berthomieu P, Conéjéro G, Nublat A et al (2003) Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance. EMBO J 22:2004–2014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blumwald E, Aharon GS, Apse MP (2000) Sodium transport in plant cells. Biochim Biophys Acta 1465:140–151

    Article  PubMed  CAS  Google Scholar 

  • Boyer JS (1965) Effects of osmotic water stress on metabolic rates of cotton plants with open stomata. Plant Physiol 40:229–234

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cheeseman JM (2013) The integration of activity in saline environments: problems and perspectives. Funct Plant Biol 40:759–774

    CAS  Google Scholar 

  • Clouse SD, Langford M (1996) Brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development. Plant Physiol 111:671–678

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Davenport RJ, Muñoz-Mayor A, Jha D, Essah PA, Rus A, Tester M (2007) The Na+ transporter AtHKT1;1 controls retrieval of Na+ from the xylem in Arabidosis. Plant Cell Environ 30:497–507

    Article  PubMed  CAS  Google Scholar 

  • Díaz-López L, Gimeno V, Lidón V, Simón I, Martínez V, García-Sánchez F (2012) The tolerance of Jatropha curcas seedlings to NaCl: an ecophysiological analysis. Plant Physiol Biochem 54:34–42

    Article  PubMed  CAS  Google Scholar 

  • Dolferus R (2014) To grow or not to grow: a stressful decision for plants. Plant Sci 229:247–261

    Article  PubMed  CAS  Google Scholar 

  • Evans HJ, Sorger G (1966) Role of mineral elements with emphasis on the univalent cations. Annu Rev Plant Physiol 17:47–76

    Article  CAS  Google Scholar 

  • Farquharson KL (2009) Targeted overexpression of a sodium transporter in the root stele increases salinity tolerance. Plant Cell 21:1875

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55:307–319

    Article  PubMed  CAS  Google Scholar 

  • Flowers TJ, Galal HK, Bromham L (2010) Evolution of halophytes: multiple origins of salt tolerance in land plants. Funct Plant Biol 37:604–612

    Article  Google Scholar 

  • Flowers TJ, Munns R, Colmer TD (2015) Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes. Ann Bot-London 115:419–431

    Article  Google Scholar 

  • Handa S, Bressan RA, Handa AK, Carpita NC, Hasegawa PM (1983) Solutes contributing to osmotic adjustment in cultured plant cells adapted to water stress. Plant Physiol 73:834–843

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Haro R, Bañuelos MA, Rodríguez-Navarro A (2010) High-affinity sodium uptake in land plants. Plant Cell Physiol 51:68–79

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa PM (2013) Sodium (Na+) homeostasis and salt tolerance of plants. Environ Exp Bot 92:19–31

    Article  CAS  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu J-K, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    Article  PubMed  CAS  Google Scholar 

  • Hauser F, Horie T (2010) A conserved primary salt tolerance mechanism mediated by HKT transporters: a mechanism for sodium exclusion and maintenance of high K+/Na+ ratio in leaves during salinity stress. Plant Cell Environ 33:552–565

    Article  PubMed  CAS  Google Scholar 

  • Heyser JW, Nabors MW (1981a) Growth, water content, and solute accumulation of two tobacco cell lines cultured on sodium chloride, dextran, and polyethylene glycol. Plant Physiol 68:1454–1459

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Heyser JW, Nabors MW (1981b) Osmotic adjustment of cultured tobacco cells (Nicotiana tabacum var. Samsum) grown on sodium chloride. Plant Physiol 67:720–727

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Horie T, Sugawara M, Okunou K, Nakayama H, Schroeder JI, Shinmyo A, Yoshida K (2008) Functions of HKT transporters in sodium transport in roots and in protecting leaves from salinity stress. Plant Biotechnol 25:233–239

    Article  CAS  Google Scholar 

  • Horie T, Hauser F, Schroeder JI (2009) HKT transporter-mediated salinity resistance mechanism in Arabidopsis and monocot plants. Trends Plant Sci 14:660–668

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jha D, Shirley N, Tester M, Roy SJ (2010) Variation in salinity tolerance and shoot sodium accumulation in Arabidopsis ecotypes linked to differences in the natural expression levels of transporters involved in sodium transport. Plant Cell Environ 33:793–804

    PubMed  CAS  Google Scholar 

  • Kaddour R, M’rah S, Karray-Bouraoui N, Lambert C, Berthomieu P, Lahaâl M (2010) Physiological and molecular characterization of salt response of Arabidopsis thaliana NOK2 ecotype. Acta Physiol Plant 32:503–510

    Article  CAS  Google Scholar 

  • Katori T, Ikeda A, Iuchi S et al (2010) Dissecting the genetic control of natural variation in salt tolerance of Arabidopsis thaliana accessions. J Exp Bot 61:1125–1138

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kinraide TB (1999) Interactions among Ca2+, Na+ and K+ in salinity toxicity: quantitative resolution of multiple toxic and ameliorative effects. J Exp Bot 50:1495–1505

    Article  CAS  Google Scholar 

  • Kronzucker HJ, Coskun D, Schulze LM, Wong JR, Britto DT (2013) Sodium as nutrient and toxicant. Plant Soil 369:1–23

    Article  CAS  Google Scholar 

  • Labidi N, Lachaâl M, Chibani F, Grignon C, Hajji M (2002) Variability of the response to sodium chloride of eight ecotypes of Arabidopsis thaliana. J Plant Nut 25:2627–2638

    Article  CAS  Google Scholar 

  • Lauter DJ, Meiri A, Shuali M (1988) Isoosmotic regulation of cotton and peanut at saline concentrations of K and Na. Plant Physiol 87:911–916

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu J, Zhu J-K (1997) An Arabidopsis mutant that requires increased calcium for potassium nutrition and salt tolerance. Proc Natl Acad Sci USA 94:14960–14964

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu T-Y, Chang C-Y, Chiou T-J (2009) The long-distance signaling of mineral macronutrients. Curr Opin Plant Biol 12:312–319

    Article  PubMed  CAS  Google Scholar 

  • Maathuis FJM, Amtmann A (1999) K+ nutrition and Na+ toxicity: the basis of cellular K+/Na+ ratios. Ann Bot 84:123–133

    Article  CAS  Google Scholar 

  • Maggio A, Miyazaki S, Veronese P et al (2002) Does proline accumulation play an active role in stress-induced growth reduction? Plant J 31:699–712

    Article  PubMed  CAS  Google Scholar 

  • Maggio A, Raimondi G, Martino A, Pascale SD (2007) Salt stress response in tomato beyond the salinity tolerance threshold. Environ Exp Bot 59:276–282

    Article  CAS  Google Scholar 

  • Mäser P, Eckelman B, Vaidyanathan R et al (2002) Altered shoot/root Na+ distribution and bifurcating salt sensitivity in Arabidopsis by genetic disruption of the Na+ transporter AtHKT1. FEBS Lett 531:157–161

    Article  PubMed  Google Scholar 

  • Moller IS, Tester M (2007) Salinity tolerance of Arabidospsis: a good model for cereals? Trends Plant Sci 12:534–540

    Article  PubMed  CAS  Google Scholar 

  • Moller IS, Gilliham M, Jha D et al (2009) Shoot Na+ exclusion and increased salinity tolerance engineered by cell type-specific alteration of Na+ transport in Arabidopsis. Plant Cell 21:2163–2178

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morgan JM (1984) Osmoregulation and water stress in higher plants. Annu Rev Plant Physiol 35:299–319

    Article  Google Scholar 

  • Munns R (1993) Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses. Plant Cell Environ 16:15–24

    Article  CAS  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  PubMed  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol Plant 15:473–479

    Article  CAS  Google Scholar 

  • Pardo JM, Quintero FJ (2002) Plants and sodium ions: keeping company with the enemy. Genome Biol 3:1017.1011–1017.1013

  • Plett D, Safwat G, Moller IS et al (2010) Improved salinity tolerance of rice through cell type-specific expression of AtHKT1;1. PLoS ONE 5(9):e12571

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qiu QS, Barkla BJ, Vera-Estrella R, Zhu JK, Schumaker KS (2003) Na+/H+ exchange activity in the plasma membrane of Arabidopsis. Plant Physiol 132:1041–1052

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Quesada V, García-Martínez S, Piqueras P, Ponce MR, Micol JL (2002) Genetic architecture of NaCl tolerance in Arabidopsis. Plant Physiol 130:951–963

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rahnama A, James RA, Poustini K, Munns R (2010) Stomatal conductance as a screen for osmotic stress tolerance in durum wheat growing in saline soil. Funct Plant Biol 37:255–263

    Article  Google Scholar 

  • Rajendran K, Tester M, Roy SJ (2009) Quantifying the three main components of salinity tolerance in cereals. Plant Cell Environ 32:237–249

    Article  PubMed  CAS  Google Scholar 

  • Robinson SP, Downton WJS, Millhouse JA (1983) Photosynthesis and ion content of leaves and isolated chloroplasts of salt-treated spinach. Plant Physiol 73:238–242

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rodríguez-Navarro A, Rubio F (2006) High-affinity potassium and sodium transport systems in plants J Exp Bot 57:1149–1160

  • Ronchi A, Farina G, Gozzo F, Tonelli C (1997) Effects of a triazolic fungicide on maize plant metabolism: modifications of transcript abundance in resistance-related pathways. Plant Sci 130:51–62

    Article  CAS  Google Scholar 

  • Roy SJ, Negrao S, Tester M (2014) Salt resistant crop plants. Curr Opin Biotech 26:115–124

    Article  PubMed  CAS  Google Scholar 

  • Rozema J, Schat H (2013) Salt tolerance of halophytes, research questions reviewed in the perspective of saline agriculture. Environ Exp Bot 92:83–95

    Article  CAS  Google Scholar 

  • Rus A, Lee BH, Munoz-Mayor A et al (2004) AtHKT1 facilitates Na+ homeostasis and K+ nutrition in planta. Plant Physiol 136:2500–2511

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rus A, Baxter I, Muthukumar B, Gustin J, Lahner B, Yakubova E, Salt DE (2006) Natural variants of AtHKT1 enhance Na+ accumulation in two wild populations of Arabidopsis. PLoS Genet 2(12):e210

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Salim M (1989) Effects of salinity and relative humidity on growth and ionic relations of plants. New Phytol 113:13–20

    Article  Google Scholar 

  • Schulze LM, Britto DT, Li M, Kronzucker HJ (2012) A pharmacological analysis of high-affinity sodium transport in barley (Hordeum vulgare L.): a 24Na+/42K+ study. J Exp Bot 63:2479–2489

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shabala S, Cuin TA (2007) Potassium transport and plant salt tolerance. Physiol Plant 133:651–669

    Article  CAS  Google Scholar 

  • Shalhevet J, Hsiao TC (1986) Salinity and drought. A comparison of their effects on osmotic adjustment, assimilation, transpiration and growth. Irrig Sci 7:249–264

    Article  CAS  Google Scholar 

  • Shelden MC, Roessner U, Sharp RE, Tester M, Bacic A (2013) Genetic variation in the root growth response of barley genotypes to salinity stress. Funct Plant Biol 40:516–530

    Article  CAS  Google Scholar 

  • Shi H, Ishitani M, Kim C, Zhu J-K (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci USA 97:6896–6901

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shi H, Quintero FJ, Pardo JM, Zhu J-K (2002) The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. Plant Cell 14:465–477

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Slayter RO (1961) Effects of several osmotic substrates on the water relationships of tomato. Aust J Biol Sci 14:519–540

    Google Scholar 

  • Sparks E, Wachsman G, Benfey PN (2013) Spatiotemporal signalling in plant development. Nature Rev Genet 14:631–644

    Article  PubMed  CAS  Google Scholar 

  • Steinbach HB (1962) The prevalence of K. Perspect Biol Med 69:2015–2026

    Google Scholar 

  • Sunarpi Horie T, Motoda J et al (2005) Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na+ unloading from xylem vessels to xylem parenchyma cells. Plant J 44:928–938

    Article  PubMed  CAS  Google Scholar 

  • Teakle NL, Tyerman SD (2010) Mechanisms of Cl transport contributing to salt tolerance. Plant Cell Environ 33:566–589

    Article  PubMed  CAS  Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Oosten MJ, Sharkhuu A, Batelli G, Bressan RA, Maggio A (2013) The Arabidopsis thaliana mutant air1 implicates SOS3 in the regulation of anthocynins under salt stress. Plant Mol Biol 83:405–415

    Article  PubMed  CAS  Google Scholar 

  • Wu S-J, Ding L, Zhu J-K (1996) SOS1, a genetic locus essential for salt tolerance and potassium acquisition. Plant Cell 8:617–627

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang Z, Zhang S, Zhang Y et al (2011) Arabidopsis floral initiator SKB1 confers high salt tolerance by regulating transcription and pre-mRNA splicing through altering histone H4R3 and small nuclear ribonucleoprotein LSM4 methylation. Plant Cell 23:396–411

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu J-K (2000) Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiol 124:941–948

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

We thank Carlos Alonso-Blanco, Rhonda Meyer, and José Manuel Pardo for kindly providing seeds of the Arabidopsis accession, and gl1, hkt1-4, and sos1-1 mutants. This work was supported by the Spanish Ministerio de Economía y Competitividad, Grant number AGL2012-36174 and fellowship to RA-A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alonso Rodríguez-Navarro.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 512 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Álvarez-Aragón, R., Haro, R., Benito, B. et al. Salt intolerance in Arabidopsis: shoot and root sodium toxicity, and inhibition by sodium-plus-potassium overaccumulation. Planta 243, 97–114 (2016). https://doi.org/10.1007/s00425-015-2400-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-015-2400-7

Keywords

Navigation