Skip to main content
Log in

Comparative analysis of synthetic DNA promoters for high-level gene expression in plants

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

We have designed two near- constitutive and stress-inducible promoters (CmYLCV9.11 and CmYLCV4); those are highly efficient in both dicot and monocot plants and have prospective to substitute the CaMV 35S promoter.

We performed structural and functional studies of the full-length transcript promoter from Cestrum yellow leaf curling virus (CmYLCV) employing promoter/leader deletion and activating cis-sequence analysis. We designed a 465-bp long CmYLCV9.11 promoter fragment (−329 to +137 from transcription start site) that showed enhanced promoter activity and was highly responsive to both biotic and abiotic stresses. The CmYLCV9.11 promoter was about 28-fold stronger than the CaMV35S promoter in transient and stable transgenic assays using β-glucuronidase (GUS) reporter gene. The CmYLCV9.11 promoter also demonstrated stronger activity than the previously reported CmYLCV promoter fragments, CmpC (−341 to +5) and CmpS (−349 to +59) in transient systems like maize protoplasts and onion epidermal cells as well as transgenic systems. A good correlation between CmYLCV9.11 promoter-driven GUS-accumulation/enzymatic activities with corresponding uidA-mRNA level in transgenic tobacco plants was shown. Histochemical (X-Gluc) staining of transgenic seedlings, root and floral parts expressing the GUS under the control of CmYLCV9.11, CaMV35S, CmpC and CmpS promoters also support the above findings. The CmYLCV9.11 promoter is a constitutive promoter and the expression level in tissues of transgenic tobacco plants was in the following order: root > leaf > stem. The tobacco transcription factor TGA1a was found to bind strongly to the CmYLCV9.11 promoter region, as shown by Gel-shift assay and South-Western blot analysis. In addition, the CmYLCV9.11 promoter was regulated by a number of abiotic and biotic stresses as studied in transgenic Arabidopsis and tobacco plants. The newly derived CmYLCV9.11 promoter is an efficient tool for biotechnological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D, Shinozaki K (1997) Role of arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. Plant Cell 9(10):1859–1868. doi:10.1105/tpc.9.10.1859

    PubMed  CAS  PubMed Central  Google Scholar 

  • Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15(1):63–78

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • An G, Costa MA, Mitra A, Ha SB, Marton L (1988) Organ-specific and developmental regulation of the nopaline synthase promoter in transgenic tobacco plants. Plant Physiol 88(3):547–552

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ausubel FM (2002) Short protocols in molecular biology, 5th edn. Wiley, New York, pp 8–19

  • Banerjee J, Sahoo DK, Dey N, Houtz RL, Maiti IB (2013) An intergenic region shared by At4g35985 and At4g35987 in Arabidopsis thaliana is a tissue specific and stress inducible bidirectional promoter analyzed in transgenic Arabidopsis and tobacco plants. PLoS ONE 8(11):e79622. doi:10.1371/journal.pone.0079622

    Article  PubMed  PubMed Central  Google Scholar 

  • Banerjee J, Sahoo DK, Raha S, Sarkar S, Dey N, Maiti IB (2014) A region containing an as-1 element of Dahlia mosaic virus (DaMV) sub-genomic transcript promoter plays a key role in green tissue and root specific expression in plants. Plant Mol Biol Rep. doi:10.1007/s11105-014-0766-5

  • Bey M, Stüber K, Fellenberg K, Schwarz-Sommer Z, Sommer H, Saedler H, Zachgo S (2004) Characterization of antirrhinum petal development and identification of target genes of the class B MADS box gene DEFICIENS. Plant Cell 16(12):3197–3215

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhattacharyya S, Dey N, Maiti IB (2002) Analysis of cis-sequence of subgenomic transcript promoter from the Figwort mosaic virus and comparison of promoter activity with the cauliflower mosaic virus promoters in monocot and dicot cells. Virus Res 90(1–2):47–62

    Article  PubMed  Google Scholar 

  • Bhullar S, Chakravarthy S, Advani S, Datta S, Pental D, Burma PK (2003) Strategies for development of functionally equivalent promoters with minimum sequence homology for transgene expression in plants: cis-elements in a novel DNA context versus domain swapping. Plant Physiol 132(2):988–998

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bhullar S, Datta S, Advani S, Chakravarthy S, Gautam T, Pental D, Burma PK (2007) Functional analysis of cauliflower mosaic virus 35S promoter: re-evaluation of the role of subdomains B5, B4 and B2 in promoter activity. Plant Biotechnol J 5(6):696–708. doi:10.1111/j.1467-7652.2007.00274.x

    Article  PubMed  CAS  Google Scholar 

  • Boher P, Serra O, Soler M, Molinas M, Figueras M (2013) The potato suberin feruloyl transferase FHT which accumulates in the phellogen is induced by wounding and regulated by abscisic and salicylic acids. J Exp Bot 64(11):3225–3236. doi:10.1093/jxb/ert163

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Chaturvedi CP, Sawant SV, Kiran K, Mehrotra R, Lodhi N, Ansari SA, Tuli R (2006) Analysis of polarity in the expression from a multifactorial bidirectional promoter designed for high-level expression of transgenes in plants. J Biotechnol 123(1):1–12. doi:10.1016/j.jbiotec.2005.10.014

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743. doi:10.1046/j.1365-313x.1998.00343.x

    Article  PubMed  CAS  Google Scholar 

  • Cominelli E, Galbiati M, Albertini A, Fornara F, Conti L, Coupland G, Tonelli C (2011) DOF-binding sites additively contribute to guard cell-specificity of AtMYB60 promoter. BMC Plant Biol 11(162):1471–2229

    Google Scholar 

  • Dey N, Maiti IB (1999a) Further characterization and expression analysis of mirabilis mosaic caulimovirus (MMV) full-length transcript promoter with single and double enhancer domains in transgenic plants. Transgenics 3(1):61

  • Dey N, Maiti IB (1999b) Structure and promoter/leader deletion analysis of mirabilis mosaic virus (MMV) full-length transcript promoter in transgenic plants. Plant Mol Biol 40(5):771–782

    Article  PubMed  CAS  Google Scholar 

  • Dvir A, Conaway JW, Conaway RC (2001) Mechanism of transcription initiation and promoter escape by RNA polymerase II. Curr Opin Genet Dev 11(2):209–214

    Article  PubMed  CAS  Google Scholar 

  • Filichkin SA, Leonard JM, Monteros A, Liu PP, Nonogaki H (2004) A novel endo-beta-mannanase gene in tomato LeMAN5 is associated with anther and pollen development. Plant Physiol 134(3):1080–1087. doi:10.1104/pp.103.035998

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fromm M, Callis J, Taylor LP, Walbot V (1987) Electroporation of DNA and RNA into plant-protoplasts. Method Enzymol 153:351–366

    Article  CAS  Google Scholar 

  • Garreton V, Carpinelli J, Jordana X, Holuigue L (2002) The as-1 promoter element is an oxidative stress-responsive element and salicylic acid activates it via oxidative species. Plant Physiol 130(3):1516–1526

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Himmelbach A, Liu L, Zierold U, Altschmied L, Maucher H, Beier F, Muller D, Hensel G, Heise A, Schutzendubel A, Kumlehn J, Schweizer P (2010) Promoters of the barley germin-like GER4 gene cluster enable strong transgene expression in response to pathogen attack. Plant Cell 22(3):937–952. doi:10.1105/tpc.109.067934

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hudson ME, Quail PH (2003) Identification of promoter motifs involved in the network of phytochrome A-regulated gene expression by combined analysis of genomic sequence and microarray data. Plant Physiol 133(4):1605–1616

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hwang YS, Karrer EE, Thomas BR, Chen L, Rodriguez RL (1998) Three cis-elements required for rice alpha-amylase Amy3D expression during sugar starvation. Plant Mol Biol 36(3):331–341

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987a) Gus fusions––beta-glucuronidase as a sensitive and versatile gene fusion marker in higher-plants. EMBO J 6(13):3901–3907

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jefferson RA, Klass M, Wolf N, Hirsh D (1987b) Expression of chimeric genes in Caenorhabditis elegans. J Mol Biol 193(1):41–46

    Article  PubMed  CAS  Google Scholar 

  • Jeong MJ, Shih MC (2003) Interaction of a GATA factor with cis-acting elements involved in light regulation of nuclear genes encoding chloroplast glyceraldehyde-3-phosphate dehydrogenase in Arabidopsis. Biochem Biophys Res Commun 300(2):555–562

    Article  PubMed  CAS  Google Scholar 

  • Kaplan B, Davydov O, Knight H, Galon Y, Knight MR, Fluhr R, Fromm H (2006) Rapid transcriptome changes induced by cytosolic Ca2+ transients reveal ABRE-related sequences as Ca2+-responsive cis elements in Arabidopsis. Plant Cell 18(10):2733–2748

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Katagiri F, Seipel K, Chua NH (1992) Identification of a novel dimer stabilization region in a plant bZIP transcription activator. Mol Cell Biol 12:4809–4816

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kohli A, Griffiths S, Palacios N, Twyman RM, Vain P, Laurie DA, Christou P (1999) Molecular characterization of transforming plasmid rearrangements in transgenic rice reveals a recombination hotspot in the CaMV 35S promoter and confirms the predominance of microhomology mediated recombination. Plant J 17(6):591–601

    Article  PubMed  CAS  Google Scholar 

  • Kroumova AB, Sahoo DK, Raha S, Goodin M, Maiti IB, Wagner GJ (2013) Expression of an apoplast-directed, T-phylloplanin-GFP fusion gene confers resistance against Peronospora tabacina disease in a susceptible tobacco. Plant Cell Rep 32(11):1771–1782

    Article  PubMed  CAS  Google Scholar 

  • Kumar D, Patro S, Ranjan R, Sahoo DK, Maiti IB, Dey N (2011) Development of useful recombinant promoter and its expression analysis in different plant cells using confocal laser scanning microscopy. PLoS One 6(9):9

    Google Scholar 

  • Lam E, Chua NH (1989) ASF-2: a factor that binds to the cauliflower mosaic virus 35S promoter and a conserved GATA motif in Cab promoters. Plant Cell 1(12):1147–1156

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lawton MA, Dean SM, Dron M, Kooter JM, Kragh KM, Harrison MJ, Yu L, Tanguay L, Dixon RA, Lamb CJ (1991) Silencer region of a chalcone synthase promoter contains multiple binding sites for a factor, SBF-1, closely related to GT-1. Plant Mol Biol 16(2):235–249

    Article  PubMed  CAS  Google Scholar 

  • Lu Y, Chen X, Wu Y, Wang Y, He Y (2013) Directly transforming PCR-amplified DNA fragments into plant cells is a versatile system that facilitates the transient expression assay. PLoS One 8(2):e57171. doi:10.1371/journal.pone.0057171

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Luehrsen KR, Dewet JR, Walbot V (1992) Transient expression analysis in plants using firefly luciferase reporter gene. Method Enzymol 216:397–414

    Article  CAS  Google Scholar 

  • Luo XM, Lin WH, Zhu S, Zhu JY, Sun Y, Fan XY, Cheng M, Hao Y, Oh E, Tian M, Liu L, Zhang M, Xie Q, Chong K, Wang ZY (2010) Integration of light- and brassinosteroid-signaling pathways by a GATA transcription factor in Arabidopsis. Dev Cell 19(6):872–883. doi:10.1016/j.devcel.2010.10.023

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Macovei A, Tuteja N (2013) Different expression of miRNAs targeting helicases in rice in response to low and high dose rate gamma-ray treatments. Plant Signal Behav 8:8

  • Maeng BH, Nam DH, Kim YH (2011) Coexpression of molecular chaperones to enhance functional expression of anti-BNP scFv in the cytoplasm of Escherichia coli for the detection of B-type natriuretic peptide. World J Microbiol Biotechnol 27(6):1391–1398

    Article  PubMed  CAS  Google Scholar 

  • Maiti IB, Shepherd RJ (1998) Isolation and expression analysis of peanut chlorotic streak caulimovirus (PClSV) full-length transcript (FLt) promoter in transgenic plants. Biochem Biophys Res Commun 244(2):440–444

    Article  PubMed  CAS  Google Scholar 

  • Maiti IB, Gowda S, Kiernan J, Ghosh SK, Shepherd RJ (1997) Promoter/leader deletion analysis and plant expression vectors with the figwort mosaic virus (FMV) full length transcript (FLt) promoter containing single or double enhancer domains. Transgenic Res 6(2):143–156

    Article  PubMed  CAS  Google Scholar 

  • Maruyama K, Todaka D, Mizoi J, Yoshida T, Kidokoro S, Matsukura S, Takasaki H, Sakurai T, Yamamoto YY, Yoshiwara K, Kojima M, Sakakibara H, Shinozaki K, Yamaguchi-Shinozaki K (2012) Identification of cis-acting promoter elements in cold- and dehydration-induced transcriptional pathways in Arabidopsis, rice, and soybean. DNA Res 19(1):37–49. doi:10.1093/dnares/dsr040

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nishiuchi T, Shinshi H, Suzuki K (2004) Rapid and transient activation of transcription of the ERF3 gene by wounding in tobacco leaves: possible involvement of NtWRKYs and autorepression. J Biol Chem 279(53):55355–55361

    Article  PubMed  CAS  Google Scholar 

  • Ohta M, Ohme-Takagi M, Shinshi H (2000) Three ethylene-responsive transcription factors in tobacco with distinct transactivation functions. Plant J 22(1):29–38

    Article  PubMed  CAS  Google Scholar 

  • Park HC, Kim ML, Kang YH, Jeon JM, Yoo JH, Kim MC, Park CY, Jeong JC, Moon BC, Lee JH, Yoon HW, Lee SH, Chung WS, Lim CO, Lee SY, Hong JC, Cho MJ (2004) Pathogen- and NaCl-induced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1-like transcription factor. Plant Physiol 135(4):2150–2161. doi:10.1104/pp.104.041442

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pattanaik S, Dey N, Bhattacharyya S, Maiti IB (2004) Isolation of full-length transcript promoter from the Strawberry vein banding virus (SVBV) and expression analysis by protoplasts transient assays and in transgenic plants. Plant Sci 167(3):427–438. doi:10.1016/j.plantsci.2004.04.011

    Article  CAS  Google Scholar 

  • Potenza C, Aleman L, Sengupta-Gopalan C (2004) Targeting transgene expression in research, agricultural, and environmental applications: promoters used in plant transformation. Vitro Cell Dev Plant 40(1):1–22

    Article  CAS  Google Scholar 

  • Roeder RG (1996) The role of general initiation factors in transcription by RNA polymerase II. Trends Biochem Sci 21(9):327–335

    Article  PubMed  CAS  Google Scholar 

  • Rogers HJ, Bate N, Combe J, Sullivan J, Sweetman J, Swan C, Lonsdale DM, Twell D (2001) Functional analysis of cis-regulatory elements within the promoter of the tobacco late pollen gene g10. Plant Mol Biol 45(5):577–585

    Article  PubMed  CAS  Google Scholar 

  • Rothnie HM, Chapdelaine Y, Hohn T (1994) Pararetroviruses and retroviruses––a comparative review of viral structure and gene-expression strategies. Adv Virus Res 44:1–67. doi:10.1016/S0065-3527(08)60327-9

    Article  PubMed  CAS  Google Scholar 

  • Sahoo DK, Maiti IB (2014) Biomass derived from transgenic tobacco expressing the Arabidopsis CESA3 ixr12 gene exhibits improved saccharification. Acta Biol Hung 65(2):189–204

    Article  PubMed  CAS  Google Scholar 

  • Sahoo DK, Stork J, DeBolt S, Maiti IB (2013) Manipulating cellulose biosynthesis by expression of mutant Arabidopsis proM24:CESA3(ixr1-2) gene in transgenic tobacco. Plant Biotechnol J 11(3):362–372. doi:10.1111/pbi.12024

    Article  PubMed  CAS  Google Scholar 

  • Sahoo DK, Dey N, Maiti IB (2014a) pSiM24 is a novel versatile gene expression vector for transient assays as well as stable expression of foreign genes in plants. PLoS One 9(6):e98988. doi:10.1371/journal.pone.0098988

    Article  PubMed  PubMed Central  Google Scholar 

  • Sahoo DK, Raha S, Hall JT, Maiti IB (2014b) Overexpression of the synthetic chimeric native-T-phylloplanin-GFP genes optimized for monocot and dicot plants renders enhanced resistance to blue mold disease in tobacco (N. tabacum L.). Sci World J 2014:601314. doi:10.1155/2014/601314

    Article  Google Scholar 

  • Sahoo DK, Sarkar S, Raha S, Das NC, Banerjee J, Dey N, Maiti IB (2014c) Analysis of dahlia mosaic virus full-length transcript promoter-driven gene expression in transgenic plants. Plant Mol Biol Rep. doi:10.1007/s11105-014-0738-9

    Google Scholar 

  • Schardl CL, Byrd AD, Benzion G, Altschuler MA, Hildebrand DF, Hunt AG (1987) Design and construction of a versatile system for the expression of foreign genes in plants. Gene 61(1):1–11

    Article  PubMed  CAS  Google Scholar 

  • Schreiber DN, Bantin J, Dresselhaus T (2004) The MADS box transcription factor ZmMADS2 is required for anther and pollen maturation in maize and accumulates in apoptotic bodies during anther dehiscence. Plant Physiol 134(3):1069–1079. doi:10.1104/pp.103.030577

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Singh KB, Foley RC, Onate-Sanchez L (2002) Transcription factors in plant defense and stress responses. Curr Opin Plant Biol 5(5):430–436

    Article  PubMed  CAS  Google Scholar 

  • Siu FK, Lee LT, Chow BK (2008) Southwestern blotting in investigating transcriptional regulation. Nat Protoc 3(1):51–58. doi:10.1038/nprot.2007.492

    Article  PubMed  CAS  Google Scholar 

  • Sparkes IA, Runions J, Kearns A, Hawes C (2006) Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nat Protoc 1(4):2019–2025. doi:10.1038/nprot.2006.286

    Article  PubMed  CAS  Google Scholar 

  • Stavolone L, Kononova M, Pauli S, Ragozzino A, de Haan P, Milligan S, Lawton K, Hohn T (2003a) Cestrum yellow leaf curling virus (CmYLCV) promoter: a new strong constitutive promoter for heterologous gene expression in a wide variety of crops. Plant Mol Biol 53(5):703–713. doi:10.1023/B:Plan.0000019110.95420.Bb

    Article  Google Scholar 

  • Stavolone L, Ragozzino A, Hohn T (2003b) Characterization of Cestrum yellow leaf curling virus: a new member of the family Caulimoviridae. J Gen Virol 84:3459–3464. doi:10.1099/vir.0.19405-0

    Article  PubMed  CAS  Google Scholar 

  • Ulmasov T, Hagen G, Guilfoyle T (1994) The ocs element in the soybean GH2/4 promoter is activated by both active and inactive auxin and salicylic acid analogues. Plant Mol Biol 26(4):1055–1064. doi:10.1007/bf00040688

    Article  PubMed  CAS  Google Scholar 

  • Vaucheret H, Fagard M (2001) Transcriptional gene silencing in plants: targets, inducers and regulators. Trends Genet 17(1):29–35. doi:10.1016/S0168-9525(00)02166-1

    Article  PubMed  CAS  Google Scholar 

  • Welsch R, Wüst F, Bär C, Al-Babili S, Beyer P (2008) A third phytoene synthase is devoted to abiotic stress-induced abscisic acid formation in rice and defines functional diversification of phytoene synthase genes. Plant Physiol 147(1):367–380. doi:10.1104/pp.108.117028

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wild M, Daviere JM, Cheminant S, Regnault T, Baumberger N, Heintz D, Baltz R, Genschik P, Achard P (2012) The Arabidopsis DELLA RGA-LIKE3 is a direct target of MYC2 and modulates jasmonate signaling responses. Plant Cell 24(8):3307–3319

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Xiao S, Chen QF, Chye ML (2009) Expression of ACBP4 and ACBP5 proteins is modulated by light in Arabidopsis. Plant Signal Behav 4(11):1063–1065

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2005) Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends Plant Sci 10(2):88–94. doi:10.1016/j.tplants.2004.12.012

    Article  PubMed  CAS  Google Scholar 

  • Yanagisawa S (2004) Dof domain proteins: plant-specific transcription factors associated with diverse phenomena unique to plants. Plant Cell Physiol 45(4):386–391. doi:10.1093/pcp/pch055

    Article  PubMed  CAS  Google Scholar 

  • Yanagisawa S, Sheen J (1998) Involvement of maize Dof zinc finger proteins in tissue-specific and light-regulated gene expression. Plant Cell 10(1):75–89

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yang T, Poovaiah BW (2002) A calmodulin-binding/CGCG box DNA-binding protein family involved in multiple signaling pathways in plants. J Biol Chem 277(47):45049–45058

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Li R, Qi M (2000) In vivo analysis of plant promoters and transcription factors by agroinfiltration of tobacco leaves. Plant J 22(6):543–551. doi:10.1046/j.1365-313x.2000.00760.x

    Article  PubMed  CAS  Google Scholar 

  • Zawel L, Reinberg D (1995) Common themes in assembly and function of eukaryotic transcription complexes. Annu Rev Biochem 64:533–561

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are very much grateful to Kentucky Tobacco Research and Development Center (KTRDC) for facilities and support. This work was supported by the KY state KTRDC Grant to IBM. Part of the work was done at the Institute of life Sciences (ND and SS); supported by ILS and Council for Scientific and Industrial Research, Govt. of India. The authors would like to thank Ms. Bonnie Kinney, KTRDC, for her excellent care of the experimental tobacco plants and Mr. Abhimanyu Das, ILS for his technical support in DNA–protein interaction studies.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dipak Kumar Sahoo, Indu B. Maiti or Nrisingha Dey.

Electronic supplementary material

Below is the link to the electronic supplementary material.

425_2014_2135_MOESM1_ESM.tif

Fig. S1 The DNA sequence of the full-length transcript promoter of the cestrum yellow leaf curling virus (CmYLCV). A 865-bp fragment (-729 to + 137) with respect to the transcription start site (TSS), with genomic coordinates 5,700 to 6,565 (GenBank Accession No. NC004324) is presented from left to right in the 5′ to 3′ direction. Arrows in the sequence indicate the deletion fragments CmpC, CmpS, Cm4 and Cm9.11, as shown. The TATA box (TATAAAT) and the transcription start site (TSS, +1, nucleotide A) are indicated. (TIFF 2467 kb)

Supplementary material 2 (DOC 46 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, D.K., Sarkar, S., Raha, S. et al. Comparative analysis of synthetic DNA promoters for high-level gene expression in plants. Planta 240, 855–875 (2014). https://doi.org/10.1007/s00425-014-2135-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-014-2135-x

Keywords

Navigation