Skip to main content
Log in

Unraveling the signal scenario of fruit set

  • Review
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Long-term goals to impact or modify fruit quality and yield have been the target of researchers for many years. Different approaches such as traditional breeding, mutation breeding, and transgenic approaches have revealed a regulatory network where several hormones concur in a complex way to regulate fruit set and development, and these networks are shared in some way among species with different kinds of fruits. Understanding the molecular and biochemical networks of fruit set and development could be very useful for breeders to meet the current and future challenges of agricultural problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alabadi D, Blazquez MA, Carbonell J, Ferrandiz C, Perez-Amador MA (2009) Instructive roles for hormones in plant development. Int J Dev Biol 53:1597–1608

    Article  CAS  PubMed  Google Scholar 

  • Aloni R, Aloni E, Langhans M, Ullrich CI (2006) Role of auxin in regulating Arabidopsis flower development. Planta 223:315–328

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Buylla ER, Benitez M, Corvera-Poirao A, Chaos Cador A, de Folter S, de Gamboa de Buen A, Garay-Arroyo A, Garcia-Ponce B, Jaimes-Miranda F, Perez-Ruiz RV, Pineyro-Nelson A, Sanchez-Corrales YE (2010) Flower development. Arabidopsis Book 8:e0127. doi:10.1199/tab.0127

  • Ampomah-Dwamena C, Morris BA, Sutherland P, Veit B, Yao J-L (2002) Down-regulation of TM29, a TomatoSEPALLATA homolog, causes parthenocarpic fruit development and floral reversion. Plant Physiol 130:605–617

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baker SC, Robinson-Beers K, Villanueva JM, Gaiser JC, Gasser CS (1997) Interactions among genes regulating ovule development in Arabidopsis thaliana. Genetics 145:1109–1124

    CAS  PubMed Central  PubMed  Google Scholar 

  • Balanza V, Navarrete M, Trigueros M, Ferrandiz C (2006) Patterning the female side of Arabidopsis: the importance of hormones. J Exp Bot 57:3457–3469

    Article  CAS  PubMed  Google Scholar 

  • Balbi V, Lomax TL (2003) Regulation of early tomato fruit development by the diageotropica gene. Plant Physiol 131:186–197

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bartrina I, Otto E, Strnad M, Werner T, Schmülling T (2011) Cytokinin regulates the activity of reproductive Meristems, flower organ size, ovule formation, and thus seed yield in Arabidopsis thaliana. Plant Cell 23:69–80

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Battaglia R, Colombo M, Kater MM (2009) The ins and outs of ovule development. Annual plant reviews volume 38: fruit development and seed dispersal. Wiley-Blackwell, New York, pp 70–106

  • Bemer M, Karlova R, Ballester AR, Tikunov YM, Bovy AG, Wolters-Arts M, Rossetto Pde B, Angenent GC, de Maagd RA (2012) The tomato FRUITFULL homologs TDR4/FUL1 and MBP7/FUL2 regulate ethylene-independent aspects of fruit ripening. Plant Cell 24:4437–4451

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bencivenga S, Simonini S, Benková E, Colombo L (2012) The transcription factors BEL1 and SPL are required for cytokinin and auxin signaling during ovule development in Arabidopsis. Plant Cell 24:2886–2897

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Benkova E, Michniewicz M, Sauer M, Teichmann T, Seifertova D, Jurgens G, Friml J (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:591–602

    Article  CAS  PubMed  Google Scholar 

  • Berger F, Hamamura Y, Ingouff M, Higashiyama T (2008) Double fertilization—caught in the act. Trends Plant Sci 13:437–443

    Article  CAS  PubMed  Google Scholar 

  • Carbonell-Bejerano P, Urbez C, Carbonell J, Granell A, Perez-Amador MA (2010) A fertilization-independent developmental program triggers partial fruit development and senescence processes in pistils of Arabidopsis. Plant Physiol 154:163–172

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Carbonell-Bejerano P, Urbez C, Granell A, Carbonell J, Perez-Amador M (2011) Ethylene is involved in pistil fate by modulating the onset of ovule senescence and the GA-mediated fruit set in Arabidopsis. BMC Plant Biol 11:84

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Carmi N, Salts Y, Dedicova B, Shabtai S, Barg R (2003) Induction of parthenocarpy in tomato via specific expression of the rolB gene in the ovary. Planta 217:726–735

    Article  CAS  PubMed  Google Scholar 

  • Carrera E, Ruiz-Rivero O, Peres LEP, Atares A, Garcia-Martinez JL (2012) Characterization of the procera tomato mutant shows novel functions of the SlDELLA protein in the control of flower morphology, cell division and expansion, and the auxin-signaling pathway during fruit-set and development. Plant Physiol 160:1581–1596

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • de Folter S, Busscher J, Colombo L, Losa A, Angenent G (2004) Transcript profiling of transcription factor genes during silique development in Arabidopsis. Plant Mol Biol 56:351–366

    Article  PubMed  Google Scholar 

  • de Jong M, Mariani C, Vriezen WH (2009a) The role of auxin and gibberellin in tomato fruit set. J Exp Bot 60:1523–1532

    Article  PubMed  Google Scholar 

  • de Jong M, Wolters-Arts M, Feron R, Mariani C, Vriezen WH (2009b) The Solanum lycopersicum auxin response factor 7 (SlARF7) regulates auxin signaling during tomato fruit set and development. Plant J 57:160–170

    Article  PubMed  Google Scholar 

  • de Jong M, Wolters-Arts M, Garcia-Martinez JL, Mariani C, Vriezen WH (2011) The Solanum lycopersicum AUXIN RESPONSE FACTOR 7 (SlARF7) mediates cross-talk between auxin and gibberellin signalling during tomato fruit set and development. J Exp Bot 62:617–626

    Article  PubMed Central  PubMed  Google Scholar 

  • Ding J, Chen B, Xia X, Mao W, Shi K, Zhou Y, Yu J (2013) Cytokinin-induced parthenocarpic fruit development in tomato is partly dependent on enhanced gibberellin and auxin biosynthesis. PLoS One 8:e70080

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Donzella G, Spena A, Rotino GL (2000) Transgenic parthenocarpic eggplants: superior germplasm for increased winter production. Mol Breed 6:79–86

    Article  Google Scholar 

  • Dorcey E, Urbez C, Blázquez MA, Carbonell J, Perez-Amador MA (2009) Fertilization-dependent auxin response in ovules triggers fruit development through the modulation of gibberellin metabolism in Arabidopsis. Plant J 58:318–332

    Article  CAS  PubMed  Google Scholar 

  • Elliott RC, Betzner AS, Huttner E, Oakes MP, Tucker W, Gerentes D, Perez P, Smyth DR (1996) AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. Plant Cell 8:155–168

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fischer R, Budde I, Hain R (1997) Stilbene synthase gene expression causes changes in flower colour and male sterility in tobacco. Plant J 11:489–498

    Article  CAS  Google Scholar 

  • Fos M, Nuez F, García-Martínez JL (2000) The Gene pat-2, which induces natural parthenocarpy, alters the Gibberellin content in unpollinated tomato ovaries. Plant Physiol 122:471–480

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fos M, Proano K, Nuez F, Garcia-Martinez JL (2001) Role of gibberellins in parthenocarpic fruit development induced by the genetic system pat-3/pat-4 in tomato. Physiol Plant 111:545–550

    Article  CAS  PubMed  Google Scholar 

  • Fuentes S, Ljung K, Sorefan K, Alvey E, Harberd NP, Ostergaard L (2012) Fruit growth in Arabidopsis occurs via DELLA-dependent and DELLA-independent gibberellin responses. Plant Cell 24:3982–3996

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fuentes S, Vivian-Smith A (2009) Fertilisation and fruit initiation. Annual plant reviews volume 38: fruit development and seed dispersal. Wiley-Blackwell, New York, pp 107–171

  • Fujisawa M, Ito Y (2013) The regulatory mechanism of fruit ripening revealed by analyses of direct targets of the tomato MADS-box transcription factor RIPENING INHIBITOR. Plant Signal Behav 8(6): e24357 [Epub ahead of print]

  • Fujisawa M, Nakano T, Shima Y, Ito Y (2013) A large-scale identification of direct targets of the tomato MADS box transcription factor RIPENING INHIBITOR reveals the regulation of fruit ripening. Plant Cell 25:371–386

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fujisawa M, Shima Y, Higuchi N, Nakano T, Koyama Y, Kasumi T, Ito Y (2012) Direct targets of the tomato-ripening regulator RIN identified by transcriptome and chromatin immunoprecipitation analyses. Planta 235:1107–1122

    Article  CAS  PubMed  Google Scholar 

  • García-Hurtado N, Carrera E, Ruiz-Rivero O, López-Gresa MP, Hedden P, Gong F, García-Martínez JL (2012) The characterization of transgenic tomato overexpressing gibberellin 20-oxidase reveals induction of parthenocarpic fruit growth, higher yield, and alteration of the gibberellin biosynthetic pathway. J Exp Bot 63:5803–5813

    Article  PubMed  Google Scholar 

  • Garcia-Martinez JL, Lopez-Diaz I, Sanchez-Beltran MJ, Phillips AL, Ward DA, Gaskin P, Hedden P (1997) Isolation and transcript analysis of gibberellin 20-oxidase genes in pea and bean in relation to fruit development. Plant Mol Biol 33:1073–1084

    Article  CAS  PubMed  Google Scholar 

  • Gillaspy G, Ben-David H, Gruissem W (1993) Fruits: a developmental perspective. Plant Cell 5(10):1439–1451

    Article  PubMed Central  PubMed  Google Scholar 

  • Giovannoni JJ (2004) Genetic regulation of fruit development and ripening. Plant Cell 16:S170–S180

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Giovannoni JJ (2006) Breeding new life into plant metabolism. Nat Biotech 24:418–419

    Article  CAS  Google Scholar 

  • Goetz M, Hooper LC, Johnson SD, Rodrigues JCM, Vivian-Smith A, Koltunow AM (2007) Expression of aberrant forms of AUXIN RESPONSE FACTOR8 stimulates parthenocarpy in Arabidopsis and tomato. Plant Physiol 145:351–366

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goetz M, Vivian-Smith AD, Johnson S, Koltunow AM (2006) Auxin Response Factor 8 is a negative regulator of fruit initiation in Arabidopsis. Plant Cell 18:1873–1886

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gorguet B, van Heusden AW, Lindhout P (2005) Parthenocarpic fruit development in tomato. Plant Biol 7:131–139

    Article  CAS  PubMed  Google Scholar 

  • Gustafson F (1942) Parthenocarpy: natural and artificial. Bot Rev 8:599–654

    Article  CAS  Google Scholar 

  • Hu J, Mitchum MG, Barnaby N, Ayele BT, Ogawa M, Nam E, Lai W-C, Hanada A, Alonso JM, Ecker JR, Swain SM, Yamaguchi S, Kamiya Y, Sun T-p (2008) Potential sites of bioactive Gibberellin production during reproductive growth in Arabidopsis. Plant Cell 20:320–336

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ingrosso I, Bonsegna S, De Domenico S, Laddomada B, Blando F, Santino A, Giovinazzo G (2011) Over-expression of a grape stilbene synthase gene in tomato induces parthenocarpy and causes abnormal pollen development. Plant Physiol Biochem 49:1092–1099

    Article  CAS  PubMed  Google Scholar 

  • Itkin M, Seybold H, Breitel D, Rogachev I, Meir S, Aharoni A (2009) TOMATO AGAMOUS-LIKE 1 is a component of the fruit ripening regulatory network. Plant J 60:1081–1095

    Article  CAS  PubMed  Google Scholar 

  • Ito T, Meyerowitz EM (2000) Overexpression of a gene encoding a cytochrome P450, CYP78A9, induces large and seedless fruit in Arabidopsis. The Plant Cell 12:1541–1550

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Karlova R, Rosin FM, Busscher-Lange J, Parapunova V, Do PT, Fernie AR, Fraser PD, Baxter C, Angenent GC, de Maagd RA (2011) Transcriptome and metabolite profiling show that APETALA2a is a major regulator of tomato fruit ripening. Plant Cell 23:923–941

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lang JD, Ray S, Ray A (1994) sin1, a mutation affecting female fertility in Arabidopsis, interacts with mod1, its recessive modifier. Genetics 137:1101–1110

    CAS  PubMed Central  PubMed  Google Scholar 

  • León-Kloosterziel K, Keijzer C, Koornneef M (1994) A seed shape mutant of Arabidopsis that is affected in integument development. Plant Cell 6:385–392

    Article  PubMed Central  PubMed  Google Scholar 

  • Lora J, Hormaza JI, Herrero M, Gasser CS (2011) Seedless fruits and the disruption of a conserved genetic pathway in angiosperm ovule development. Proc Natl Acad Sci USA 108:5461–5465

    Article  PubMed Central  PubMed  Google Scholar 

  • Mahajan M, Ahuja PS, Yadav SK (2011) Post-transcriptional silencing of flavonol synthase mRNA in tobacco leads to fruits with arrested seed set. PLoS ONE 6:e28315

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mariotti L, Picciarelli P, Lombardi L, Ceccarelli N (2011) Fruit-set and early fruit growth in tomato are associated with increases in indoleacetic acid, cytokinin, and bioactive Gibberellin contents. J Plant Growth Regul 30:405–415

    Article  CAS  Google Scholar 

  • Marsch-Martinez N, Greco R, Van Arkel G, Herrera-Estrella L, Pereira A (2002) Activation tagging using the En-I Maize transposon system in Arabidopsis. Plant Physiol 129:1544–1556

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marsch-Martinez N, Ramos-Cruz D, Irepan Reyes-Olalde J, Lozano-Sotomayor P, Zuñiga-Mayo VM, de Folter S (2012) The role of cytokinin during Arabidopsis gynoecia and fruit morphogenesis and patterning. Plant J 72:222–234

    Article  CAS  PubMed  Google Scholar 

  • Martí C, Orzáez D, Ellul P, Moreno V, Carbonell J, Granell A (2007) Silencing of DELLA induces facultative parthenocarpy in tomato fruits. Plant J 52:865–876

    Article  PubMed  Google Scholar 

  • Matsuo S, Kikuchi K, Fukuda M, Honda I, Imanishi S (2012) Roles and regulation of cytokinins in tomato fruit development. J Exp Bot 63:5569–5579

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mazzucato A, Olimpieri I, Siligato F, Picarella ME, Soressi GP (2008) Characterization of genes controlling stamen identity and development in a parthenocarpic tomato mutant indicates a role for the DEFICIENS ortholog in the control of fruit set. Physiol Plant 132:526–537

    Article  CAS  PubMed  Google Scholar 

  • McAtee P, Karim S, Schaffer RJ, David K (2013) A dynamic interplay between phytohormones is required for fruit development, maturation and ripening. Front Plant Sci 4

  • Medina M, Roque E, Pineda B, Cañas L, Rodriguez-Concepción M, Beltrán JP, Gómez-Mena C (2013) Early anther ablation triggers parthenocarpic fruit development in tomato. Plant Biotechnol J 11:770–779

    Article  CAS  PubMed  Google Scholar 

  • Mezzetti B, Landi L, Pandolfini T, Spena A (2004) The defH9-iaaM auxin-synthesizing gene increases plant fecundity and fruit production in strawberry and raspberry. BMC Biotechnol 4:4

    Article  PubMed Central  PubMed  Google Scholar 

  • Mignolli F, Mariotti L, Lombardi L, Vidoz ML, Ceccarelli N, Picciarelli P (2012) Tomato fruit development in the auxin-resistant dgt mutant is induced by pollination but not by auxin treatment. J Plant Physiol 169:1165–1172

    Article  CAS  PubMed  Google Scholar 

  • Mizzotti C, Mendes MA, Caporali E, Schnittger A, Kater MM, Battaglia R, Colombo L (2011) The MADS box genes SEEDSTICK and ARABIDOPSIS Bsister play a maternal role in fertilization and seed development. Plant J 70:409–420

    Article  Google Scholar 

  • Modrusan Z, Reiser L, Feldmann KA, Fischer RL, Haughn GW (1994) Homeotic transformation of ovules into carpel-like structures in Arabidopsis. Plant Cell 6:333–349

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Molesini B, Pandolfini T, Rotino GL, Dani V, Spena A (2009) Aucsia gene silencing causes parthenocarpic fruit development in tomato. Plant Physiol 149:534–548

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mounet F, Moing A, Kowalczyk M, Rohrmann J, Petit J, Garcia V, Maucourt M, Yano K, Deborde C, Aoki K, Bergès H, Granell A, Fernie AR, Bellini C, Rothan C, Lemaire-Chamley M (2012) Down-regulation of a single auxin efflux transport protein in tomato induces precocious fruit development. J Exp Bot 63:4901–4917

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nishitani C, Yamaguchi-Nakamura A, Hosaka F, Terakami S, Shimizu T, Yano K, Itai A, Saito T, Yamamoto T (2012) Parthenocarpic genetic resources and gene expression related to parthenocarpy among four species in pear (Pyrus spp.). Scientia Horticulturae 136:101–109

    Article  CAS  Google Scholar 

  • Oh K, Ivanchenko MG, White TJ, Lomax TL (2006) The diageotropica gene of tomato encodes a cyclophilin: a novel player in auxin signaling. Planta 224:133–144

    Article  CAS  PubMed  Google Scholar 

  • Ozga J, Reinecke D (2003) Hormonal interactions in fruit development. J Plant Growth Regul 22:73–81

    Article  CAS  Google Scholar 

  • Pandolfini T (2009) Seedless fruit production by hormonal regulation of fruit set. Nutrients 1:168–177

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pandolfini T, Molesini B, Spena A (2009) Parthenocarpy in crop plants. Annual plant reviews volume 38: fruit development and seed dispersal. Wiley-Blackwell, New York, pp 326–345

  • Pandolfini T, Rotino G, Camerini S, Defez R, Spena A (2002) Optimisation of transgene action at the post-transcriptional level: high quality parthenocarpic fruits in industrial tomatoes. BMC Biotechnol 2:1

    Article  PubMed Central  PubMed  Google Scholar 

  • Pascual L, Blanca JM, Canizares J, Nuez F (2009) Transcriptomic analysis of tomato carpel development reveals alterations in ethylene and gibberellin synthesis during pat3/pat4 parthenocarpic fruit set. BMC Plant Biol 9:1471–2229

    Article  Google Scholar 

  • Payne T, Johnson SD, Koltunow AM (2004) KNUCKLES (KNU) encodes a C2H2 zinc-finger protein that regulates development of basal pattern elements of the Arabidopsis gynoecium. Development 131:3737–3749

    Article  CAS  PubMed  Google Scholar 

  • Pinyopich A, Ditta GS, Savidge B, Liljegren SJ, Baumann E, Wisman E, Yanofsky MF (2003) Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature 424:85–88

    Article  CAS  PubMed  Google Scholar 

  • Qin G, Wang Y, Cao B, Wang W, Tian S (2012) Unraveling the regulatory network of the MADS box transcription factor RIN in fruit ripening. Plant J 70:243–255

    Article  CAS  PubMed  Google Scholar 

  • Ray A, Robinson-Beers K, Ray S, Baker SC, Lang JD, Preuss D, Milligan SB, Gasser CS (1994) Arabidopsis floral homeotic gene BELL (BEL1) controls ovule development through negative regulation of AGAMOUS gene (AG). Proc Natl Acad Sci USA 91:5761–5765

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ren Z, Li Z, Miao Q, Yang Y, Deng W, Hao Y (2011) The auxin receptor homologue in Solanum lycopersicum stimulates tomato fruit set and leaf morphogenesis. J Exp Bot 62:2815–2826

    Article  CAS  PubMed  Google Scholar 

  • Reyes-Olalde JI, Zuniga-Mayo VM, Chavez Montes RA, Marsch-Martinez N, de Folter S (2013) Inside the gynoecium: at the carpel margin. Trends Plant Sci 2013:00151–00159

    Google Scholar 

  • Rieu I, Eriksson S, Powers SJ, Gong F, Griffiths J, Woolley L, Benlloch R, Nilsson O, Thomas SG, Hedden P, Phillips AL (2008a) Genetic analysis reveals that C19-GA 2-oxidation is a major Gibberellin inactivation pathway in Arabidopsis. Plant Cell 20:2420–2436

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rieu I, Ruiz-Rivero O, Fernandez-Garcia N, Griffiths J, Powers SJ, Gong F, Linhartova T, Eriksson S, Nilsson O, Thomas SG, Phillips AL, Hedden P (2008b) The gibberellin biosynthetic genes AtGA20ox1 and AtGA20ox2 act, partially redundantly, to promote growth and development throughout the Arabidopsis life cycle. Plant J 53:488–504

    Article  CAS  PubMed  Google Scholar 

  • Roeder AHK, Yanofsky MF (2006) Fruit development in Arabidopsis. Arabidopsis Book 4:e0075. doi:10.1199/tab.0075

  • Rotino GL, Acciarri N, Sabatini E, Mennella G, Lo Scalzo R, Maestrelli A, Molesini B, Pandolfini T, Scalzo J, Mezzetti B, Spena A (2005) Open field trial of genetically modified parthenocarpic tomato: seedlessness and fruit quality. BMC Biotechnol 5:32

    Article  PubMed Central  PubMed  Google Scholar 

  • Rotino GL, Perri E, Zottini M, Sommer H, Spena A (1997) Genetic engineering of parthenocarpic plants. Nat Biotechnol 15:1398–1401

    Article  CAS  PubMed  Google Scholar 

  • Sauer M, Kleine-Vehn J (2011) AUXIN BINDING PROTEIN1: the outsider. Plant Cell 23:2033–2043

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Scherer GF (2011) AUXIN-BINDING-PROTEIN1, the second auxin receptor: what is the significance of a two-receptor concept in plant signal transduction? J Exp Bot 62:3339–3357

    Article  CAS  PubMed  Google Scholar 

  • Schijlen EGWM, de Vos CHR, Martens S, Jonker HH, Rosin FM, Molthoff JW, Tikunov YM, Angenent GC, van Tunen AJ, Bovy AG (2007) RNA interference silencing of chalcone synthase, the first step in the flavonoid biosynthesis pathway, leads to parthenocarpic tomato fruits. Plant Physiol 144:1520–1530

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Serrani JC, Carrera E, Ruiz-Rivero O, Gallego-Giraldo L, Peres LEP, Garcia-Martinez JL (2010) Inhibition of auxin transport from the ovary or from the apical shoot induces parthenocarpic fruit-set in tomato mediated by gibberellins. Plant Physiol 153:851–862

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Serrani JC, Sanjuán R, Ruiz-Rivero O, Fos M, García-Martínez JL (2007) Gibberellin regulation of fruit set and growth in tomato. Plant Physiol 145:246–257

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Seymour GB, Østergaard L, Chapman NH, Knapp S, Martin C (2013) Fruit development and ripening. Annu Rev Plant Biol 64:219–241

    Article  CAS  PubMed  Google Scholar 

  • Sotelo-Silveira M, Cucinotta M, Colombo L, Marsch-Martinez N, de Folter S (2013b) Toward understanding the role of CYP78A9 during Arabidopsis reproduction. Plant Signal Behav 8(8): e25160 [Epub ahead of print]

  • Sotelo-Silveira M, Cucinotta M, Chauvin AL, Chavez Montes RA, Colombo L, Marsch-Martinez N, de Folter S (2013a) Cytochrome P450 CYP78A9 is involved in Arabidopsis reproductive development. Plant Physiol 162:779–799

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sun T-P (2008) Gibberellin Metabolism, Perception and Signaling Pathways in Arabidopsis. Arabidopsis Book 6:e0103. doi:10.1199/tab.0103

  • Sundberg E, Ferrándiz C (2009) Gynoecium patterning in Arabidopsis: a basic plan behind a complex structure. Annual plant reviews volume 38: fruit development and seed dispersal. Wiley-Blackwell, New York, pp 35–69

  • Talon M, Zacarias L, Primo-Millo E (1992) Gibberellins and parthenocarpic ability in developing ovaries of seedless mandarins. Plant Physiol 99:1575–1581

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tiwari A, Offringa R, Heuvelink E (2012) Auxin-induced fruit set in Capsicum annuum L. requires downstream gibberellin biosynthesis. J Plant Growth Regul 31:570–578

    Article  CAS  Google Scholar 

  • Tiwari A, Vivian-Smith A, Voorrips R, Habets M, Xue L, Offringa R, Heuvelink E (2011) Parthenocarpic potential in Capsicum annuum L. is enhanced by carpelloid structures and controlled by a single recessive gene. BMC Plant Biol 11:143

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Villanueva JM, Broadhvest J, Hauser BA, Meister RJ, Schneitz K, Gasser CS (1999) INNER NO OUTER regulates abaxial- adaxial patterning in Arabidopsis ovules. Genes Dev 13:3160–3169

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vivian-Smith A, Koltunow AM (1999) Genetic analysis of growth-regulator-induced parthenocarpy in Arabidopsis. Plant Physiol 121:437–452

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vivian-Smith A, Luo M, Chaudhury A, Koltunow A (2001) Fruit development is actively restricted in the absence of fertilization in Arabidopsis. Development 128:2321–2331

    CAS  PubMed  Google Scholar 

  • Vrebalov J, Pan IL, Arroyo AJM, McQuinn R, Chung M, Poole M, Rose J, Seymour G, Grandillo S, Giovannoni J, Irish VF (2009) Fleshy fruit expansion and ripening are regulated by the tomato SHATTERPROOF gene TAGL1. Plant Cell 21:3041–3062

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vriezen WH, Feron R, Maretto F, Keijman J, Mariani C (2008) Changes in tomato ovary transcriptome demonstrate complex hormonal regulation of fruit set. New Phytol 177:60–76

    CAS  PubMed  Google Scholar 

  • Wang H, Jones B, Li Z, Frasse P, Delalande C, Regad F, Chaabouni S, Latché A, Pech J-C, Bouzayen M (2005) The tomato Aux/IAA transcription factor IAA9 is involved in fruit development and leaf morphogenesis. Plant Cell 17:2676–2692

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang L, Xin M, Qin Z, Liu H (2011) Functional analysis of an iaaM gene in parthenocarpic fruit development in transgenic Physalis pubescens L. plants. Plant Cell Tissue Organ Culture 107:333–340

    Article  CAS  Google Scholar 

  • Yao J-L, Dong Y-H, Morris BAM (2001) Parthenocarpic apple fruit production conferred by transposon insertion mutations in a MADS-box transcription factor. Proc Natl Acad Sci USA 98:1306–1311

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yin Z, Malinowski R, Ziółkowska A, Sommer H, Plcader W, Malepszy S (2006) The DefH9-IaaM-containing construct efficiently induces parthenocarpy in cucumber. Cell Mol Biol Lett 11:279–290

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the anonymous reviewers for their very helpful comments on this review. We thank the Mexican National Council of Science and Technology (CONACyT) for a PhD fellowship to MSS (229496). This work in the de Folter laboratory is financed by the CONACyT Grant 177739.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan de Folter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sotelo-Silveira, M., Marsch-Martínez, N. & de Folter, S. Unraveling the signal scenario of fruit set. Planta 239, 1147–1158 (2014). https://doi.org/10.1007/s00425-014-2057-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-014-2057-7

Keywords

Navigation