Skip to main content
Log in

Accumulation of acidic SK3 dehydrins in phloem cells of cold- and drought-stressed plants of the Solanaceae

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The role of acidic SKn dehydrins in stress tolerance of important crop and model species of the Solanaceae remains unknown. We have previously shown that the acidic SK3 dehydrin DHN24 from Solanum sogarandinum is constitutively expressed and its expression is associated with cold acclimation. Here we found that DHN24 is specifically localized to phloem cells of vegetative organs of non-acclimated plants. More precise localization of DHN24 revealed that it is primarily found in sieve elements (SEs) and companion cells (CCs) of roots and stems. In cold-acclimated plants, DHN24 is mainly present in all cell types of the phloem. Dhn24 transcripts are also predominantly localized to phloem cells of cold-acclimated stems. Immunoelectron microscopy localized DHN24 to the cytosol and close to organelle membranes of phloem cells, the lumen with phloem protein filaments, parietal cytoplasm of SEs and the nucleoplasm of some nuclei. Cell fractionation experiments revealed that DHN24 was detected in the cytosolic, nuclear and microsomal fractions. We also determined whether homologous members of the acidic subclass dehydrins from Capsicum annuum and Lycopersicon chilense share the characteristics of DHN24. We showed that they are also constitutively expressed, but their protein level is upregulated preferentially by drought stress. Immunofluorescent localization revealed that they are detected in SEs and CCs of unstressed plants and throughout the phloem in drought-stressed plants. These results suggest that one of the primary roles of DHN24 and its homologs may be the protection of the phloem region from adverse effects of abiotic stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

CC:

Companion cell

SE:

Sieve element

References

  • Alsheikh MK, Svensson JT, Randall SK (2005) Phosphorylation regulated ion-binding is a property shared by the acidic subclass dehydrins. Plant Cell Environ 28:1114–1122

    Article  CAS  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58

    Article  CAS  Google Scholar 

  • Baskin TI, Busby CH, Fowke LC, Sammut M, Gubler F (1992) Improvements in immunostaining samples embedded in methacrylate: localization of microtubules and other antigens throughout developing organs in plants of diverse taxa. Planta 187:405–413

    Article  CAS  PubMed  Google Scholar 

  • Bokor M, Csizmok V, Kovacs D, Banki P, Friedrich P, Tompa P, Tompa K (2005) NMR relaxation studies on the hydrate layer of intrinsically unstructured proteins. Biophys J 88:2030–2037

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Borovskii GB, Stupnikova IV, Antipina AA, Downs CA, Voinikov VK (2000) Accumulation of dehydrin-like-proteins in the mitochondria of cold-treated plants. J Plant Physiol 156:797–800

    Google Scholar 

  • Briesemeister S, Rahnenführer J, Kohlbacher O (2010) YLoc—an interpretable web server for predicting subcellular localization. Nucleic Acids Res 38:W497–W502

    Google Scholar 

  • Brugière N, Dubois F, Limami AM, Lelandais M, Roux Y, Sangwan RS, Hirel B (1999) Glutamine synthetase in the phloem plays a major role in controlling proline production. Plant Cell 11:1995–2011

    PubMed Central  PubMed  Google Scholar 

  • Campos F, Zamudio F, Covarrubias AA (2006) Two different late embryogenesis abundant proteins from Arabidopsis thaliana contain specific domains that inhibit Escherichia coli growth. Biochem Biophys Res Commun 342:406–413

    Article  CAS  PubMed  Google Scholar 

  • Chen RD, Campeau N, Greer AF, Bellemare G, Tabaeizadeh Z (1993) Sequence of a novel abscisic acid- and drought-induced cDNA from wild tomato (Lycopersicon chilense). Plant Physiol 103:301

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chung F, Kim S-Y, Yi SY, Choi D (2003) Capsicum annum dehydrin, an osmotic-stress gene in hot paper plants. Mol Cells 15:327–332

    CAS  PubMed  Google Scholar 

  • Close TJ (1997) Dehydrins: a commonalty in the response of plants to dehydration and low temperature. Physiol Plant 100:291–296

    Article  CAS  Google Scholar 

  • Danyluk J, Houde M, Rassart E, Sarhan F (1994) Differential expression of a gene encoding an acidic dehydrin in chilling sensitive and freezing tolerant gramineae species. FEBS Lett 344:20–24

    Article  CAS  PubMed  Google Scholar 

  • Danyluk J, Perron A, Houde M, Limin A, Fowler B, Benhamou N, Sarhan F (1998) Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimation of wheat. Plant Cell 10:623–638

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dykstra MJ, Reuss LE (2003) Biological electron microscopy: theory, techniques and troubleshooting, 2nd edn. Kluwer Acad/Plenum Publ, New York, pp 101–103

    Book  Google Scholar 

  • Egerton-Warburton LM, Balsamo RA, Close TJ (1997) Temporal accumulation and ultrastructural localization of dehydrins in Zea mays. Physiol Plant 101:545–555

    Article  CAS  Google Scholar 

  • Fudali S, Janakowski S, Sobczak M, Griesser M, Grundler FM, Golinowski W (2008) Two tomato alpha-expansins show distinct spatial and temporal expression patterns during development of nematode-induced syncytia. Physiol Plant 132:370–383

    Article  CAS  PubMed  Google Scholar 

  • Goday A, Jensen AB, Culianez-Macia FA, Alba MM, Figueras M, Serratosa J, Torrent M, Pages M (1994) The maize abscisic acid-responsive protein Rab17 is located in the nucleus and interacts with nuclear localization signals. Plant Cell 6:351–360

    CAS  PubMed Central  PubMed  Google Scholar 

  • Godoy JA, Lunar R, Torres-Schumann S, Moreno J, Rodrigo RM, Pintor-Toro JA (1994) Expression, tissue distribution and subcellular localization of dehydrin TAS14 in salt-stressed tomato plants. Plant Mol Biol 26:1921–1934

    Article  CAS  PubMed  Google Scholar 

  • Guy CL (2003) Freezing tolerance of plants: current understanding and selected emerging concepts. Can J Bot 81:1216–1223

    Article  CAS  Google Scholar 

  • Hanin M, Brini F, Ebel C, Toda Y, Takeda S, Masmoudi K (2011) Plant dehydrins and stress tolerance: versatile proteins for complex mechanisms. Plant Signal Behav 6:1503–1509

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hara M (2010) The multifunctionality of dehydrins: an overview. Plant Signal Behav 5:503–508

    Article  CAS  PubMed  Google Scholar 

  • Hara M, Terashima S, Fukaya T, Kuboi T (2003) Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco. Planta 217:290–298

    CAS  PubMed  Google Scholar 

  • Hara M, Fujinaga M, Kuboi T (2004) Radical scavenging activity and oxidative modification of citrus dehydrin. Plant Physiol Biochem 42:657–662

    Article  CAS  PubMed  Google Scholar 

  • Hara M, Kondo M, Kato T (2013) A KS-type dehydrin and its related domains reduce Cu-promoted radical generation and the histidine residues contribute to the radical-reducing activities. J Exp Bot 64:1615–1624

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hara M, Shinoda Y, Tanaka Y, Kuboi T (2009) DNA binding of citrus dehydrin promoted by zinc ion. Plant Cell Environ 32:532–541

    Google Scholar 

  • Hause B, Hause G, Kutter C, Miersch O, Wasternack C (2003) Enzymes of jasmonate biosynthesis occur in tomato sieve elements. Plant Cell Physiol 44:643–648

    Article  CAS  PubMed  Google Scholar 

  • Hedley PE, Maddison AL, Davidson D, Machray GC (2000) Differential expression of invertase genes in internal and external phloem tissues of potato (Solanum tuberosum L.). J Exp Bot 51:817–821

    Article  CAS  PubMed  Google Scholar 

  • Heyen BJ, Alsheikh MK, Smith EA, Torvik CF, Seals DF, Randall SK (2002) The calcium-binding activity of a vacuole-associated, dehydrin-like protein is regulated by phosphorylation. Plant Physiol 130:675–687

    Google Scholar 

  • Hoekstra FA, Golovina EA, Buitnik J (2001) Mechanism of plant desiccation tolerance. Trends Plant Sci 6:431–438

    Article  CAS  PubMed  Google Scholar 

  • Horton P, Park KJ, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, Nakai K (2007) WoLF PSORT: protein localization predictor. Nucleic Acid Res 35:W585–W587

    Article  PubMed Central  PubMed  Google Scholar 

  • Houde M, Daniel C, Lachapelle M, Allard F, Laliberte S, Sarhan F (1995) Immunolocalization of freezing-tolerance-associated proteins in the cytoplasm and nucleoplasm of wheat crown tissues. Plant J 8:583–593

    Article  CAS  PubMed  Google Scholar 

  • Houde M, Dallaire S, N’Dong D, Sarhan F (2004) Overexpression of the acidic dehydrin WCOR410 improves freezing tolerance in transgenic strawberry leaves. Plant Biotechnol J 2:381–387

    Article  CAS  PubMed  Google Scholar 

  • Jeffery CJ (1999) Moonlighting proteins. Trends Biochem Sci 24:8–11

    Article  CAS  PubMed  Google Scholar 

  • Knoblauch M, Oparka K (2012) The structure of the phloem—still more questions than answers. Plant J 70:147–156

    Article  CAS  PubMed  Google Scholar 

  • Koag MC, Fenton RD, Wilkens S, Close TJ (2003) The binding of maize DHN1 to lipid vesicles. Gain of structure and lipid specificity. Plant Physiol 131:309–316

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Koag MC, Wilkens S, Fenton RD, Resnik J, Vo E, Close TJ (2009) The K-segment of maize DHN1 mediates binding to anionic phospholipid vesicles and concomitant structural changes. Plant Physiol 150:1503–1514

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Koiwai H, Nakaminami K, Seo M, Mitsuhashi W, Toyomasu T, Koshiba T (2004) Tissue-specific localization of an abscisic acid biosynthetic enzyme, AAO3, in Arabidopsis. Plant Physiol 134:1697–1707

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kovacs D, Kalmar E, Torok Z, Tompa P (2008) Chaperone activity of ERD10 and ERD14, two disordered stress-related plant proteins. Plant Physiol 147:381–390

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lough TJ, Lucas WJ (2006) Integrative plant biology: role of phloem long-distance macromolecular trafficking. Annu Rev Plant Biol 57:203–232

    Article  CAS  PubMed  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    Article  CAS  PubMed  Google Scholar 

  • Mehta PA, Rebala KC, Venkataraman G, Parida A (2009) A diurnally regulated dehydrin from Avicennia marina that shows nucleo-cytoplasmic localization and is phosphorylated by casein kinase II in vitro. Plant Physiol Biochem 47:701–709

    Article  CAS  PubMed  Google Scholar 

  • Millar AH, Liddell A, Leaver CJ (2007) Isolation and subfractionation of mitochondria from plants. In: Pon LA, Schon EA (eds) Methods in cell biology, 2nd edn. Elsevier Inc, New York, pp 65–90

    Google Scholar 

  • Mouillon JM, Gustafsson P, Harryson P (2006) Structural investigation of disordered stress proteins. Comparison of full-length dehydrins with isolated peptides of their conserved segments. Plant Physiol 141:638–650

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nardozzi JD, Lott K, Cingolani G (2010) Phosphorylation meets nuclear import: a review. Cell Commun Signal 8:32

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nolte KD, Koch KE (1993) Companion-cell specific localization of sucrose synthase in zones of phloem loading and unloading. Plant Physiol 101:899–905

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nylander M, Svensson J, Palva ET, Welin BV (2001) Stress-induced accumulation and tissue-specific localization of dehydrins in Arabidopsis thaliana. Plant Mol Biol 45:263–279

    Article  CAS  PubMed  Google Scholar 

  • Ochoa-Alfaro AE, Rodríguez-Kessler M, Pérez-Morales MB, Delgado-Sánchez P, Cuevas-Velazquez CL, Gómez-Anduro G, Jiménez-Bremont JF (2012) Functional characterization of an acidic SK3 dehydrin isolated from an Opuntia streptacantha cDNA library. Planta 235:565–578

    Article  CAS  PubMed  Google Scholar 

  • Oparka KJ, Turgeon R (1999) Sieve elements and companion cells—traffic control centers of the phloem. Plant Cell 11:739–750

    CAS  PubMed Central  PubMed  Google Scholar 

  • Peng Y, Reyes JL, Wei H, Yang Y, Karlson D, Covarrubias AA, Krebs SL, Fessehaie A, Arora R (2008) RcDhn5, a cold acclimation-responsive dehydrin from Rhododendron catawbiense rescues enzyme activity from dehydration effects in vitro and enhances freezing tolerance in RcDhn5-overexpressing Arabidopsis plants. Physiol Plant 134:583–597

    Article  CAS  PubMed  Google Scholar 

  • Puhakainen T, Hess MV, Makela P, Svenson J, Heino P, Palva ET (2004) Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis. Plant Mol Biol 54:743–753

    Article  CAS  PubMed  Google Scholar 

  • Robertson M, Chandler PM (1994) A dehydrin cognate protein from pea (Pisum sativum L.) with an atypical pattern of expression. Plant Mol Biol 26:805–816

    Article  CAS  PubMed  Google Scholar 

  • Rorat T (2006) Plant dehydrins—tissue location, structure and function. Cell Mol Biol Lett 11:536–556

    Article  CAS  PubMed  Google Scholar 

  • Rorat T, Szabala BM, Grygorowicz WJ, Wojtowicz B, Yin Z, Rey P (2006) Expression of SK3-type dehydrin in transporting organs is associated with cold acclimation in Solanum species. Planta 224:205–221

    Article  CAS  PubMed  Google Scholar 

  • Shekhawat UK, Srinivas L, Ganapathi TR (2011) MusaDHN-1, a novel multiple stress-inducible SK3-type dehydrin gene, contributes affirmatively to drought- and salt-stress tolerance in banana. Planta 234:915–932

    Article  CAS  PubMed  Google Scholar 

  • Svensson J, Palva ET, Welin B (2000) Purification of recombinant Arabidopsis thaliana dehydrins by metal ion affinity chromatography. Protein Expr Purif 20:169–178

    Article  CAS  PubMed  Google Scholar 

  • Tompa P (2002) Intrinsically unstructured proteins. Trends Biochem Sci 27:527–533

    Article  CAS  PubMed  Google Scholar 

  • Tompa P, Szasz C, Buday L (2005) Structural disorder throws new light on moonlighting. Trends Biochem Sci 30:484–489

    Article  CAS  PubMed  Google Scholar 

  • Van Bel AJE (2003) The phloem, a miracle of ingenuity. Plant Cell Environ 26:125–149

    Article  Google Scholar 

  • Van Bel AJE, Ehlers K, Knoblauch M (2002) Sieve elements caught in the act. Trends Plant Sci 7:126–132

    Article  PubMed  Google Scholar 

  • Van Etten RA, Jackson P, Baltimore D (1989) The mouse type IV c-abl gene product is a nuclear protein, and activation of transforming ability is associated with cytoplasmic localization. Cell 58:669–678

    Article  PubMed  Google Scholar 

  • Van Wijk K, Peltier JB, Giacomelli L (2007) Isolation of chloroplast proteins from Arabidopsis thaliana for proteome analysis. In: Thiellement H, Zivy M, Damerval C, Mechin V (eds) Plant proteomics: methods and protocols. Humana Press, New Jersey, pp 43–48

    Google Scholar 

  • Walz C, Giavalisco P, Schad M, Juenger M, Klose J, Kehr J (2004) Proteomics of curcurbit phloem exudate reveals a network of defence proteins. Phytochemistry 65:1795–1804

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Prof. Zbigniew Miszalski (IPP, PAS, Cracow) is acknowledged for comments on the manuscript. Malgorzata Wasilewska-Gomulka is acknowledged for ultramicrotome work. This work was supported in part by the Ministry of Science and Higher Education, Grant No. PBZ/MNiSW-2/3/2006.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bartosz Mieczyslaw Szabala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szabala, B.M., Fudali, S. & Rorat, T. Accumulation of acidic SK3 dehydrins in phloem cells of cold- and drought-stressed plants of the Solanaceae. Planta 239, 847–863 (2014). https://doi.org/10.1007/s00425-013-2018-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-013-2018-6

Keywords

Navigation