Skip to main content
Log in

Quantitative genetic analysis and mapping of leaf angle in durum wheat

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The leaf erectness profile has been used to optimize plant architecture since erect leaves can enhance photosynthesis and dry matter production by greater sunlight capture. Brassinosteroid is a recent class of phytohormones that has been related to a more erect profile. There are no reports in the literature of the genetic variability of leaf angle in doubled haploid durum wheat populations; most studies on leaf angle have focused on the inheritance. Our aim was to study the genetic variation in flag and penultimate leaf angle in a durum wheat doubled haploid mapping population, identifying and mapping quantitative trait loci influencing leaf angle. An F1-derived doubled haploid population of 89 lines from the cross Strongfield/Blackbird was used to construct a genetic map using 423 molecular marker loci. Two greenhouse experiments and one field test were conducted using an alpha lattice in a randomized complete block design with three replicates. The leaf angle was measured on flag and penultimate leaf with a protractor at three different growth stages. The results indicated poor to moderate correlations between the position of the leaf angle and the growth stage. Transgressive segregation beyond Strongfield and Blackbird of leaf angle was observed for all environments. Putative trait loci were identified on chromosomes 2A, 2B, 3A, 3B, 4B, 5B and 7A. This work helps to understand the genetics of leaf angle in durum wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BR(s):

Brassinosteroid(s) class of polyhydroxy plant steroid hormones first discovered in Brassica napus

DH:

Doubled haploid

QTL:

Quantitative trait loci

PCR:

Polymerase chain reaction

Taq :

Thermus aquaticus enzyme

LSMEANS:

Least square means

KW:

Kruskal–Wallis test

MQM:

Multiple QTL mapping

LOD:

Logarithm of the odds

PDIFF:

Requests that difference of the LS means is displayed

FL:

Flag leaf

2L:

Penultimate leaf

References

  • Angus JF, Jones R, Wilson JH (1972) A comparison of barley cultivars with different leaf inclinations. Aust J Agric Res 23:945–957

    Article  Google Scholar 

  • Austin RB, Ford MA, Edrich JA, Hooper BE (1976) Some effects of leaf posture on photosynthesis and yield in wheat. Ann Appl Biol 83:425–446

    Article  Google Scholar 

  • Bingham J, Lupton FGH (1987) Production of new varieties: an integrated research approach to plant breeding. Wheat Breeding: its scientific basis. Chapman and Hall, London

    Google Scholar 

  • Borojevic S, Kraljevic-Balalic M (1984) Inheritance of leaf architecture at different stages of wheat development. Zeitschrift für Pflanzenzüchtung 93:89–100

    Google Scholar 

  • Chen P, Jiang L, Yu C, Zhang W, Wang J, Wan J (2008) The identification and mapping of a tiller angle QTL on rice chromosome 9. Crop Sci 48:1799

    Article  CAS  Google Scholar 

  • Choe S, Fujioka S, Noguchi T, Takatsuto S, Yoshida S, Feldmann KA (2001) Overexpression of DWARF4 in the brassinosteroid biosynthetic pathway results in increased vegetative growth and seed yield in Arabidopsis. Plant J 26:573–582

    Article  PubMed  CAS  Google Scholar 

  • Chono M, Honda I, Zeniya H, Yoneyama K, Saisho D, Takeda K, Takatsuto S, Hoshino T, Watanabe Y (2003) A semidwarf phenotype of barley uzu results from a nucleotide substitution in the gene encoding a putative brassinosteroid receptor. Plant Physiol 133:1209–1219

    Article  PubMed  CAS  Google Scholar 

  • Choo TM, Reinbergs E (1982) Estimation of the number of genes in doubled haploid populations of barley (Hordeum vulgare). Can J Genet Cytol 24:337–341

    Google Scholar 

  • Clarke JM, McCaig TN, DePauw RM, Knox RE, Clarke FR, Fernandez MR, Ames NP (2005) Strongfield durum wheat. Can J Genet Cytol 85:651–654

    Google Scholar 

  • Cristaldo RMOD, Carvalho FIFD, Barbosa-Neto JF, Federizzi LC (1992) Inheritance of flag leaf angle in wheat. Rev Brasil Genet 15:385–397

    Google Scholar 

  • Donald CM (1968) The breeding of crop ideotypes. Euphytica 17:385–403

    Article  Google Scholar 

  • Duncan WG (1971) Leaf angles, leaf area, and canopy photosynthesis. Crop Sci 11:482–485

    Article  Google Scholar 

  • Foulkes MJ, Snape JW, Shearman VJ, Reynolds MP, Gaju O, Sylvester-Bradley R (2007) Genetic progress in yield potential in wheat: recent advances and future prospects. J Agric Sci 145:17

    Article  CAS  Google Scholar 

  • Foulkes MJ, Reynolds M, Sylvester-Bradley R (2009) Genetic improvement of grain crops: yield potentia. In: Sadras VO, Calderini D (eds) Crop physiology applications for genetic improvement and agronomy. Elsevier, Amsterdam, pp 235–256

    Google Scholar 

  • Gupta P, Balyan H, Edwards K, Isaac P, Korzun V, Röder M, Gautier MF, Joudrier P, Schlatter A, Dubcovsky J (2002) Genetic mapping of 66 new microsatellite (SSR) loci in bread wheat. Theor Appl Genet 105:413–422

    Article  PubMed  CAS  Google Scholar 

  • Guyomarc’h H, Sourdille P, Charmet G, Edwards K, Bernard M (2002) Characterisation of polymorphic microsatellite markers from Aegilops tauschii and transferability to the D-genome of bread wheat. Theor Appl Genet 104:1164–1172

    Article  PubMed  Google Scholar 

  • Hay RKM, Walker AJ (1989) An introduction to the physiology of crop yield. Longman, Harlow

    Google Scholar 

  • Hayat S, Ahmad A (2011) Brassinosteroid: a class of plant hormone, 1st edn. Springer, Dordrecht

  • Hirose T (2005) Development of the Monsi–Saeki theory on canopy structure and function. Ann Bot 95:483

    Article  PubMed  CAS  Google Scholar 

  • Hsu P, Walton PD (1971) Relationships between yield and its components and structures above the flag leaf node in spring wheat. Crop Sci 11:190–193

    Article  Google Scholar 

  • Isidro J, Knox R, Singh AK, Clarke F, Krishna P, DePauw R, Clarke J, Somers D (2012) Brassinosteroid leaf unrolling QTL mapping in durum wheat. Planta 236:273–281

    Article  PubMed  CAS  Google Scholar 

  • Joshi AK (1997) Genetic factors affecting photosynthesis. In: Pessarakli M (ed) Hand book of photosynthesis. Marcel and Dekker, New York, pp 751–767

    Google Scholar 

  • Joshi AK, Chand R (2002) Variation and inheritance of leaf angle, and its association with spot blotch (Bipolaris sorokiniana) severity in wheat (Triticum aestivum). Euphytica 124:283–291

    Article  Google Scholar 

  • Kimura K (1974) Effect of light on leaf inclination of Triticum aestivum. 1. Monochromatic light. Ber Ohara Inst Landwirtsch Biol 16:47–56

    Google Scholar 

  • Kimura K (1977) Effect of light on leaf inclination of Triticum aestivum. IV. Intermittent irradiation and after effect of blue light. Ber Ohara Inst Landwirtsch Biol Okayama Univ 17:1–6

    Google Scholar 

  • Knox RE, Clarke JM, DePauw RM (2000) Dicamba and growth condition effects on doubled haploid production in durum wheat crossed with maize. Plant Breed 119:289–298

    Article  Google Scholar 

  • Ledent JF (1974) Plant geometry, canopy architecture and leaf angle in wheat. PhD thesis, University of Minnesota, St-Paul. University Microfilms. Ann Arbor, MI (Diss. Abstr. 74:71)

  • Ledent JF (1977) Anatomical aspects of leaf angle changes during growth in wheat. Phytomorphology 26:309–315

    Google Scholar 

  • Ledent JF (1978) Mechanisms determining leaf movement and leaf angle in wheat (Triticum Aestivum L.). Ann Bot 42:345–351

    Google Scholar 

  • Ledent JF (1984) The effect of local application of growth-regulators on the leaf angle in wheat (Triticum aestivum L.). Arch Int Physiol Biochim Biophys 92:V2–V3

    Google Scholar 

  • Ledent J, Moss D (1977) Spatial orientation of wheat leaves. Crop Sci 17:873–879

    Article  Google Scholar 

  • Li WL, Li ZS, Mu SM (1992) Chromosomal locations of genes for erect flag leaves of common wheat variety Xiaoyan No. 6. Hereditas 19:71–75

    Google Scholar 

  • Li Z, Paterson AH, Pinson SRM, Stansel JW (1999) RFLP facilitated analysis of tiller and leaf angles in rice (Oryza sativa L.). Euphytica 109:79–84

    Article  CAS  Google Scholar 

  • Littell RC, Milliken GA, Stroup WW, Wolfinger RD (1996) SAS system for mixed models. SAS Institute, Cary, NC

  • Lopez-Castaneda C, Richards RA (1994) Variation in temperate cereals in rainfed environments. III. Water use and water-use efficiency. Field Crops Res 39:85–98

    Article  Google Scholar 

  • Loss SP, Siddique KHM (1994) Morphological and physiological traits associated with wheat yield increases in mediterranean environments. Adv Agron 52:229

    Article  CAS  Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer, Sunderland, MA, p 980

    Google Scholar 

  • Maksimchuk G (1966) Inheritance of position of leaves on yield of winter wheat. Sel Semenovod 31:41–46

    Google Scholar 

  • Monteith JL (1969) Light interception and radiative exchange in crop stands. In: Eastan JD (ed) Physiological aspects of crop yield. Am Soc Agron, Madison, WI, pp 89–109

  • Morinaka Y, Sakamoto T, Inukai Y, Agetsuma M, Kitano H, Ashikari M, Matsuoka M (2006) Morphological alteration caused by brassinosteroid insensitivity increases the biomass and grain production of rice. Plant Physiol 141:924–931

    Article  PubMed  CAS  Google Scholar 

  • Nigam SN, Srivastava JP (1976) Inheritance of leaf angle in Triticum aestivum L. Euphytica 25:457–461

    Article  Google Scholar 

  • Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F (1999) ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 400:256–260

    Article  PubMed  CAS  Google Scholar 

  • Pestsova E, Ganal MW, Röder MS (2000) Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome 43:689–697

    Article  PubMed  CAS  Google Scholar 

  • Rawlings JO, Pantula SG, Dickey DA (1998) Applied regression analysis: a research tool. Springer, New York, p 357

    Book  Google Scholar 

  • Reynolds M, Foulkes MJ, Slafer GA, Berry P, Parry MAJ, Snape JW, Angus WJ (2009) Raising yield potential in wheat. J Exp Bot 60:1899

    Article  PubMed  CAS  Google Scholar 

  • Reynolds M, Bonnett D, Chapman SC, Furbank RT, Manés Y, Mather DE, Parry MAJ (2011) Raising yield potential of wheat. I. Overview of a consortium approach and breeding strategies. J Exp Bot 62:439–452

    Article  PubMed  CAS  Google Scholar 

  • Richards RA, Lukacs Z (2002) Seedling vigour in wheat—sources of variation for genetic and agronomic improvement. Aust J Agric Res 53:41–50

    Article  CAS  Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007

    PubMed  Google Scholar 

  • Sakamoto T (2006) Phytohormones and rice crop yield: strategies and opportunities for genetic improvement. Transgenic Res 15:399–404

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto T, Morinaka Y, Ohnishi T, Sunohara H, Fujioka S, Ueguchi-Tanaka M, Mizutani M, Sakata K, Takatsuto S, Yoshida S, Tanaka H, Kitano H, Matsuoka M (2006) Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice. Nat Biotechnol 24:105–109

    Article  PubMed  CAS  Google Scholar 

  • Simon MR (1999) Inheritance of flag-leaf angle, flag-leaf area and flag-leaf area duration in four wheat crosses. Theor Appl Genet 98:310–314

    Article  Google Scholar 

  • Snape JW, Wright AJ, Simpson E (1984) Methods for estimating gene numbers for quantitative characters using doubled haploid lines. Theor Appl Genet 67:143–148

    Article  Google Scholar 

  • Somers DJ, Fedak G, Clarke J, Cao W (2006) Mapping of FHB resistance QTLs in tetraploid wheat. Genome 49:1586–1593

    Article  PubMed  CAS  Google Scholar 

  • Song QJ, Shi JR, Singh S, Fickus EW, Costa JM, Lewis J, Gill BS, Ward R, Cregan PB (2005) Development and mapping of microsatellite (SSR) markers in wheat. Theor Appl Genet 110:550–560

    Article  PubMed  CAS  Google Scholar 

  • Sourdille P, Cadalen T, Guyomarc’h H, Snape J, Perretant M, Charmet G, Boeuf C, Bernard S, Bernard M (2003) An update of the Courtot × Chinese Spring intervarietal molecular marker linkage map for the QTL detection of agronomic traits in wheat. Theor Appl Genet 106:530–538

    PubMed  CAS  Google Scholar 

  • Van Ooijen JW, Maliepaard CM (1996) Version 3.0, software for the calculation of QTL positions on genetic maps. Wageningen, The Netherlands

  • Wu XK, Xu YK, Zhang FQ (1984) Genetic analysis of flag angle in wheat. Appl At Energy Agric 2:1–5

    CAS  Google Scholar 

  • Yu B, Lin Z, Li H, Li X, Li J, Wang Y, Zhang X, Zhu Z, Zhai W, Wang X (2007) TAC1, a major quantitative trait locus controlling tiller angle in rice. Plant J 52:891–898

    Article  PubMed  CAS  Google Scholar 

  • Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Res 14:415–421

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by AAFC’s ABIP as part of the Agriculture Biorefinery Innovation Network ABIN Canada and the Ministry of Economy and Competitiveness of Spain. The authors acknowledge Errol Stuart for his greenhouse support, as well as, the technical assistance of Alison Banman, Theresa Colenutt, Brad Meyer, Cam Barlow and Chelsea Erickson.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Julio Isidro or Ron Knox.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isidro, J., Knox, R., Clarke, F. et al. Quantitative genetic analysis and mapping of leaf angle in durum wheat. Planta 236, 1713–1723 (2012). https://doi.org/10.1007/s00425-012-1728-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-012-1728-5

Keywords

Navigation