Skip to main content

Advertisement

Log in

dHPLC efficiency for semi-automated cDNA-AFLP analyses and fragment collection in the apple scab-resistance gene model

  • Emerging Technologies
  • Published:
Planta Aims and scope Submit manuscript

Abstract

cDNA-AFLP analysis for transcript profiling has been successfully applied to study many plant biological systems, particularly plant–microbe interactions. However, the separation of cDNA-AFLP fragments by gel electrophoresis is reported to be labor-intensive with only limited potential for automation, and the collection of differential bands for gene identification is even more cumbersome. In this work, we present the use of dHPLC (denaturing high performance liquid chromatography) and automated DNA fragment collection using the WAVE® System to analyze and recover cDNA-AFLP fragments. The method is successfully applied to the MalusVenturia inaequalis interaction, making it possible to collect 66 different transcript-derived fragments for apple genes putatively involved in the defense response activated by the HcrVf2 resistance gene. The results, validated by real time quantitative RT-PCR, were consistent with the plant–pathogen interaction under investigation and this further supports the suitability of dHPLC for cDNA-AFLP transcript profiling. Features and advantages of this new approach are discussed, evincing that it is an almost fully automatable and cost-effective solution for processing large numbers of samples and collecting differential genes involved in other biological processes and non-model plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ACN:

Acetonitrile

cDNA-AFLP:

Amplified fragment length polymorphism on cDNA

dHPLC:

Denaturing high pressure liquid chromatography

hpi:

Hours post inoculation

HR:

Hypersensitive reaction

PCD:

Plant cell death

qRT-PCR:

Real time quantitative reverse transcription PCR

R gene:

Resistance gene

ROS:

Reactive oxygen species

TEAA:

Triethylammonium acetate

TDF:

Transcript-derived fragment

References

  • Akashi K, Nishimura N, Ishida Y, Yokota A (2004) Potent hydroxy radical-scavenging activity of drought-induced type-2 metallothionein in wild watermelon. Biochem Biophys Res Comm 323:72–78

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Bachem CWB, van der Hoeven RS, de Bruijn SM, Vreugdenhil D, Zabeau M, Visser RG (1996) Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: analysis of gene expression during potato tuber development. Plant J 9:745–753

    Article  PubMed  CAS  Google Scholar 

  • Bachem CWB, Oomen RJFJ, Visser RGF (1998) Transcript imaging with cDNA-AFLP: a step-by-step protocol. Plant Mol Biol Rep 16:157–173

    Article  CAS  Google Scholar 

  • Baldo A, Norelli LJ, Farrell RE Jr, Bassett CL, Aldwinckle HS, Malnoy M (2010) Identification of genes differentially expressed during interaction of resistant and susceptible apple cultivars (Malus x domestica) with Erwinia amylovora. BMC Plant Biol 10:1

    Article  PubMed  Google Scholar 

  • Belfanti E, Silfverberg-Dilworth E, Tartarini S, Patocchi A, Barbieri M, Zhu J, Vinatzer B, Gianfranceschi L, Gessler C, Sansavini S (2004) The HcrVf2 gene from a wild apple confers scab resistance to a transgenic cultivated variety. Proc Natl Acad Sci USA 101:886–890

    Article  PubMed  CAS  Google Scholar 

  • Bevan M, Bancroft I, Bent E, Love K, Goodman H, Dean C, Bergkamp R, Dirkse W, Van Staveren M, Stiekema W, Drost L, Ridley P, Hudson SA, Patel K, Murphy G, Piffanelli P, Wedler H, Wedler E, Wambutt R, Weitzenegger T, Pohl TM, Terryn N, Gielen J, Villarroel R, De Clerck R, Van Montagu M, Lecharny A, Auborg S, Gy I, Kreis M, Lao N, Kavanagh T, Hempel S, Kotter P, Entian KD, Rieger M, Schaeffer M, Funk B, Mueller- Auer S, Silvey M, James R, Montfort A, Pons A, Puigdomenech P, Douka A, Voukelatou E, Milioni D, Hatzopoulos P, Piravandi E, Obermaier B, Hilbert H, Düsterhöft A, Moores T, Jones JD, Eneva T, Palme K, Benes V, Rechman S, Ansorge W, Cooke R, Berger C, Delseny M, Voet M, Volckaert G, Mewes HW, Klosterman S, Schueller C, Chalwatzis N (1998) Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana. Nature 391:485–488

    Article  PubMed  CAS  Google Scholar 

  • Bilgin DD, Zavala JA, Zhu J, Clough SJ, Ort DR, De Lucia EH (2010) Biotic stress globally downregulates photosynthesis genes. Plant Cell Environ 33:1597–1613

    Article  PubMed  CAS  Google Scholar 

  • Binder S, Knill T, Schuster J (2007) Branched-chain amino acid metabolism in higher plants. Physiol Plant 129:68–78

    Article  CAS  Google Scholar 

  • Chen G, Bi YR, Li N (2005) EGY1 encodes a membrane-associated and ATP-independent metalloprotease that is required for chloroplast development. Plant J 41:364–375

    Article  PubMed  CAS  Google Scholar 

  • Chevalier M, Lespinasse Y, Renaudin S (1991) A microscopic study of the different classes of symptoms coded by the Vf gene in apple for resistance to scab (Venturia inaequalis). Plant Pathol 40:249–256

    Article  Google Scholar 

  • Chubatsu LS, Meneghini R (1993) Metallothionein protects DNA from oxidative damage. Biochem J 291:193–198

    PubMed  CAS  Google Scholar 

  • Cova V, Paris R, Passerotti S, Zini E, Gessler C, Pertot I, Loi N, Musetti R, Komjanc M (2010) Mapping and functional analysis of four apple receptor-like protein kinases related to LRPKm1 in HcrVf2-transgenic and wild-type apple plants. Tree Genet Genomes 6:389–403

    Article  Google Scholar 

  • Dal Cin V, Barbaro E, Danesin M, Murayama H, Velasco R, Ramina A (2009) Fruitlet abscission: a cDNA-AFLP approach to study genes differentially expressed during shedding of immature fruits reveals the involvement of a putative auxin hydrogen symporter in apple (Malus domestica L. Borkh). Gene 442:26–36

    Article  PubMed  CAS  Google Scholar 

  • Dangl JL, Jones JDG (2001) Plant pathogens and integrated defense responses to infection. Nature 411:826–833

    Article  PubMed  CAS  Google Scholar 

  • Dangl JL, Dietrich RA, Richberg MH (1996) Death don’t have no mercy: cell death programs in plant-microbe interactions. Plant Cell 8:1793–1807

    Article  PubMed  CAS  Google Scholar 

  • Degenhardt J, Al-Masri AN, Kürkcüoglu S, Szankowski I, Gau AE (2005) Characterization by suppression subtractive hybridization of transcripts that are differentially expressed in leaves of apple scab-resistant and susceptible cultivars of Malus domestica. Mol Genet Genomics 273:326–335

    Article  PubMed  CAS  Google Scholar 

  • Devoto A, Muskett P, Shirasu K (2003) Role of ubiquitination and proteasome in regulation of plant defence against pathogens. Curr Opin Plant Biol 6:307–311

    Article  PubMed  CAS  Google Scholar 

  • Dreher K, Callis J (2007) Ubiquitin, hormones and biotic stress in plants. Ann Bot 99:787–822

    Article  PubMed  CAS  Google Scholar 

  • Eulgem T (2005) Regulation of the Arabidopsis defense transcriptome. Trends Plant Sci 10:71–78

    Article  PubMed  CAS  Google Scholar 

  • Gasic K, Gonzalez DO, Thimmapuram J, Malnoy M, Gong G, Han Y, Vodkin LO, Lei L, Aldwinckle HS, Carroll N, Orvis K, Goldsbrough P, Clifton S, Pape D, Fulton L, Martin J, Theising B, Wisniewski ME, Fazio G, Korban SS (2009) Comparative analysis and functional annotation of a large expressed sequence tag collection of apple. Plant Genome 2:23–38

    Article  CAS  Google Scholar 

  • Gilroy EM, Hein I, van der Hoorn R, Boevink PC, Venter E, McLellan H, Kaffarnik F, Hrubikova K, Shaw J, Holeva M, López EC, Borras-Hidalgo O, Pritchard L, Loake GJ, Lacomme C, Birch PRJ (2007) Involvement of cathepsin B in the plant disease resistance hypersensitive response. Plant J 52:1–13

    Article  PubMed  CAS  Google Scholar 

  • Gosch C, Halbwirth H, Kuhn J, Miosic S, Stich K (2009) Biosynthesis of phloridzin in apple (Malus domestica Borkh.). Plant Sci 176:223–231

    Article  CAS  Google Scholar 

  • Guo M, Rupe MA, Danielevskaya ON, Yang X, Hu Z (2003) Genome-wide mRNA profiling reveals heterochronic allelic variation and a new imprinted gene in hybrid maize endosperm. Plant J 36:30–44

    Article  PubMed  CAS  Google Scholar 

  • Hammond-Kosack KE, Jones JD (1997) Plant disease resistance genes. Annu Rev Plant Physiol Plant Mol Biol 48:575–607

    Article  PubMed  CAS  Google Scholar 

  • Hammond-Kosack KE, Parker JE (2003) Deciphering plant-pathogen communication: fresh perspectives for molecular resistance breeding. Curr Opin Biotechnol 14:177–193

    Article  PubMed  CAS  Google Scholar 

  • Hecker KH, Green SM, Kobayashi K (2000) Analysis and purification of nucleic acids by ion-pair reversed-phase high-performance liquid chromatography. J Biochem Biophys Methods 46:83–93

    Article  PubMed  CAS  Google Scholar 

  • Hrazdina G (2003) Response of scab-susceptible (McIntosh) and scab-resistant (Liberty) apple tissues to treatment with yeast extract and Venturia inaequalis. Phytochemistry 64:485–492

    Article  PubMed  CAS  Google Scholar 

  • Hunter S, Apweiler R, Attwood TK, Bairoch A, Bateman A, Binns D, Bork P, Das U, Daugherty L, Duquenne L, Finn RD, Gough J, Haft D, Hulo N, Kahn D, Kelly E, Laugraud A, Letunic I, Lonsdale D, Lopez R, Madera M, Maslen J, McAnulla C, McDowall J, Mistry J, Mitchell A, Mulder N, Natale D, Orengo C, Quinn AF, Selengut JD, Sigrist CJA, Thimma M, Thomas PD, Valentin F, Wilson D, Wu CH, Yeats C (2009) InterPro: the integrative protein signature database. Nucleic Acids Res 37:D211–D215. doi:10.1093/nar/gkn785

    Article  PubMed  CAS  Google Scholar 

  • Jensen PJ, Rytter J, Detwiler EA, Travis JW, McNellis TW (2003) Rootstock effects on gene expression patterns in apple tree scions. Plant Mol Biol 493:493–511

    Article  Google Scholar 

  • Kota R, Wolf M, Michalek W, Graner A (2001) Application of denaturing high-performance liquid chromatography for mapping single nucleotide polymorphisms in barley (Hordeum vulgare L.). Genome 44:523–528

    PubMed  CAS  Google Scholar 

  • Kuhn E (2001) From library screening to microarray technology: strategies to determine gene expression profiles and to identify differentially regulates genes in plants. Ann Bot 87:139–155

    Article  CAS  Google Scholar 

  • Li XP, Gan R, Li PL, Ma YY, Zhang LW, Zhang R, Wang Y, Wang NN (2006) Identification and functional characterization of a leucine-rich repeat receptor-like kinase gene that is involved in regulation of soybean leaf senescence. Plant Mol Biol 61:829–844

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Schiff M, Serino G, Deng XW, Dinesh-Kumar SP (2002) Role of SCF ubiquitin-ligase and the COP9 signalosome in the N gene-mediated resistance response to Tobacco mosaic virus. Plant Cell 14:1483–1496

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-∆∆CT method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Maguire TL, Collins GG, Sedgley M (1994) A modified CTAB DNA extraction procedure for plants belonging to the family Proteaceae. Plant Mol Biol Rep 12:106–109

    Article  CAS  Google Scholar 

  • Mahalingam R, Gomez-Buitrago A, Eckardt N, Shah N, Guevara-Garcia A, Day P, Raina R, Fedoroff NV (2003) Characterizing the stress/defense transcriptome of Arabidopsis. Genome Biol 4:R20

    Article  PubMed  Google Scholar 

  • Matsumura H, Reich S, Ito A, Saitoh H, Kamoun S, Winter P, Kahl G, Reuter M, Kruger DH, Terauchi R (2003) Gene expression analysis of plant host–pathogen interactions by SuperSAGE. Proc Natl Acad Sci USA 100:15718–15723

    Article  PubMed  CAS  Google Scholar 

  • McCallum CM, Comai L, Green EA, Henikoff S (2000) Targeted screening for induced mutations. Nat Biotechnol 18:455–457

    Article  PubMed  CAS  Google Scholar 

  • McLellan H, Gilroy EM, Yun BW, Birch PRJ, Loake GJ (2009) Functional redundancy in the Arabidopsis Cathepsin B gene family contributes to basal defence, the hypersensitive response and senescence. New Phytol 183:408–418

    Article  PubMed  CAS  Google Scholar 

  • Mellersh DG, Foulds IV, Higgins VJ, Heath MC (2002) H2O2 plays different roles in determining penetration failure in three diverse plant–fungal interactions. Plant J 29:257–268

    Article  PubMed  CAS  Google Scholar 

  • Mikulic Petkovsek M, Stampar F, Veberic R (2008) Increased phenolic content in apple leaves infected with the apple scab pathogen. J Plant Pathol 90:49–55

    Google Scholar 

  • Mikulic Petkovsek M, Stampar F, Veberic R (2009) Accumulation of phenolic compounds in apple response to infection by the scab pathogen, Venturia inaequalis. Physiol Mol Plant Pathol 74:60–67

    Article  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) The reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  PubMed  CAS  Google Scholar 

  • Morita-Yamamuro C, Tsutsui T, Sato M, Yoshioka H, Tamaoki M, Ogawa D, Matsuura H, Yoshihara T, Ikeda A, Uyeda I, Yamaguchi J (2005) The Arabidopsis gene CAD1 controls programmed cell death in the plant immune system and encodes a protein containing a MACPF domain. Plant Cell Physiol 46:902–912

    Article  PubMed  CAS  Google Scholar 

  • Paris R, Cova V, Pagliarani G, Tartarini S, Komjanc M, Sansavini S (2009) Expression profiling in HcrVf2-transformed apple plants in response to Venturia inaequalis. Tree Genet Genomes 5:81–91

    Article  Google Scholar 

  • Pearson WR, Lipman DJ (1988) Improved tools for biological sequence comparison. Proc Natl Acad Sci USA 85:2444–2448

    Article  PubMed  CAS  Google Scholar 

  • Qubbaj T, Reineke A, Zebitz CPW (2005) Molecular interactions between rosy apple aphids, Dysaphis plantaginea, and resistant and susceptible cultivars of its primary host Malus domestica. Entomol Exp Appl 115:145–152

    Article  CAS  Google Scholar 

  • Ray S, Anderson JM, Urmeev FI, Goodwin SB (2003) Rapid induction of a protein disulfide isomerase and defense-related genes in wheat in response to the hemibiotrophic fungal pathogen Mycosphaerella graminicola. Plant Mol Biol 53:741–754

    Article  Google Scholar 

  • Raz A, Stern RA, Bercovich D, Goldway M (2009) SFB-based S-haplotyping of apricot (Prunus armeniaca) with DHPLC. Plant Breeding 128:707–711

    Article  CAS  Google Scholar 

  • Schwarz G, Sift A, Wenzel G, Mohler V (2003) DHPLC scoring of a SNP between promoter sequences of HMW glutenin x-type alleles at the Glu-D1 locus in wheat. J Agric Food Chem 51:4263–4267

    Article  PubMed  CAS  Google Scholar 

  • Thordal-Christensen H, Zhang Z, Wei Y, Collinge DB (1997) Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley–powdery mildew interaction. Plant J 11:1187–1194

    Article  CAS  Google Scholar 

  • Valsangiacomo C, Gessler C (1988) Role of the cuticular membrane in ontogenic and Vf resistance of apple leaves against Venturia inaequalis. Phytopathology 78:1066–1069

    Article  Google Scholar 

  • Vinatzer BA, Patocchi A, Gianfranceschi L, Tartarini S, Zhang HB, Gessler C, Sansavini S (2001) Apple contains receptor-like genes homologous to the Cladosporium fulvum resistance gene family of tomato with a cluster of genes cosegregating with Vf apple scab resistance. Mol Plant Microbe Int 14:508–515

    Article  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Liu W, Chen X, Tang C, Dong Y, Ma J, Huang X, Wei G, Han Q, Huang L, Kang Z (2010) Differential gene expression in incompatibile interaction between wheat and stripe rust fungus revealed by cDNA-AFLP and comparison to compatible interaction. BMC Plant Biol 10:9

    Article  PubMed  Google Scholar 

  • Watanabe N, Lam E (2006) Arabidopsis Bax inhibitor-1 functions as an attenuator of biotic and abiotic types of cell death. Plant J 45:884–894

    Article  PubMed  CAS  Google Scholar 

  • Wong HL, Sakamoto T, Kawasaki T, Umemura K, Shimamoto K (2004) Down-regulation of metallothionein, a reactive oxygen scavenger, by the small GTPase OsRac1 in rice. Plant Physiol 135:1447–1456

    Article  PubMed  CAS  Google Scholar 

  • Xu Z, Escamilla-Treviño LL, Zeng L, Lalgondar M, Bevan DR, Winkel BSJ, Mohamed A, Cheng CL, Shih MC, Poulton JE, Esen A (2004) Functional genomic analysis of Arabidopsis thaliana glycoside hydrolase family 1. Plant Mol Biol 55:343–367

    Article  PubMed  CAS  Google Scholar 

  • Yao YX, Li M, Liu Z, Hao YJ, Zhai H (2007) A novel gene, screened by cDNA-AFLP approach, contributes to lowering the acidity of fruit in apple. Plant Physiol Biochem 45:139–145

    Article  PubMed  CAS  Google Scholar 

  • Zdobnov EM, Apweiler R (2001) InterProScan: an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17:847–848

    Article  PubMed  CAS  Google Scholar 

  • Zimmerli L, Stein M, Lipka V, Schulze-Lefert P, Somerville S (2004) Host and non-host pathogens elicit different jasmonate/ethylene responses in Arabidopsis. Plant J 40:633–646

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Centre for Applied Biomedical Research (CRBA) of Bologna for valuable contributions to the dHPLC analyses. The authors also thank Fondazione Cassa di Risparmio in Bologna for supporting CRBA. The authors are also grateful to Dr. Stavros Papadimitriou from Transgenomic LTD. for technical advice. This work was supported by the MIUR FIRB project “http://DNA”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberta Paris.

Additional information

The authors R. Paris and L. Dondini contributed equally to the work.

Electronic supplementary material

ESM1, Online Resource 1 List of the TDF sequences collected after dHPLC separation of cDNA-AFLPs.

ESM2, Online Resource 2 List of 51 TDF with their corresponding predicted function based on FASTA similarities.

ESM3 Online Resource 3 List of 32 selected TDFs for qRT-PCR analyses, primer sequences and amplification efficiencies calculated with respect to the actin reference gene.

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 81 kb)

Supplementary material 2 (PDF 88 kb)

Supplementary material 3 (PDF 91 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paris, R., Dondini, L., Zannini, G. et al. dHPLC efficiency for semi-automated cDNA-AFLP analyses and fragment collection in the apple scab-resistance gene model. Planta 235, 1065–1080 (2012). https://doi.org/10.1007/s00425-012-1589-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-012-1589-y

Keywords

Navigation