Skip to main content
Log in

Sucrose phosphate phosphatase in the green alga Klebsormidium flaccidum (Streptophyta) lacks an extensive C-terminal domain and differs from that of land plants

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Previously, it was reported that like land plants, the green alga Klebsormidium flaccidum (Streptophyta) accumulates sucrose during cold acclimation (Nagao et al. Plant Cell Environ 31:872–885, 2008), suggesting that synthesis of sucrose could enhance the freezing tolerance of this alga. Because sucrose phosphate phosphatase (SPP; EC 3.1.3.24) is a key enzyme in the sucrose synthesis pathway in plants, we analyzed the SPP gene in K. flaccidum (KfSPP, GenBank accession number AB669024) to clarify its role in sucrose accumulation. As determined from its deduced amino acid sequence, KfSPP contains the N-terminal domain that is characteristic of the L-2-haloacid-dehalogenase family of phosphatases/hydrolases (the HAD phosphatase domain). However, it lacks the extensive C-terminal domain found in SPPs of land plants. Database searches revealed that the SPPs in cyanobacteria also lack the C-terminal domain. In addition, the green alga Coccomyxa (Chlorophyta) and K. flaccidum, which are closely related to land plants, have cyanobacterial-type SPPs, while Chlorella (Chlorophyta) has a land plant-type SPP. These results demonstrate that even K. flaccidum (Streptophyta), as a recent ancestor of land plants, has the cyanobacterial-type SPP lacking the C-terminal domain. Because SPP and sucrose phosphate synthase (SPS) catalyze sequential reactions in sucrose synthesis in green plant cells and the lack of the C-terminal domain in KfSPP is predicted to decrease its activity, the interaction between decreased KfSPP activity and SPS activity may alter sucrose synthesis during cold acclimation in K. flaccidum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

cDNA:

Complementary DNA

HAD:

L-2-Haloacid-dehalogenase

MW:

Molecular weight

pI:

Isoelectric point

RACE:

Rapid amplification of cDNA ends

qRT-PCR:

Quantitative real-time reverse transcription polymerase chain reaction

SPP:

Sucrose phosphate phosphatase

SPS:

Sucrose phosphate synthase

Suc6P:

Sucrose 6′-phosphate

References

  • Anchordoguy TJ, Rudolph AS, Carpenter JF, Crowe JH (1987) Modes of interaction of cryoprotectants with membrane phospholipids during freezing. Cryobiology 24:324–331

    Article  PubMed  CAS  Google Scholar 

  • Aravind L, Galperin MY, Koonin EV (1998) The catalytic domain of the P-type ATPase has the haloacid dehalogenase fold. Trends Biochem Sci 23:127–129

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharya D, Medlin L (1998) Algal phylogeny and the origin of land plants. Plant Physiol 116:9–15

    Article  CAS  Google Scholar 

  • Bouwmeester HJ, Kodde J, Verstappen FW, Altug IG, de Kraker JW, Wallaart TE (2002) Isolation and characterization of two germacrene A synthase cDNA clones from chicory. Plant Physiol 129:134–144

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Hajirezaei MR, Zanor M-I, Hornyik C, Debast S, Lacomme C, Ferine AR, Sonnewald U, Börnke F (2007) RNA interference-mediated repression of sucrose-phosphatase in transgenic potato tubers (Solanum tuberosum) strongly affects the hexose-to-sucrose ratio upon cold storage with only minor effects on total soluble carbohydrate accumulation. Plant Cell Environ 31:165–176

    PubMed  Google Scholar 

  • Collet JF, Stroobant V, Pirard M, Delpierre G, Van Schaftingen E (1998) A new class of phosphotransferases phosphorylated on an aspartate residue in an amino-terminal DXDX(T/V) motif. J Biol Chem 23:14107–14112

    Article  Google Scholar 

  • Cumino A, Curatti L, Giarrocco L, Salerno GL (2002) Sucrose metabolism: Anabaena sucrose-phosphate synthase and sucrose-phosphate phosphatase define minimal functional domains shuffled during evolution. FEBS Lett 517:19–23

    Article  PubMed  CAS  Google Scholar 

  • Cumino A, Perez-Cenci M, Giarrocco L, Salerno GL (2010) The proteins involved in sucrose synthesis in the marine cyanobacterium Synechococcus sp. PCC 7002 are encoded by two genes transcribed from a gene cluster. FEBS Lett 584:4655–4660

    Article  PubMed  CAS  Google Scholar 

  • Duran WR, Pontis HG (1977) Sucrose metabolism in green algae I. The presence of sucrose synthase and sucrose phosphate synthase. Mol Cell Biochem 16:149–152

    Article  PubMed  CAS  Google Scholar 

  • Echeverria E, Salvucci ME, Gonzalez P, Paris P, Salerno G (1997) Physical and kinetic evidence for an association between sucrose phosphate synthase and sucrose-phosphate phosphatase. Plant Physiol 115:223–227

    PubMed  CAS  Google Scholar 

  • Elster J, Degma P, Kovacik L, Valentova L, Sramkova K, Pereira AB (2008) Freezing and desiccation injury resistance in the filamentous green alga Klebsormidium from the Antarctic, Arctic and Slovakia. Biologia 63:843–851

    Article  Google Scholar 

  • Fieulaine S, Lunn JE, Borel F, Ferrer JL (2005) The structure of a cyanobacterial sucrose-phosphatase reveals the sugar tongs that release free sucrose in the cell. Plant Cell 17:2049–2058

    Article  PubMed  CAS  Google Scholar 

  • Graham LE, Cook ME, Busse JS (2000) The origin of plants: body plan changes contributing to a major evolutionary radiation. Proc Natl Acad Sci USA 97:4535–4540

    Article  PubMed  CAS  Google Scholar 

  • Guy CL, Huber JL, Huber SC (1992) Sucrose phosphate synthase and sucrose accumulation at low temperature. Plant Physiol 100:502–508

    Article  PubMed  CAS  Google Scholar 

  • Hawker JS (1971) Enzymes concerned with sucrose synthesis and transformations in seeds of maize, broad bean and castor bean. Phytochemistry 10:2313–2322

    Article  CAS  Google Scholar 

  • Hawker JS, Smith GM (1984) Occurrence of sucrose phosphatase in vascular and non-vascular plants. Phytochemistry 23:245–249

    Article  CAS  Google Scholar 

  • Holzinger A, Lutz C, Karsten U (2011) Desiccation stress causes structural and ultrastructural alterations in the aeroterrestrial green alga Klebsormidium crenulatum (Klebsormidiophyceae, Streptophyta) isolated from an alpine soil crust. J Phycol 47:591–602

    Article  Google Scholar 

  • Huber SC, Huber JL (1996) Role and regulation of sucrose-phosphate synthase in higher plants. Annu Rev Plant Physiol Plant Mol Biol 47:431–444

    Article  PubMed  CAS  Google Scholar 

  • Ichimura T (1971) Sexual cell division and conjugation papilla formation in sexual reproduction of Closterium strigosum. In: Proceedings of the 7th international seaweed symposium. University of Tokyo Press, Tokyo, pp 208–214

    Google Scholar 

  • Kamata T, Uemura M (2004) Solute accumulation in wheat seedlings during cold acclimation: contribution to freezing tolerance. CryoLett 25:311–322

    CAS  Google Scholar 

  • Kaplan F, Kopka J, Sung DY, Zhao W, Popp M, Porat R, Guy CL (2007) Transcript and metabolite profiling during cold acclimation of Arabidopsis reveals an intricate relationship of cold-regulated gene expression with modifications in metabolite content. Plant J 50:967–981

    Article  PubMed  CAS  Google Scholar 

  • Karol KG, McCourt RM, Cimino MT, Delwiche CF (2001) The closest living relatives of land plants. Science 294:2351–2353

    Article  PubMed  CAS  Google Scholar 

  • Karsten U, Rindi F (2010) Ecophysiological performance of an urban strain of the aeroterrestrial green alga Klebsormidium sp (Klebsormidiales, Klebsormidiophyceae). Eur J Phycol 45:426–435

    Article  CAS  Google Scholar 

  • Karsten U, Lutz C, Holzinger A (2010) Ecophysiological performance of the aeroterrestrial green alga Klebsormidium crenulatum (Charophyceae, Streptophyta) isolated from an alpine soil crust with an emphasis on desiccation stress. J Phycol 46:1187–1197

    Article  Google Scholar 

  • Koch K (2004) Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and polant development. Curr Opin Plant Biol 7:235–246

    Article  PubMed  CAS  Google Scholar 

  • Kühn C, Grof CPL (2010) Sucrose transporters of higher plants. Curr Opin Plant Biol 13:287–297

    Article  Google Scholar 

  • Levitt J (1980) Responses of plants to environmental stresses, 2nd edn. Academic Press, New York

    Google Scholar 

  • Leslie SB, Israeli E, Lighthart B, Crowe JH, Crowe LM (1995) Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying. Appl Environ Microbiol 61:3592–3597

    PubMed  CAS  Google Scholar 

  • López-Bautista1 JM, Chapman RL (2003) Phylogenetic affinities of the Trentepohliales inferred from small-subunit rDNA. Int J Syst Evol Microbiol 53: 2099–2106

    Google Scholar 

  • Lunn JE, ap Rees T (1990) Apparent equilibrium constant and mass-action ratio for sucrose-phosphate synthase in seeds of Pisum sativum. Biochem J 267:739–743

    PubMed  CAS  Google Scholar 

  • Lunn JE, Furbank RT (1997) Localisation of sucrose-phosphate synthase and starch in leaves of C4 plants. Planta 202:106–111

    Article  PubMed  CAS  Google Scholar 

  • Lunn JE, Hatch MD (1997) The role of sucrose-phosphate synthase in the control of photosynthate partitioning in Zea mays leaves. Aust J Plant Physiolo 24:1–8

    Article  CAS  Google Scholar 

  • Lunn JE, Price GD, Furbank RT (1999) Cloning and expression of a prokaryotic sucrose-phosphate synthase gene from the cyanobacterium Synechocystis sp. PCC 6803. Plant Mol Biol 40:297–305

    Article  PubMed  CAS  Google Scholar 

  • Lunn JE, Ashton AR, Hatch MD, Heldt HW (2000) Purification, molecular cloning and sequence analysis of sucrose-6F-phosphate phosphohydrolase from plants. Proc Natl Acad Sci USA 97:12914–12919

    Article  PubMed  CAS  Google Scholar 

  • Lunn JE (2002) Evolution of sucrose synthesis. Plant Physiol 128:1490–1500

    Article  PubMed  CAS  Google Scholar 

  • Lunn JE (2003) Sucrose-phosphatase gene families in plants. Gene 303:187–196

    Article  PubMed  CAS  Google Scholar 

  • Lunn JE, MacRae E (2003) New complexities in the synthesis of sucrose. Curr Opi Plant Biol 6:208–214

    Article  CAS  Google Scholar 

  • Maruyama K, Takeda M, Kidokoro S, Yamada K, Sakuma Y, Urano K, Fujita M, Yoshiwara K, Matsukura S, Morishita Y, Sasaki R, Suzuki H, Saito K, Shibata D, Shinozaki K, Yamaguchi-Shinozaki K (2009) Metabolic pathways involved in cold acclimation identified by integrated analysis of metabolites and transcripts regulated by DREB1A and DREB2A. Plant Physiol 150:1972–1980

    Article  PubMed  CAS  Google Scholar 

  • Morais MC, Zhang W, Baker AS, Zhang G, Dunaway-Mariano D, Allen KN (2000) The crystal structure of Bacillus cereus phosphonoacetaldehyde hydrolase: insight into catalysis of phosphorus bond cleavage and catalytic diversification within the HAD enzyme superfamily. Biochemistry 39:10385–10396

    Article  PubMed  CAS  Google Scholar 

  • Nagao M, Oku K, Minami A, Mizuno K, Sakurai M, Arakawa K, Fujikawa S, Takezawa D (2006) Accumulation of theanderose in association with development of freezing tolerance in the moss Physcomitrella patens. Phytochemistry 67:702–709

    Article  PubMed  CAS  Google Scholar 

  • Nagao M, Matsui K, Uemura M (2008) Klebsormidium flaccidum, a charophycean green alga, exhibits cold acclimation that is closely associated with compatible solute accumulation and ultrastructural changes. Plant Cell Environ 31:872–885

    Article  PubMed  CAS  Google Scholar 

  • Nicholas KB, Nicholas HB Jr, Deerfield DW II (1997) GeneDoc: Analysis and visualization of genetic variation. Embnet News 4:1–4

    Google Scholar 

  • Petersen J, Teich R, Becker B, Cerff R, Brinkmann H (2007) The GapA/B Gene Duplication Marks the Origin of Streptophyta (Charophytes and Land Plants). Mol Biol Evol 23:1109–1118

    Article  Google Scholar 

  • Salerno GL (1985) Occurrence of sucrose and sucrose metabolizing enzymes in achlorophyllous algae. Plant Sci 42:5–8

    Article  CAS  Google Scholar 

  • Salerno GL, Curatti L (2003) Origin of sucrose metabolism in higher plants: when, how and why? Trends Plant Sci 8:63–69

    Article  PubMed  CAS  Google Scholar 

  • Silva PC, Mattox KR, Blackwell WH Jr (1972) The generic name Hormidium as applied to green algae. Taxon 21:639–645

    Article  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol doi:10.1093/molbev/msr121

  • Thomashow MF (1998) Role of cold-responsive genes in plant freezing tolerance. Plant Physiol 118:1–7

    Article  PubMed  CAS  Google Scholar 

  • Thomashow MF (2010) Molecular basis of plant cold acclimation: insights gained from studying the CBF cold response pathway. Plant Physiol 154:571–577

    Article  PubMed  CAS  Google Scholar 

  • Toroser D, Athwal GS, Huber SC (1998) Site-specific regulatory interaction between spinach leaf sucrose-phosphate synthase and 14–3-3 proteins. FEBS Lett 435:110–114

    Article  PubMed  CAS  Google Scholar 

  • Uemura M, Steponkus PL (2003) Modification of the intracellular sugar content alters the incident of freeze-induced membrane lesions of protoplasts isolated from Arabidopsis thaliana leaves. Plant Cell Environ 26:1083–1096

    Article  CAS  Google Scholar 

  • Uemura M, Warren G, Steponkus PL (2003) Freezing sensitivity in the sfr4 mutant of Arabidopsis is due to low sugar content and is manifested by loss of osmotic responsiveness. Plant Physiol 131:1800–1807

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Kim R, Jancarik J, Yokota H, Kim SH (2001) Crystal structure of phosphoserine phosphatase from Methanococcus jannaschii, a hyperthermophile, at 1.8 Å resolution. Structure 9:65–71

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Grants-in-Aid for the 21st Century COE Program (K-3) and Scientific Research (17380062) to M.U. from the Ministry of Education, Culture, Sports, Science and Technology of Japan, and the Iwate University President Fund to M.N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matsuo Uemura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagao, M., Uemura, M. Sucrose phosphate phosphatase in the green alga Klebsormidium flaccidum (Streptophyta) lacks an extensive C-terminal domain and differs from that of land plants. Planta 235, 851–861 (2012). https://doi.org/10.1007/s00425-011-1550-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-011-1550-5

Keywords

Navigation