Skip to main content
Log in

The WRKY transcription factor OsWRKY78 regulates stem elongation and seed development in rice

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

WRKY proteins are a large super family of transcriptional regulators primarily involved in various plant physiological programs. In present study, the expression profile and putative function of the WRKY transcriptional factor, WRKY78, in rice were identified. Real-time RT-PCR analysis showed that OsWRKY78 transcript was most abundant in elongating stems though its expression was detected in all the tested organs. The expression profiles were further confirmed by using promoter-GUS analysis in transgenic rice. OsWRKY78::GFP fusion gene transient expression analysis demonstrated that OsWRKY78 targeted to the nuclei of onion epidermal cell. Furthermore, OsWRKY78 RNAi and overexpression transgenic rice lines were generated. Transgenic plants with OsWRKY78 overexpression exhibited a phenotype identical to the wild type, whereas inhibition of OsWRKY78 expression resulted in a semi-dwarf and small kernel phenotype due to reduced cell length in transgenic plants. In addition, a T-DNA insertion mutant line oswrky78 was identified and a phenotype similar to that of RNAi plants was also observed. Grain quality analysis data showed no significant differences, with the exception of minor changes in endosperm starch crystal structure in RNAi plants. Taken together, these results suggest that OsWRKY78 may acts as a stem elongation and seed development regulator in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

DSC:

Differential scanning calorimeter

GUS:

β-Glucuronidase

ISA:

Isoamylase

NLS:

Nuclear-localization signals

OEX:

Overexpression

RNAi:

RNA interference

SBE:

Starch branching enzyme

SURE:

Sugar responsive cis-element

XRD:

X-ray powder diffraction

References

  • Asano K, Hirano K, Ueguchi-Tanaka M, Angeles-Shim RB, Komura T, Satoh H, Kitano Hi, Matsuoka M, Ashikari M (2009) Isolation and characterization of dominant dwarf mutants, Slr1-d, in rice. Mol Genet Genomics 281:223–231

    Article  PubMed  CAS  Google Scholar 

  • Ay N, Irmler K, Fischer A, Uhlemann R, Reuter G, Humbeck K (2009) Epigenetic programming via histone methylation at WRKY53 controls leaf senescence in Arabidopsis thaliana. Plant J 58:333–346

    Article  PubMed  CAS  Google Scholar 

  • Babu MM, Iyer LM, Balaji S, Aravind L (2006) The natural history of the WRKY-GCM1 zincfingers and the relationship between transcription factors and transposons. Nucleic Acids Res 34:6505–6520

    Article  PubMed  CAS  Google Scholar 

  • Berri S, Abbruscato P, Faivre-Rampant O, Brasileiro ACM, Fumasoni I, Satoh K, Kikuchi S, Mizzi L, Morandini P, Pe ME, Piffanelli P (2009) Characterization of WRKY co-regulatory networks in rice and Arabidopsis. BMC Plant Biol 9:120–141

    Article  PubMed  Google Scholar 

  • Cai M, Qiu D, Yuan T, Ding X, Li HJ, Duan L, Xu C, Li X, Wang S (2008) Identification of novel pathogen-responsive cis-elements and their binding proteins in the promoter of OsWRKY13, a gene regulating rice disease resistance. Plant Cell Environ 31:86–96

    Article  PubMed  CAS  Google Scholar 

  • Ciolkowski I, Wanke D, Birkenbihl RP, Somssich IE (2008) Studies on DNA-binding selectivity of WRKY transcription factors lend structural clues into WRKY-domain function. Plant Mol Biol 68:81–92

    Article  PubMed  CAS  Google Scholar 

  • Day RC, Herridge RP, Ambrose BA, Macknight RC (2008) Transcriptome analysis of proliferating Arabidopsis endosperm reveals biological implications for the control of syncytial division, cytokinin signaling, and gene expression regulation. Plant Physiol 148:1964–1984

    Article  PubMed  CAS  Google Scholar 

  • Desaki Y, Miya A, Venkatesh B, Tsuyumu S, Yamane H, Kaku H, Minami E, Shibuya N (2006) Bacterial lipopolysaccharides induce defense responses associated with programmed cell death in rice cells. Plant Cell Physiol 47:1530–1540

    Article  PubMed  CAS  Google Scholar 

  • Duan K, Luo YH, Luo D, Xu ZH, Xue HW (2005) New insights into the complex and coordinated transcriptional regulation networks underlying rice seed development through cDNA chip-based analysis. Plant Mol Biol 57:785–804

    Article  PubMed  CAS  Google Scholar 

  • Duan MR, Nan J, Liang YH, Mao P, Lu L, Li L, Wei C, Lai L, LiY SuXD (2007) DNA binding mechanism revealed by high resolution crystal structure of Arabidopsis thaliana WRKY1 protein. Nucl Acids Res 35:1145–1154

    Article  PubMed  CAS  Google Scholar 

  • Eulgem T, Somssich IE (2007) Networks of WRKY transcription factors in defense signaling. Curr Opin Plant Biol 10:366–371

    Article  PubMed  CAS  Google Scholar 

  • Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5:199–206

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (2009) PHYLIP (Phylogeny Inference Package) Version 3.69, Department of Genome Sciences. University of Washington, Seattle

    Google Scholar 

  • Fu FF, Xue HW (2010) Coexpression analysis identifies rice starch regulator1, a rice AP2/EREBP family transcription factor, as a novel rice starch biosynthesis regulator. Plant Physiol 154:927–938

    Article  PubMed  CAS  Google Scholar 

  • Grierson C, Du J-S, Zabala MT, Beggs K, Smith C, Holdsworth M, Bevan M (1994) Separate cis sequences and trans factors direct metabolic and developmental regulation of a potato tuber storage protein gene. Plant J 5:815–826

    Article  PubMed  CAS  Google Scholar 

  • Guo Y, Cai Z, Gan S (2004) Transcriptome of Arabidopsis leaf senescence. Plant Cell Environ 27:521–549

    Article  CAS  Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405

    Article  CAS  Google Scholar 

  • Jeon JS, Lee S, Jung KH, Jun SH, Jeong DH, Lee J, Kim C, Jang S, Lee S, Yang K, Nam J, An K, Han MJ, Sung RJ, Choi HS, Yu JH, Choi JH, Cho SY, Cha SS, Kim SI, An G (2000) T-DNA insertional mutagenesis for functional genomics in rice. Plant J 22:561–570

    Article  PubMed  CAS  Google Scholar 

  • Jiang WB, Yu DQ (2009) Arabidopsis WRKY2 transcription factor mediates seed germination and post germination arrest of development by abscisic acid. BMC Plant Biol 9:96

    Article  PubMed  Google Scholar 

  • Johnson CS, Kolevsk B, Smyth DR (2002) TRANSPARENT TESTA GLABRA2, a trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor. Plant Cell 14:1359–1375

    Article  PubMed  CAS  Google Scholar 

  • Kilian J, Whitehead D, Horak J, Wanke D, Weinl S, Batistic O, D’Angelo C, Bornberg-Bauer E, Kudla J, Harter K (2007) The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant J 50:347–363

    Article  PubMed  CAS  Google Scholar 

  • Kojima M, Kamada-Nobusada T, Komatsu H, Takei K, Kuroha T, Mizutani M, Ashikari M, Ueguchi-Tanaka M, Matsuoka M, Suzuki K, Sakakibara H (2009) Highly sensitive and high-throughput analysis of plant hormones using MS-probe modification and liquid chromatography–tandem mass spectrometry: an application for hormone profiling in Oryza sativa. Plant Cell Physiol 50:1201–1214

    Article  PubMed  CAS  Google Scholar 

  • Koo SC, Moon BC, Kim JK, Kim CY, Sung SJ, Kim MC, Cho MJ, Cheong YH (2009) OsBWMK1 mediates SA-dependent defense responses by activating the transcription factor OsWRKY33. Biochem Bioph Res Co 387:365–370

    Article  CAS  Google Scholar 

  • Krueger BR, Knutson CA, Inglett GE, Walker CE (1987) A differential scanning calorimetry study on the effect of annealing on gelatinization behavior of corn starch. J Food Sci 52:715–718

    Article  CAS  Google Scholar 

  • Le BH, Cheng C, Bui AQ, Wagmaister JA, Henry KF, Pelletier J, Kwong L, Belmonte M, Kirkbride R, Horvath S, Drews GN, Fischer RL, Okamuro JK, Haradab JJ, Goldberga RB (2010) Global analysis of gene activity during Arabidopsis seed development and identification of seed-specific transcription factors. Proc Natl Acad Sci 107:8063–8070

    Article  PubMed  CAS  Google Scholar 

  • Leng Q, Yang H, Yang Q, Zhou JP (2001) Variation of cuticle micromorphology of Metasequoia glyptostroboides (Taxodiaceae). Bot J Linn Soc 136:207–219

    Article  Google Scholar 

  • Li QF, Zhang GY, Dong ZW, Yu HX, Gu MH, Sun SSM, Liu QQ (2009) Characterization of expression of the OsPUL gene encoding a pullulanase-type debranching enzyme during seed development and germination in rice. Plant Physiol Bioch 47:351–358

    Article  CAS  Google Scholar 

  • Liu QQ, Zhang JL, Wang ZY, Gu MH, Hong MM (1998) A highly efficient transformation system mediated by Agrobacterium tumefaciens in rice (Oraza sativa L.). Acta Phytophysiol Sin 24:259–271

    CAS  Google Scholar 

  • Luo M, Dennis ES, Berger F, Peacock WJ, Chaudhury A (2005) MINISEED3 (MINI3), a WRKY family gene, and HAIKU2 (IKU2), a leucine-rich repeat (LRR) KINASE gene, are regulators of seed size in Arabidopsis. Proc Natl Acad Sci 102:17531–17536

    Article  PubMed  CAS  Google Scholar 

  • Maleck K, Levine A, Eulgem T, Morgan A, Schmid J, Lawton KA, Dangl JL, Dietrich RA (2000) The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nat Genet 26:403–410

    Article  PubMed  CAS  Google Scholar 

  • Mangelsen E, Kilian J, Berendzen KW, Kolukisaoglu ÜH, Harter K, Jansson C, Wanke D (2008) Phylogenetic and comparative gene expression analysis of barley (Hordeum vulgare) WRKY transcription factor family reveals putatively retained functions between monocots and dicots. BMC Genomics 9:194

    Article  PubMed  Google Scholar 

  • Mangelsen E, Wanke D, Kilian J, Sundberg E, Harter K, Jansson C (2010) Significance of light, sugar, and amino acid supply for diurnal gene regulation in developing barley caryopses. Plant Physiol 153:14–33

    Article  PubMed  CAS  Google Scholar 

  • Miao Y, Laun T, Zimmermann P, Zentgraf U (2004) Targets of theWRKY53 transcription factor and its role during leaf senescence in Arabidopsis. Plant Mol Biol 55:853–867

    PubMed  CAS  Google Scholar 

  • Miura K, Agetsuma M, Kitano H, Yoshimura A, Matsuoka M, Jacobsen S E, Ashikari M (2009) A metastable DWARF1 epigenetic mutant affecting plant stature in rice. PNAS 106:11218–11213

    Google Scholar 

  • Pan YJ, Cho CC, Kao YY, Sun CH (2009) A novel WRKY-like protein involved in transcriptional activation of cyst wall protein genes in Giardia lamblia. J Biol Chem 284:17975–17988

    Article  PubMed  CAS  Google Scholar 

  • Pandey SP, SomssichImre E (2009) The role of WRKY transcription factors in plant immunity. Plant Physiol 150:1648–1655

    Article  PubMed  CAS  Google Scholar 

  • Pang SZ, DeBoer DL, Wan Y, Ye G, Layton JG, Neher MK, Armstrong CL, Fry JE, Hinchee MAW, Fromm ME (1996) An improved green fluorescent protein gene as a vital marker in plants. Plant Physiol 112:893–900

    Article  PubMed  CAS  Google Scholar 

  • Peng Y, Bartley LE, Canlas P, Ronald PC (2010) OsWRKY IIa transcription factors modulate rice innate immunity. Rice 3:36–42

    Article  Google Scholar 

  • Petitot AS, Lecouls AC, Fernandez D (2008) Sub-genomic origin and regulation patterns of a duplicated WRKY gene in the allotetraploid species Coffea arabica. Tree Genet Genomes 4:379–390

    Article  Google Scholar 

  • Ramamoorthy R, Jiang SY, Kuma N, Nori P, Venkatesh, Ramachandran S (2008) A comprehensive transcriptional profiling of the WRKY gene family in rice under various abiotic and phytohormone treatments. Plant Cell Physiol 49:865–879

  • Robatzek S, Somssich IE (2002) Targets of AtWRKY6 regulation during plant senescence and pathogen defense. Genes Dev 16:1139–1149

    Article  PubMed  CAS  Google Scholar 

  • Ross CA, Liu Y, Shen QJ (2007) The WRKY gene family in rice (Oryza sativa). J Integr Plant Bio 49:827–842

    Article  CAS  Google Scholar 

  • Rushton PJ, Somssich IE, Ringler P, Shen QJ (2010) WRKY transcription factors. Trends Plant Sci 15:247–258

    Article  PubMed  CAS  Google Scholar 

  • Ryu HS, Han M, Lee SK, Cho JI, Ryoo N, Heu S, Lee YH, Bhoo SH, Wang GL, Hahn TR, Jeon JS (2006) A comprehensive expression analysis of the WRKY gene super family in rice plants during defense response. Plant Cell Rep 25:836–847

    Article  PubMed  CAS  Google Scholar 

  • Saldanha AJ (2004) Java Treeview–extensible visualization of microarray data. Bioinformatics 20:3246–3248

    Article  PubMed  CAS  Google Scholar 

  • Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Scholkopf B, Weigel D, Lohmann JU (2005) A gene expression map of Arabidopsis thaliana development. Nat Genet 37:501–506

    Article  PubMed  CAS  Google Scholar 

  • Shen QH, Saijo Y, Mauch S, Biskup C, Bieri S, Keller B, Seki H, Ulker B, Somssich IE, Schulze-Lefert P (2007) Nuclear activity of MLA immune receptors links isolate-specific and basal disease-resistance responses. Science 315:1098–1103

    Article  PubMed  CAS  Google Scholar 

  • Spielmeyer W, Ellis MH, Chandler PM (2002) Semidwarf (sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene. PNAS 99:9043–9048

    Article  PubMed  CAS  Google Scholar 

  • Sun CX, Palmqvist S, Olsson H, Borén M, Ahlandsberg S, Jansson C (2003) A novel WRKY transcription factor, SUSIBA2, participates in sugar signaling in barley by binding to the sugar-responsive elements of the iso1 promoter. Plant Cell 15:2076–2092

    Article  PubMed  CAS  Google Scholar 

  • Sun CX, Höglund AS, Olsson H, Mangelsen E, Jansson C (2005) Antisense oligodeoxynucleotide inhibition as a potent strategy in plant biology: identification of SUSIBA2 as a transcriptional activator in plant sugar signalling. Plant J 44:128–138

    Article  PubMed  CAS  Google Scholar 

  • Tan YF, Li JX, Yu SB, Xing YZ, Xu CG, Zhang QF (1999) The three important traits for cooking and eating quality of rice grains are controlled by a single locus in an elite rice hybrid, Shanyou 63. Theor Appl Genet 99:642–648

    Article  CAS  Google Scholar 

  • Ülker B, Somssich IE (2004) WRKY transcription factors: from DNA binding towards biological function. Curr Opin Plant Biol 7:491–498

    Article  PubMed  Google Scholar 

  • Ülker B, Mukhtar SM, Somssich IE (2007) The WRKY70 transcription factor of Arabidopsis influences both the plant senescence and defense signaling pathways. Planta 226:125–137

    Article  PubMed  Google Scholar 

  • van Verk MC, Pappaioannou D, Neeleman L, Bol JF, Linthorst HJM (2008) A novel WRKY transcription factor is required for induction of PR-1a gene expression by salicylic acid and bacterial elicitors. Plant Physiol 146:1983–1995

    Article  PubMed  Google Scholar 

  • Wang SJ, Yu JL, Zhu QH, Yu JG, Jin FM (2009) Granular structure and allomorph position in C-type Chinese yam starch granule revealed by SEM, 13C CP/MAS NMR and XRD. Food Hydrocolloids 23:426–433

    Article  Google Scholar 

  • Wu KL, Guo ZJ, Wang HH, Li J (2005) The WRKY family of transcription factors in rice and Arabidopsis and their origins. DNA Res 12:9–26

    Article  PubMed  CAS  Google Scholar 

  • Xie Z, Zhang ZL, Zou XL, Huang J, Ruas P, Thompson D, Shen QX (2005) Annotations and functional analyses of the rice WRKY gene superfamily reveal positive and negative regulators of abscisic acid signaling in aleurone cells. Plant Physiol 137:176–189

    Article  PubMed  CAS  Google Scholar 

  • Xie Z, Zhang ZL, Zou XL, Yang GX, Komatsu S, Shen QX (2006) Interactions of two abscisic-acid induced WRKY genes in repressing gibberellin signaling in aleurone cells. Plant J 46:231–242

    Article  PubMed  CAS  Google Scholar 

  • Yazaki J, Shimatani Z, Hashimoto A, Nagata Y, Fujii F, Kojima K, Suzuki K, Taya T, Tonouchi M, Nelson C, Nakagawa A, Otomo Y, Murakami K, Matsubara K, Kawai J, Carninci P, Hayashizaki Y, Kikuchi S (2004) Transcriptional profiling of genes responsive to abscisic acid and gibberellin in rice: phenotyping and comparative analysis between rice and Arabidopsis. Physiol Genomics 17:87–100

    Article  PubMed  CAS  Google Scholar 

  • Zentella R, Zhang ZL, Park M, Thomas SG, Endo A, Murase K, Fleet CM, Jikumaru Y, Nambara E, Kamiya Y, Sun TP (2007) Global analysis of della direct targets in early gibberellin signaling in Arabidopsis. Plant Cell 19:3037–3057

    Article  PubMed  CAS  Google Scholar 

  • Zhang YJ, Wang LJ (2005) The WRKY transcription factor superfamily: its origin in eukaryotes and expansion in plants. BMC Evol Bio l 5:1–12

    Article  CAS  Google Scholar 

  • Zhang ZL, Xie Z, Zou XL, Casaretto J, David TH, Shen QX (2004) A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cells. Plant Physiol 134:1500–1513

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Jin JP, Tang L, Zhao Y, Gu XC, Gao G, Luo JC (2011) PlantTFDB 2.0: update and improvement of the comprehensive plant transcription factor database. Nucl Acids Res 39:D1114–D1117

    Article  PubMed  Google Scholar 

  • Zheng FQ, Wang ZY, Gao JP (1993) Isolation of total RNA from rice endosperm. Plant Physiol 29:438–440

    CAS  Google Scholar 

  • Zhou Y, Zhang X, Kang X, Zhao X, Zhang X, Ni M (2009) SHORT HYPOCOTYL UNDER BLUE1 associates with MINISEED3 and HAIKU2 promoters in vivo to regulate Arabidopsis seed development. Plant Cell 21:106–117

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by grants from the Ministry of Science and Technology (2011CB100202), the National Science Foundation (31071383), the Priority Academic Program Development from Jiangsu Government, and the Ministry of Education (NCET-07-0736) of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiao-Quan Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online resources (Electronic Supplementary Materials, ESM).

ESM_Table S1. Primers used in this study.

ESM_Table S2. Gelatinization properties of grain flour from three RNAi lines by differential scanning calorimetry.

ESM_Fig. S1. Constructs used for rice transformation.

ESM_Fig. S2. Recombinant GFP plasmid structure and subcellular localization of OsWRKY78 in onion epidermal cells.

ESM_Fig. S3. Alignment of OsWRKY78 with related WRKY proteins from different species.

Supplementary material 1 (DOC 454 kb)

Supplementary material 2 (DOC 373 kb)

Supplementary material 3 (DOC 50 kb)

Supplementary material 4 (DOC 54 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, CQ., Xu, Y., Lu, Y. et al. The WRKY transcription factor OsWRKY78 regulates stem elongation and seed development in rice. Planta 234, 541–554 (2011). https://doi.org/10.1007/s00425-011-1423-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-011-1423-y

Keywords

Navigation