Skip to main content
Log in

Reconstitution of cyanogenesis in barley (Hordeum vulgare L.) and its implications for resistance against the barley powdery mildew fungus

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Barley (Hordeum vulgare L.) produces a leucine-derived cyanogenic β-d-glucoside, epiheterodendrin that accumulates specifically in leaf epidermis. Barley leaves are not cyanogenic, i.e. they do not possess the ability to release hydrogen cyanide, because they lack a cyanide releasing β-d-glucosidase. Cyanogenesis was reconstituted in barley leaf epidermal cells through single cell expression of a cDNA encoding dhurrinase-2, a cyanogenic β-d-glucosidase from sorghum. This resulted in a 35–60% reduction in colonization rate by an obligate parasite Blumeria graminis f. sp. hordei, the causal agent of barley powdery mildew. A database search for barley homologues of dhurrinase-2 identified a (1,4)-β-d-glucan exohydrolase isozyme βII that is located in the starchy endosperm of barley grain. The purified barley (1,4)-β-d-glucan exohydrolase isozyme βII was found to hydrolyze the cyanogenic β-d-glucosides, epiheterodendrin and dhurrin. Molecular modelling of its active site based on the crystal structure of linamarase from white clover, demonstrated that the disposition of the catalytic active amino acid residues was structurally conserved. Epiheterodendrin stimulated appressoria and appressorial hook formation of B. graminis in vitro, suggesting that loss of cyanogenesis in barley leaves has enabled the fungus to utilize the presence of epiheterodendrin to facilitate host recognition and to establish infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

Glc:

Glucose

GFP:

Green fluorescent

References

  • Bak S, Kahn RA, Nielsen HL, Møller BL, Halkier BA (1998) Cloning of three A-type cytochromes P450, CYP71E1, CYP98, and CYP99 from Sorghum bicolor (L.) Moench by a PCR approach and identification by expression in Escherichia coli of CYP71E1 as a multifunctional cytochrome P450 in the biosynthesis of the cyanogenic glucoside dhurrin. Plant Mol Biol 36:393–405

    Article  PubMed  CAS  Google Scholar 

  • Barrett T, Suresh CG, Tolley SP, Dodson EJ, Hughes MA (1995) The crystal structure of cyanogenic β-glucosidase from white clover, a family 1 glycosyl hydrolase. Structure 3:951–960

    Article  PubMed  CAS  Google Scholar 

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242

    Article  PubMed  CAS  Google Scholar 

  • Boyle A, Perry-O’Keefe H (1994) Preparation and detection of digoxigenin-labelled DNA probes. In: Chanda VB (ed) Current protocols in molecular biology, vol 1, sections 3.18.5–3.18.6. John Wiley & Sons Inc, New York, USA

  • Blundell T, Carney D, Gardner S, Hayes F, Howlin B, Hubbard T, Overington J, Singh DA, Sibanda BL, Sutcliffe M (1988) 18th Sir Hans Krebs lecture. Knowledge-based protein modelling and design. Eur J Biochem 172:513–520

    Article  PubMed  CAS  Google Scholar 

  • Burmeister WP, Cottaz S, Rollin P, Vasella A, Henrissat B (2000) High resolution X-ray crystallography shows that ascorbate is a cofactor for myrosinase and substitutes for the function of the catalytic base. J Biol Chem 275:39385–39393

    Article  PubMed  CAS  Google Scholar 

  • Cicek M, Esen A (1998) Structure and expression of a dhurrinase (β-glucosidase) from sorghum. Plant Physiol 116:1469–1478

    Article  PubMed  CAS  Google Scholar 

  • Cicek M, Blanchard D, Bevan DR, Esen A (2000) The aglycone specificity-determining sites are different in 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA)-glucosidase (maize beta-glucosidase) and dhurrinase (sorghum β-glucosidase). J Biol Chem 275:20002–20011

    Article  PubMed  CAS  Google Scholar 

  • Chothia A, Lesk AM (1986) The relation between the divergence of sequence and structure in proteins. EMBO J 5:823–826

    PubMed  CAS  Google Scholar 

  • Clark M, Cramer RDI, Opdenbosch VD (1989) Validation of the general purpose Tripos 5.2 force field. J Comp Chem 8:982–1012

    Article  Google Scholar 

  • Coutinho PM, Henrissat B (1999) Carbohydrate-active enzymes: an integrated database approach. In: Gilbert HJ, Davies G, Henrissat B, Svensson B (eds) Recent advances in carbohydrate bioengineering. The Royal Society of Chemistry, Cambridge, pp 3–12

    Google Scholar 

  • DeLano WL (2002) The PyMOL molecular graphics system; http://www.pymol.org

  • Forslund K, Pettersson J, Ahmed E, Jonsson L (1998) Settling behaviour of Rhopalosiphum padi (L.) in relation to cyanogenic glycosides and gramine contents in barley. Acta Agr Scand B-S P 48:107–112

    CAS  Google Scholar 

  • Gay JL, Martin M, Ball E (1985) The impermeability of powdery mildew conidia and their germination in arid environments. Plant Pathol 34:353–362

    Article  Google Scholar 

  • Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modelling. Electrophoresis 18:2714–2723

    Article  PubMed  CAS  Google Scholar 

  • Guex N, Peitsch MC (1999) Molecular modelling of proteins. Immun News 6:132–134

    Google Scholar 

  • Halkier BA, Møller BL (1989) Biosynthesis of the cyanogenic glucoside dhurrin in seedlings of Sorghum bicolor (L.) Moench and partial purification of the enzyme system involved. Plant Physiol 90:1552–1559

    PubMed  CAS  Google Scholar 

  • Henrissat B (1998) Glycosidase families. Biochem Soc Trans 26:153–156

    PubMed  CAS  Google Scholar 

  • Hösel W, Tober I, Eklund SH, Conn EE (1987) Characterization of β-glucosidases with high specificity for the cyanogenic glucoside dhurrin in Sorghum bicolor (L.) Moench seedlings. Arch Biochem Biophys 252:152–162

    Article  PubMed  Google Scholar 

  • Hrmova M, Fincher GB (1993) Purification and properties of three (1,3)-β-d-glucanase isoenzymes from young leaves of barley (Hordeum vulgare). Biochem J 289:453–461

    PubMed  CAS  Google Scholar 

  • Hrmova M, Harvey AJ, Wang J, Shirley NJ, Jones GP, Stone BA, Høj PB, Fincher GB (1996) Barley β-d-glucan exohydrolases with β-d-glucosidase activity. Purification, characterization, and determination of primary structure from a cDNA clone. J Biol Chem 271:5277–5286

    Article  PubMed  CAS  Google Scholar 

  • Hrmova M, MacGregor EA, Biely P, Stewart RJ, Fincher GB (1998) Substrate binding and catalytic mechanism of a barley β-d-glucosidase/(1,4)-β-d-glucan exohydrolase. J Biol Chem 273:11134–11143

    Article  PubMed  CAS  Google Scholar 

  • Hrmova M, Fincher GB (2001) Structure-function relationships of β-d-glucan endo- and exohydrolases from higher plants. Plant Mol Biol 47:73–91

    Article  PubMed  CAS  Google Scholar 

  • Hrmova M, De Gori R, Smith BJ, Fairweather JK, Driguez H, Varghese JN, Fincher GB (2002) Structural basis for a broad specificity in higher plant β-d-glucan glucohydrolases. Plant Cell 14:1033–1052

    Article  PubMed  CAS  Google Scholar 

  • Hughes MA (1991) The cyanogenic polymorphism in Trifolium repens L. (white clover). Heredity 66:105–115

    CAS  Google Scholar 

  • Hughes MA, Brown K, Murray BS, Oxtoby E, Hughes J (1992) A molecular and biochemical analysis of the structure of the cyanogenic β-glucosidase from cassava Manihot esculenta Crantz. Arch Biochem Biophys 295:273–279

    Article  PubMed  CAS  Google Scholar 

  • Ibenthal W-D, Pourmohseni H, Grosskopf S, Oldenburg H, Shafiei-Azad S (1993) New approaches towards biochemical mechanisms of resistance/susceptibility of Gramineae to powdery mildew (Erysiphe graminis). Angew Bot 67:97–106

    CAS  Google Scholar 

  • Jones P, Andersen MD, Nielsen JS, Høj PB, Møller BL (2000) The biosynthesis, degradation, transport and possible function of cyanogenic glucosides. In: Romeo JT, Ibrahim R, Varin L, de Luca V (eds) Evolution of metabolic pathways. Elsevier, New York, pp 191–247

    Google Scholar 

  • Jones TA, Zou JY, Cowan SW, Kjeldgaard M (1991) Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Cryst A47:110–119

    CAS  Google Scholar 

  • Kakes P (1985) Linamarase and other β-glucosidases are present in the cell walls of Trifolium repens L. leaves Planta 166:156–160

    Article  CAS  Google Scholar 

  • Kleywegt GJ, Jones TA (1998) Databases in protein crystallography. Acta Cryst D54:1119–1131

    CAS  Google Scholar 

  • Koch B, Nielsen VS, Halkier BA, Olsen CE, Møller BL (1992) The biosynthesis of cyanogenic glucosides in seedlings of cassava (Manihot esculenta Crantz). Arch Biochem Biophys 292:141–150

    Article  PubMed  CAS  Google Scholar 

  • Kojima M, Poulton JE, Thayer SS, Conn EE (1979) Tissue distributions of dhurrin and of enzymes involved in its metabolism in leaves of Sorghum bicolor. Plant Physiol 63:1022–1028

    PubMed  CAS  Google Scholar 

  • Kristensen BK, Ammitzbøll H, Rasmussen SK, Nielsen KA (2001) Transient expression of a vacuolar peroxidase increases susceptibility of epidermal barley cells to powdery mildew. Mol Plant Pathol 2:311–318

    Article  CAS  Google Scholar 

  • Leah R, Kigel J, Svendsen I, Mundy J (1995) Biochemical and molecular characterization of a barley seed β-glucosidase. J Biol Chem 270:15789–15797

    Article  PubMed  CAS  Google Scholar 

  • Lechtenberg M, Nahrstedt A (1999) Cyanogenic glucosides. In: Ikan R (ed) Naturally occurring glucosides. John Wiley & Sons Ltd., Chicester, UK, pp 147–191

    Google Scholar 

  • Lieberei R (1986) Cyanogenesis of Hevea brasiliensis during infection with Microcyclus ulei. J Phytopathol 115:134–146

    Google Scholar 

  • Lieberei R, Biehl B, Giesemann A, Junqueira NTV (1989) Cyanogenesis inhibits active defense reactions in plants. Plant Physiol 90:33–36

    PubMed  CAS  Google Scholar 

  • Lieberei R, Fock H, Biehl B (1996) Cyanogenesis inhibits active defense in plants: Inhibition by gaseous HCN of photosynthetic CO2 fixation and respiration in intact leaves. J Appl Bot 70:232–238

    Google Scholar 

  • Luthy R, Bowie JU, Eisenberg D (1992) Assessment of protein models with three-dimensional profiles. Nature 356:83–85

    Article  PubMed  CAS  Google Scholar 

  • Møller BL, Seigler DS (1999) Biosynthesis of cyanogenic glucosides, cyanolipids, and related compounds. In: Singh BK (ed) Plant amino acids, biochemistry and biotechnology. Marcel Dekker, New York, pp 563–609

    Google Scholar 

  • Nelson N (1944) A photometric adaptation of the Somogyi method for determination of glucose. J Biol Chem 153:375–380

    CAS  Google Scholar 

  • Nicolls A, Sharp K, Hönig B (1991) Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 4:281–296

    Article  Google Scholar 

  • Nielsen KA, Olsen O, Oliver RP (1999) A transient expression system to assay putative antifungal genes on powdery mildew infected barley leaves. Physiol Mol Plant Pathol 54:1–12

    Article  CAS  Google Scholar 

  • Nielsen KA, Nicholson RL, Carver TMV, Kunoh H, Oliver RP (2000) First touch: an immediate response to surface recognition in conidia of Blumeria graminis. Physiol Mol Plant Pathol 56:63–70

    Article  Google Scholar 

  • Nielsen KA, Olsen CE, Pontoppidan K, Møller BL (2002) Leucine-derived cyano glucosides in barley. Plant Physiol 129:1066–1075

    Article  PubMed  CAS  Google Scholar 

  • Osbourn AE (1994) Preformed antimicrobial compounds and plant defense against fungal attack. Plant Cell 8:1821–1831

    Article  Google Scholar 

  • Raabo E, Terkildsen TC (1960) On the enzymatic determination of blood glucose. Scand J Clin Lab Invest 12:402–407

    Article  PubMed  CAS  Google Scholar 

  • Schulze-Lefert P, Vogel J (2000) Closing the ranks to attack by powdery mildew. Trends Plant Sci 5:343–348

    Article  PubMed  CAS  Google Scholar 

  • Seigler D (1998) Cyanogenic glycosides and cyanolipids. In: Seigler D (ed) Plant secondary metabolism. Kluwer, Norwell, pp 273–299

    Google Scholar 

  • Selmar D (1993) Apoplastic occurrence of cyanogenic β-glucosidases and consequences for the metabolism of cyanogenic glucosides. In: Esen A (ed) β-Glucosidases: biochemistry and molecular biology. American Chemical Society, pp 191–204

  • Selmar D, Lieberei R, Biehl B (1988) Mobilization and utilization of cyanogenic glucosides: the linustatin pathway. Plant Physiol 86:711–716

    Article  PubMed  CAS  Google Scholar 

  • Selmar D, Lieberei R, Biehl B, Voigt J (1987) Hevea linamarase—a nonspecific β-glycosidase. Plant Physiol 83:557–563

    PubMed  CAS  Google Scholar 

  • Shirasu K, Nielsen K, Piffanelli P, Oliver R, Schulze-Lefert P (1999) Cell-autonomous complementation of mlo resistance using a biolistic transient expression system. Plant J 17:293–299

    Article  CAS  Google Scholar 

  • Simos G, Panagiotidis CA, Skoumbas A, Choli A, Ouzounis C, Georgatsos JG (1994) Barley β-glucosidase expression during seed germination and maturation and partial amino acid sequences. Biochem Biophys Acta 1199:52–57

    PubMed  CAS  Google Scholar 

  • Somogyi M (1952) Notes on sugar determination. J Biol Chem 195:19–23

    PubMed  CAS  Google Scholar 

  • Swantson JS, Thomas WTB, Powell W, Young GR, Lawrence PE, Ramsey L, Waugh R (1999) Using molecular markers to determine barleys most suitable for malt whisky distilling. Mol Breed 5:103–109

    Article  Google Scholar 

  • Thayer SS, Conn EE (1981) Subcellular localization of dhurrin β-glucosidase and hydroxynitrile lyase in the mesophyll cells of shorghum leaf blades. Plant Physiol 67:617–622

    PubMed  CAS  Google Scholar 

  • Till I (1987) Variability of expression of cyanogenesis in white clover (Trifolium reprens L.). Heredity 59:265–271

    Google Scholar 

  • Töpfer R, Matzeit V, Gronenborn B, Schell J, Steinbiss H (1987) A set of plant expression vectors for transcriptional and translational fusions. Nucleic Acid Res 15:5890

    Article  PubMed  Google Scholar 

  • Veibel S (1950) β-Glucosidase. In: Sumner JB, Myrbäck K (eds) The enzymes. Chemistry and mechanism of action, vol I. GEC Gad Publ., Copenhagen, pp 583–634

  • Xu Z, Escamilla-Treviño LL, Zeng L, Lalgondar M, Bevan DR, Winkel BSJ, Mohammed A, Cheng C-L, Shih M-C, Poulton JE, Esen A (2004) Functional genomic analysis of Arabidopsis thaliana glycoside hydrolase family 1. Plant Mol Biol 55:343–367

    Article  PubMed  CAS  Google Scholar 

  • Zagrobelny M, Bak S, Rasmussen AV, Jørgensen B, Naumann CM, Møller BL (2004) Cyanogenic glucosides and plant-insect interactions. Phytochemistry 65:293–306

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Mogens Houmøller for generously providing the B. graminis f. sp. Hordei isolate. Professor Asim Esen, Virginia Polytechnic Institute and State University Blacksburg, VA, USA is thanked for helpful discussions. This work was supported by grants from the Danish National Research Foundation to Center for Molecular Plant Physiology (PlaCe), from the Swedish Agricultural Research Council to KF, by a EU Marie Curie training grant to SE, and from the Australian Research Council and the Grains Research and Development Corporation to GBF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birger Lindberg Møller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nielsen, K.A., Hrmova, M., Nielsen, J.N. et al. Reconstitution of cyanogenesis in barley (Hordeum vulgare L.) and its implications for resistance against the barley powdery mildew fungus. Planta 223, 1010–1023 (2006). https://doi.org/10.1007/s00425-005-0158-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-005-0158-z

Keywords

Navigation