Skip to main content
Log in

Transcriptome analysis of alfalfa glandular trichomes

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Glandular trichomes are a major site of plant natural product synthesis and accumulation for protection against insect predation. However, to date few studies have attempted to obtain a global view of trichome gene expression. Two contrasting approaches have been adopted to investigate genes expressed in glandular trichomes from alfalfa (Medicago sativa L.). In the first approach, 5,674 clones from an alfalfa glandular trichome cDNA library were sequenced. The most highly abundant expressed sequence tag (EST) corresponded to a lipid transfer protein. The presence of ESTs corresponding to enzymes for all steps in the biosynthesis of flavonoids suggests that these are important metabolites in alfalfa trichome biology, as confirmed by histochemistry and metabolite profiling. No ESTs corresponded to enzymes of cyclized terpenoid biosynthesis. In a second approach, microarray analysis was used to compare levels of alfalfa transcripts corresponding to 16,086 Medicago truncatula A17 genes in stems with and without trichomes. This revealed over 1,000 genes with strong preferential expression in the trichome fraction of the stem, 70% of which are of unknown function. These define a class of genes that are not trichome-specific, since M. truncatula A17 does not itself have glandular trichomes, but has potential importance for trichome function within the stem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

EST:

Expressed sequence tag

LTP:

Lipid transfer protein

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Antonious GF (2001) Production and quantification of methyl ketones in wild tomato accessions. J Environ Sci Health B36:835–848

    CAS  PubMed  Google Scholar 

  • Bell C, Dixon RA, Farmer AD, Flores R, Inman J, Gonzales RA, Harrison MJ, Paiva NL, Scott AD, Weller JW, May GD (2001) The Medicago genome initiative: a model legume database. Nucleic Acids Res 29:114–117

    Article  CAS  PubMed  Google Scholar 

  • Charrier B, Leroux C, Kondorosi A, Ratet P (1996) The expression pattern of alfalfa flavanone 3-hydroxylase promoter-GUS fusion in Nicotiana benthamiana correlates with the presence of flavonoids detected in situ. Plant Mol Biol 30:1153–1168

    Article  CAS  PubMed  Google Scholar 

  • Choi YE, Harada E, Wada M, Tsuboi H, Morita Y, Kusano T, Sano H (2001) Detoxification of cadmium in tobacco plants: formation and active excretion of crystals containing cadmium and calcium through trichomes. Planta 213:45–50

    Article  PubMed  Google Scholar 

  • Cleveland W (1979) Robust locally weighted regression and smoothing scatterplots. J Am Stat Assoc 74:829–836

    Google Scholar 

  • Gamas P, De Billy F, Truchet G (1998) Symbiosis-specific expression of two Medicago truncatula nodulin genes, MtN1 and MtN13, encoding proteins homologous to plant defense proteins. Mol Plant-Microbe Interact 11:393–403

    CAS  PubMed  Google Scholar 

  • Gang DR, Wang J, Dudareva N, Nam KH, Simon JE, Lewinsohn E, Pichersky E (2001) An investigation of the storage and biosynthesis of phenylpropenes in sweet basil. Plant Physiol 125:539–555

    Article  CAS  PubMed  Google Scholar 

  • Gang DR, Beuerle T, Ullmann P, Werck-Reichhart D, Pichersky E (2002) Differential production of meta hydroxylated phenylpropanoids in sweet basil peltate glandular trichomes and leaves is controlled by the activities of specific acyltransferases and hydroxylases. Plant Physiol 130:1536–1544

    Article  CAS  PubMed  Google Scholar 

  • Ge X, Chen J, Sun C, Cao K (2003) Preliminary study on the structural basis of the antifungal activity of a rice lipid transfer protein. Protein Eng 16:387–390

    Article  CAS  PubMed  Google Scholar 

  • Goss V, Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarray applied to the ionizing radiation response. Proc Natl Acad Sci USA 98:5116–5121

    Article  PubMed  Google Scholar 

  • Guo Z, Wagner GJ (1995) Biosynthesis of cembratrienols in cell-free extracts from trichomes of Nicotiana tabacum. Plant Sci 110:1–10

    Google Scholar 

  • Hirosawa T, Saito T, Tanaka T, Matsushima H. (1995) SEM observation and HPLC analysis of the accumulation of alpha- and beta-acids in the fresh developing hop (Humulus lupulus L.) peltate glandular trichomes. J Electron Microsc 44:145–147

    CAS  Google Scholar 

  • Hoffmann L, Maury S, Martz F, Geoffroy P, Legrand M (2003) Purification, cloning, and properties of an acyltransferase controlling shikimate and quinate ester intermediates in phenylpropanoid metabolism. J Biol Chem 278:95–103

    Article  CAS  PubMed  Google Scholar 

  • Initiative The Arabidopsis Genome (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Google Scholar 

  • Jurica MS, Stoddard BL (1999) Homing endonucleases: structure, function and evolution. Cell Mol Life Sci 55:1304–1326

    Article  CAS  PubMed  Google Scholar 

  • Kandra G, Severson R, Wagner GJ (1990) Modified branched-chain amino acid pathways give rise to acyl acids of sucrose esters exuded from tobacco leaf trichomes. Eur J Biochem 188:385–391

    CAS  PubMed  Google Scholar 

  • Kreitner GL, Sorensen EL (1979a) Glandular trichomes on Medicago species. Crop Sci 19:380–384

    Google Scholar 

  • Kreitner GL, Sorensen EL (1979b) Glandular secretory system of alfalfa species. Crop Sci 19:499–502

    Google Scholar 

  • Lange BM, Wildung MR, Stauber EJ, Sanchez C, Pouchnik D, Croteau R (2000) Probing essential oil biosynthesis and secretion by functional evaluation of expressed sequence tags from mint glandular trichomes. Proc Natl Acad Sci USA 97:2934–2939

    Article  CAS  PubMed  Google Scholar 

  • Li YG, Tanner G, Larkin P (1996) The DMACA-HCl protocol and the threshold proanthocyanidin contant for bloat safety in forage legumes. J Sci Food Agric 70:89–101

    Article  CAS  Google Scholar 

  • Li AX, Eannetta N, Ghangas GS, Steffens JC (1999) Glucose polyester biosynthesis. Purification and characterization of a glucose acyltransferase. Plant Physiol 121:453–460

    Article  PubMed  Google Scholar 

  • Maldonado AM, Dixon RA, Lamb C, Doerner P, Cameron RK (2002) A putative lipid transfer protein is involved in systemic signaling to establish acquired resistance in Arabidopsis thaliana. Nature 419:399–403

    Article  CAS  PubMed  Google Scholar 

  • Maluf WR, Campos GA, das Gracas CM (2001) Relationships between trichome types and spider mite (Tetranychus evansi) repellence in tomatoes with respect to foliar zingiberene contents. Euphytica 121:73–80

    Article  Google Scholar 

  • Mao C, Cushman JC, May GD, Weller JW (2003) ESTAP—an automated system for the analysis of EST data. Bioinformatics 19:1720–1722

    Article  CAS  Google Scholar 

  • McCaskill D, Gershenzon J, Croteau R. (1992) Morphology and monoterpene biosynthetic capabilities of secretory cell clusters isolated from glandular trichomes of peppermint (Mentha piperita L.). Planta 187:445–454

    Article  CAS  Google Scholar 

  • Molina A, Segura A, García-Olmedo F (1993) Lipid transfer proteins (nsLTPs) from barley and maize leaves are potent inhibitors of bacterial and fungal plant pathogens. FEBS Lett 316:119–122

    Article  CAS  PubMed  Google Scholar 

  • Peterson RL, Vermeer J (1984) Histochemistry of trichomes. In: Rodriguez E, Healey PL, Mehta I (eds) Biology and chemistry of plant trichomes. Plenum Press, New York, pp 71–94

    Google Scholar 

  • Ranger CM, Hower AA (2001) Glandular morphology from a perennial alfalfa clone resistant to the potato leafhopper. Crop Sci 41:1427–1434

    Google Scholar 

  • Stevens JF, Miranda CL, Buhler DR, Deinzer ML (1998) Chemistry and biology of hop flavonoids. J Am Soc Brew Chem 56:136–145

    CAS  Google Scholar 

  • Suzuki H, Achnine L, Xu R, Matsuda SPT, Dixon RA (2002) A genomics approach to the early stages of triterpene saponin biosynthesis in Medicago truncatula. Plant J 32:1033–1048

    Article  CAS  PubMed  Google Scholar 

  • Szymanski DB, Lloyd AM, Marks MD (2000) Progress in the molecular genetic analysis of trichome initiation and morphogenesis in Arabidopsis. Trends Plant Sci 5:214–219

    Article  CAS  PubMed  Google Scholar 

  • Tanner GJ, Francki KT, Abrahams S, Watson JM, Larkin PJ, Ashton AR (2003) Proanthocyanidin biosynthesis in plants. Purification of legume leucoanthocyanidin reductase and molecular cloning of its cDNA. J Biol Chem 278:31647–31656

    Article  CAS  PubMed  Google Scholar 

  • Voirin B, Bayet C (1996) Developmental changes in the monoterpene composition of Mentha X piperita leaves from individual peltate trichomes. Phytochemistry 43:573–580

    Article  CAS  Google Scholar 

  • Wagner GJ (1991) Secreting glandular trichomes: more than just hairs. Plant Physiol 96:675–679

    CAS  Google Scholar 

  • Wagner GJ, Wang E, Shepherd RW (2004) New approaches for studying and exploiting an old protuberance, the plant trichome. Ann Bot 93:3–11

    Article  CAS  PubMed  Google Scholar 

  • Walker AR, Davison PA, Bolognesi-Winfield AC, James CM, Srinivasdan N, Blundell TL, Esch JJ, Marks MD, Gray JC (1999) The TRANSPARENT TESTA GLABRA 1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein. Plant Cell 11:1377–1349

    Article  PubMed  Google Scholar 

  • Wollenweber E (1984) The systematic implication of flavonoids secreted by plants. In: Rodriguez E, Healey PL, Mehta I (eds) Biology and chemistry of plant trichomes. Plenum Press, New York, pp 53–69

    Google Scholar 

  • Xie D, Sharma SB, Paiva NL, Ferreira D, Dixon RA (2003) Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis. Science 299:396–399

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Dudoit S, Lin D, Peng V, Ngai J, Speed T (2002) Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res 30:e15.1–e15.10

    Google Scholar 

Download references

Acknowledgements

We thank Dr Stephen Temple, Forage Genetics International, for provision of glandular-haired alfalfa lines and helpful discussions, Jack Blount and Corey Broeckling for assistance with HPLC and GC analysis, respectively, Dr Yuanji Zhang for assistance with bioinformatics, Dr David Galbraith (University of Arizona) for printing of microarrays, and Drs Li Tian and Mary Sledge for critical reading of the manuscript. This work was supported by the Samuel Roberts Noble Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. Dixon.

Additional information

Data deposition

The alfalfa trichome EST sequences reported in this paper have been deposited in the GenBank database (accession nos. CO511688 to CO517334).

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aziz, N., Paiva, N.L., May, G.D. et al. Transcriptome analysis of alfalfa glandular trichomes. Planta 221, 28–38 (2005). https://doi.org/10.1007/s00425-004-1424-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-004-1424-1

Keywords

Navigation