Skip to main content
Log in

Subcellular localisation of Cd and Zn in the leaves of a Cd-hyperaccumulating ecotype of Thlaspi caerulescens

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Thlaspi caerulescens (Ganges ecotype) is able to accumulate large concentrations of cadmium (Cd) and zinc (Zn) in the leaves without showing any toxicity, suggesting a strong internal detoxification. The distribution of Cd and Zn in the leaves was investigated in the present study. Although the Cd and Zn concentrations in the epidermal tissues were 2-fold higher than those of mesophyll tissues, 65–70% of total leaf Cd and Zn were distributed in the mesophyll tissues, suggesting that mesophyll is a major storage site of the two metals in the leaves. To examine the subcellular localisation of Cd and Zn in mesophyll tissues, protoplasts and vacuoles were isolated from plants exposed to 50 μM Cd and Zn hydroponically. Pure protoplasts and vacuoles were obtained based on light-microscopic observation and the activities of marker enzymes of cytosol and vacuoles. Of the total Cd and Zn in the mesophyll tissues, 91% and 77%, respectively, were present in the protoplast, and all Cd and 91% Zn in the protoplast were localised in the vacuoles. Furthermore, about 70% and 86% of total Cd and Zn, respectively, in the leaves were extracted in the cell sap, suggesting that most Cd and Zn in the leaves is present in soluble form. These results indicate that internal detoxification of Cd and Zn in Thlaspi caerulescens leaves is achieved by vacuolar compartmentalisation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Bazzaz FA, Rolfe GL, Carlson RW (1974) Effect of Cd2+ on photosynthesis and transpiration in excised leaves of corn and sunflower. Plant Physiol 32:373–376

    CAS  Google Scholar 

  • Butcher HC, Wagner GJ, Siegelman HW (1977) Localization of acid hydrolases in protoplasts. Plant Physiol 59:1098–1103

    CAS  Google Scholar 

  • Chardonnens AN, ten Bookum WM, Kuijper LDJ, Verkleij JAC, Ernst WHO (1998) Distribution of cadmium in leaves of cadmium tolerant and sensitive ecotypes of Silene vulgaris. Physiol Plant 104:75–80

    Article  CAS  Google Scholar 

  • Clemens S, Palmgren MG, Krämer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7:309–315

    Article  Google Scholar 

  • Frey B, Keller C, Zierold K, Schulin R (2000) Distribution of Zn in functionally different leaf epidermal cells of the hyperaccumulator Thlaspi caerulescens. Plant Cell Environ 23:675–687

    Article  CAS  Google Scholar 

  • Greger M, Ögren E (1991) Direct and indirect effects of Cd2+ on photosynthesis in sugar beet (Beta vulgaris). Physiol Plant 83:129–135

    Article  CAS  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    Article  CAS  PubMed  Google Scholar 

  • Karley AJ, Leigh RA, Sanders D (2000) Where do all the ions go? The cellular basis of differential ion accumulation in leaf cells. Trends Plant Sci 5:465–470

    Article  CAS  PubMed  Google Scholar 

  • Krämer U, Pickering IJ, Prince RC, Raskin I, Salt DE (2000) Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species. Plant Physiol 122:1343–1353

    Article  PubMed  Google Scholar 

  • Küpper H, Zhao FJ, McGrath SP (1999) Cellular compartmentation of zinc in leaves of the hyperaccumulator Thlaspi caerulescens. Plant Physiol 199:305–311

    Google Scholar 

  • Küpper H, Lombi E, Zhao FJ, McGrath SP (2000) Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta 212:75–84

    Article  PubMed  Google Scholar 

  • Küpper H, Lombi E, Zhao FJ, Wieshammer G, McGrath SP (2001) Cellular compartmentation of nickel in the hyperaccumulators Alyssum lesbiacum, Alyssum bertolonii and Thlaspi goesingense. J Exp Bot 52:2291–2300

    Article  PubMed  Google Scholar 

  • Lazof D, Läuchli A (1991) Complementary analysis of freeze-dried and frozen-hydrated plant tissue by electron-probe X-ray microanalysis: spectral resolution and analysis of calcium. Planta 184:327–333

    CAS  Google Scholar 

  • Leigh RA, Walker RR (1980) ATPase and acid phosphatase activities associated with vacuoles isolated from storage roots of red beet (Beta vulgaris L.). Planta 150:222–229

    CAS  Google Scholar 

  • Lombi E, Zhao FJ, Dunham SJ, McGrath SP (2000) Cadmium accumulation in populations of Thlaspi caerulescens and Thlaspi goesingense. New Phytol 145:11–20

    Article  CAS  Google Scholar 

  • Lombi E, Zhao FJ, McGrath SP, Young SD, Sacchi GA (2001) Physiological evidence for a high-affinity cadmium transporter highly expressed in a Thlaspi caerulescens ecotype. New Phytol 149:53–60

    Article  CAS  Google Scholar 

  • Ma JF, Taketa S, Yang ZM (2000) Aluminium tolerance genes on the short arm of chromosome 3R are linked to organic acid release in triticale. Plant Physiol 122:687–694

    Article  CAS  PubMed  Google Scholar 

  • Perfus-Barbeoch L, Leonhardt N, Vavasseur A, Forestier C (2002) Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status. Plant J 32:539–548

    Article  CAS  PubMed  Google Scholar 

  • Robinson BH, Lombi E, Zhao FJ, McGrath SP (2003) Uptake and distribution of nickel and other metals in the hyperaccumulator Berkheya coddii. New Phytol 158:279–285

    CAS  Google Scholar 

  • Roosens N, Verbruggen N, Meerts P, Ximénez-Embún P, Smith JAC (2003) Natural variation of cadmium tolerance and its relationship to metal hyperaccumulation for seven populations of Thlaspi caerulescens from Western Europe. Plant Cell Environ 26:1657–1672

    Article  CAS  Google Scholar 

  • Sanità di Toppi L, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105–130

    Article  Google Scholar 

  • Schutzendubel A, Schanz P, Teichmann T, Gross K, Langenfeld-Heyser R, Godbold D, Polle A (2001) Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in scots pine roots. Plant Physiol 127:887–898

    Article  CAS  PubMed  Google Scholar 

  • Shen RF, Ma JF, Kyo M, Iwashita T (2002) Compartmentation of aluminium in leaves of an Al-accumulator, Fagopyrum esculentum Moench. Planta 215:394–398

    Article  CAS  PubMed  Google Scholar 

  • Somashekaraiah BV, Padmaja K, Prasad ARK (1992) Phytotoxicity of cadmium ions on germinating seedlings of mung bean (Phaseolus vulgaris): involvement of lipid peroxides in chlorophyll degradation. Physiol Plant 85:85–89

    Article  CAS  Google Scholar 

  • Storrie B, Madden EA (1990) Isolation of subcellular organelles. Method Enzymol 182:203–225

    Article  CAS  Google Scholar 

  • Ueno D, Zhao FJ, Ma JF (2004a) Cadmium and zinc accumulation by the hyperaccumulator Thlaspi caerulescens from soils enriched with insoluble metal compounds. Soil Sci Plant Nutr 50:511–515

    CAS  Google Scholar 

  • Ueno D, Zhao FJ, Ma JF (2004b) Interactions between Cd and Zn in relation to their hyperaccumulation in Thlaspi caerulescens. Soil Sci Plant Nutr 50:591–597

    CAS  Google Scholar 

  • Vázquez MD, Barceló J, Poschenrieder C, Madico J, Hatton P, Baker AJM, Cope GH (1992) Localization of zinc and cadmium in Thlaspi caerulescens (Brassicaceae), a metallophyte that can hyperaccumulate both metals. J Plant Physiol 140:350–355

    Google Scholar 

  • Vázquez MD, Poschenrieder C, Barceló J, Baker AJM, Hatton P, Cope GH (1994) Compartmentation of zinc in roots and leaves of the zinc hyperaccumulator Thlaspi caerulescens J & C Presl. Bot Acta 107:243–250

    Google Scholar 

  • Yang XE, Long XX, Ye HB, He ZL, Calvert DV, Stoffella PJ (2004) Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance). Plant Soil 259:181–189

    Article  CAS  Google Scholar 

  • Zhao FJ, Shen ZG, McLaughlin ML (1998) Solubility of zinc and interactions between zinc and phosphorus in the hyperaccumulator Thlaspi caerulescens. Plant Cell Environ 21:108–114

    Article  CAS  Google Scholar 

  • Zhao FJ, Lombi E, Breedon T, McGrath SP (2000) Zinc hyperaccumulation and cellular distribution in Arabidopsis halleri. Plant Cell Environ 23:507–514

    Article  CAS  Google Scholar 

  • Zhao FJ, Hamon RE, Lombi E, McLaughlin MJ, McGrath SP (2002) Characteristics of cadmium uptake in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens. J Exp Bot 53:535–543

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The study was partly supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan (No. 15658021 to J.F. Ma). Rothamsted Research receives grant-aided support from the U.K. Biotechnology and Biological Sciences Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Feng Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, J.F., Ueno, D., Zhao, FJ. et al. Subcellular localisation of Cd and Zn in the leaves of a Cd-hyperaccumulating ecotype of Thlaspi caerulescens. Planta 220, 731–736 (2005). https://doi.org/10.1007/s00425-004-1392-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-004-1392-5

Keywords

Navigation