Skip to main content
Log in

Effect of caffeine on K+ efflux in frog skeletal muscle

  • ORIGINAL ARTICLE
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

 The exposure of frog skeletal muscle to caffeine (3–4 mM) generates an increase of the K+ (42K+) efflux rate coefficient (k K,o) which exhibits the following characteristics. First it is promoted by the rise in cytosolic Ca2+ ([Ca2+]i), because the effect is mimicked by ionomycin (1.25 µM), a Ca2+ ionophore. Second, the inhibition of caffeine-induced Ca2+ release from the sarcoplasmic reticulum (SR) by 40 µM tetracaine significantly reduced the increase in k K,ok K,o). Third, charybdotoxin (23 nM), a blocker of the large-conductance Ca2+-dependent K+ channels (BKCa channels) reduced Δk K,o by 22%. Fourth, apamin (10 nM), a blocker of the small-conductance Ca2+-dependent K+ channels (SKCa channels), did not affect Δk K,o. Fifth, tolbutamide (800 µM), an inhibitor of KATP channels, reduced Δk K,o by about 23%. Sixth, Ba2+, a blocker of most K+ channels, did not preclude the caffeine-induced Δk K,o. Seventh, omitting Na+ from the external medium reduced Δk K,o by about 40%. Eight, amiloride (5 mM) decreased Δk K,o by 65%. It is concluded that the caffeine-induced rise of [Ca2+]i increases K+ efflux, through the activation of: (1) two channels (BKCa and KATP) and (2) an external Na+-dependent amiloride-sensitive process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Received: 13 March 1998 / Received after revision: 17 June 1998 / Accepted: 14 September 1998

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venosa, R., Hoya, A. Effect of caffeine on K+ efflux in frog skeletal muscle. Pflügers Arch 437, 417–422 (1999). https://doi.org/10.1007/s004240050796

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s004240050796

Navigation