Skip to main content

Advertisement

Log in

Dopamine receptor D4 (DRD4) negatively regulates UCP1- and ATP-dependent thermogenesis in 3T3-L1 adipocytes and C2C12 muscle cells

  • Signaling and Cell Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

A Correction to this article was published on 04 May 2023

This article has been updated

Abstract

The activation of beige fat and muscle tissues is an interesting and encouraging target for therapeutic intervention in obesity owing to their remarkable lipolytic activity and energy-consuming futile cycles. This study examined the effect of dopamine receptor D4 (DRD4) on lipid metabolisms as well as UCP1- and ATP-dependent thermogenesis in Drd4-silenced 3T3-L1 adipocytes and C2C12 muscle cells. Silencing of Drd4, followed by quantitative real-time PCR, immunoblot analysis, immunofluorescence, and staining methods, were applied to evaluate the effects of DRD4 on diverse target genes and proteins of both cells. The findings showed that DRD4 was expressed in the adipose and muscle tissues of normal and obese mice. Furthermore, the knockdown of Drd4 upregulated the expression of brown adipocyte-specific genes and proteins while downregulating lipogenesis and the adipogenesis marker proteins. Drd4 silencing also upregulated the expression of key signaling molecules involved in ATP-dependent thermogenesis in both cells. This was further elucidated by mechanistic studies showing that a Drd4 knockdown mediates UCP1-dependent thermogenesis via the cAMP/PKA/p38MAPK pathway in 3T3-L1 adipocytes and UCP1-independent thermogenesis via the cAMP/SLN/SERCA2a pathway in C2C12 muscle cells. In addition, siDrd4 also mediates myogenesis via the cAMP/PKA/ERK1/2/Cyclin D3 pathway in C2C12 muscle cells. Silencing of Drd4 promotes β3-AR-dependent browning in 3T3-L1 adipocytes and α1-AR/SERCA-based thermogenesis through an ATP-consuming futile process in C2C12 muscle cells. Understanding the novel functions of DRD4 on adipose and muscle tissues in terms of its ability to enhance energy expenditure and regulate whole-body energy metabolism will aid in developing novel obesity intervention techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All supporting data and materials are included in this manuscript.

Change history

Abbreviations

ABHD5/Abhd5 :

Abhydrolase domain containing 5 encoding gene

ACC:

Acyl-CoA carboxylase

ACOX:

Acyl-coenzyme A oxidase 1

AMPK:

AMP-activated protein kinase

ATF2:

Activating transcription factor 2

ATGL:

Adipose triglyceride lipase

AR:

Adrenergic receptor

CD36/Cd36 :

Cluster of differentiation 36 protein/encoding gene

C/EBP:

CCAAT/enhancer-binding protein

CKmt:

Mitochondrial creatine kinase

COX-4:

Cyclooxygenase-4

CPT1:

Carnitine palmitoyltransferase 1

CYT-C:

Cytochrome C

Ccnd3 :

Gene encoding G1/S-specific cyclin-D3

CREB:

cAMP-response element binding protein

CaMKII:

Calcium/calmodulin-dependent protein kinase II

DR:

Dopamine receptor

DRD4:

Dopamine receptor D4

ERK:

Extracellular signal-regulated kinase

FAS:

Fatty acid synthase

HSL:

Hormone-sensitive lipase

MYH/Myh :

Myosin heavy chain/encoding gene

MYOD:

Myoblast determination protein

MYOG/Myog :

Myogenin/encoding gene

Nrf1 :

Nuclear respiratory factor 1 encoding gene

PGC-1α:

Peroxisome proliferator-activated receptor-gamma coactivator 1α

p38 MAPK:

p38 mitogen-activated protein kinase

PKA:

Protein kinase A

PPAR:

Peroxisome proliferator-activated receptor

PRDM16:

PR domain containing 16

RyR/Ryr :

Ryanodine receptor/encoding gene

Slc27 :

Solute carrier family 27 encoding fatty acid transporter

SERCA:

Sarco/endoplasmic reticulum Ca2+-ATPase

UCP:

Uncoupling protein

References

  1. Chouchani ET, Kazak L, Spiegelman BM (2017) Mitochondrial reactive oxygen species and adipose tissue thermogenesis: bridging physiology and mechanisms. J Biol Chem 292:16810–16816. https://doi.org/10.1074/jbc.R117.789628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Thyagarajan B, Foster MT (2017) Beiging of white adipose tissue as a therapeutic strategy for weight loss in humans. Horm Mol Biol Clin Investig 31:1–13. https://doi.org/10.1515/hmbci-2017-0016

    Article  CAS  Google Scholar 

  3. Pan R, Zhu X, Maretich P, Chen Y (2020) Combating obesity with thermogenic fat: Current challenges and advancements. Front Endocrinol 11:185. https://doi.org/10.3389/fendo.2020.00185

    Article  Google Scholar 

  4. Chang SH, Song NJ, Choi JH, Yun UJ, Park KW (2019) Mechanisms underlying UCP1 dependent and independent adipocyte thermogenesis. Obes Rev 20:241–251. https://doi.org/10.1111/obr.12796

    Article  CAS  PubMed  Google Scholar 

  5. Ikeda K, Yamada T (2020) UCP1 dependent and independent thermogenesis in Brown and Beige Adipocytes. Front Endocrinol 11:1–6. https://doi.org/10.3389/fendo.2020.00498

    Article  Google Scholar 

  6. Fuller-Jackson JP, Henry BA (2018) Adipose and skeletal muscle thermogenesis: studies from large animals. J Endocrinol 237:R99–R115. https://doi.org/10.1530/JOE-18-0090

    Article  CAS  PubMed  Google Scholar 

  7. Cox B, Ennis C, Lee TF (1981) The function of dopamine receptors in the central thermoregulatory pathways of the rat. Neuropharmacolog 20:1047–1051. https://doi.org/10.1016/0028-3908(81)90095-2

    Article  CAS  Google Scholar 

  8. Lee TF, Mora F, Myers RD (1985) Dopamine and thermoregulation: an evaluation with special reference to dopaminergic pathways. Neurosci Biobehav Rev 9:589–598. https://doi.org/10.1016/0149-7634(85)90005-3

    Article  CAS  PubMed  Google Scholar 

  9. Ögren SO, Fuxe K (1988) Apomorphine and pergolide induce hypothermia by stimulation of dopamine D-2 receptors. Acta Physiol Scand 133:91–95. https://doi.org/10.1111/j.1748-1716.1988.tb08384.x

    Article  PubMed  Google Scholar 

  10. Im D, Inoue A, Fujiwara T, Nakane T, Yamanaka Y, Uemura T, Mori C, Shiimura Y, Kimura KT, Asada H, Nomura N, Tanaka T, Yamashita A, Nango E, Tono K, Kadji FMN, Aoki J, Iwata S, Shimamura T (2020) Structure of the dopamine D2 receptor in complex with the antipsychotic drug spiperone. Nat Commun 11:1–11. https://doi.org/10.1038/s41467-020-20221-0

    Article  CAS  Google Scholar 

  11. Yu J, Zhu J, Deng J, Shen J, Du F, Wu X, Chen Y, Li M, Wen Q, Xiao Z, Zhao Y (2022) Dopamine receptor D1 signaling stimulates lipolysis and browning of white adipocytes. Biochem Biophys Res Commun 588:83–89. https://doi.org/10.1016/j.bbrc.2021.12.040

    Article  CAS  PubMed  Google Scholar 

  12. Kohlie R, Perwitz N, Resch J, Schmid SM, Lehnert H, Klein J, Iwen KA (2017) Dopamine directly increases mitochondrial mass and thermogenesis in brown adipocytes. J Mol Endocrinol 58:57–66. https://doi.org/10.1530/JME-16-0159

    Article  CAS  PubMed  Google Scholar 

  13. Chipkin RE (1988) Effects of D1 and D2 antagonists on basal and apomorphine decreased body temperature in mice and rats. Pharmacol Biochem Behav 30:683–686. https://doi.org/10.1016/0091-3057(88)90084-6

    Article  CAS  PubMed  Google Scholar 

  14. Folgueira C, Beiroa D, Porteiro B, Duquenne M, Puighermanal E, Fondevila MF, Barja-Fernández S, Gallego R, Hernández-Bautista R, Castelao C, Senra A (2019) Hypothalamic dopamine signalling regulates brown fat thermogenesis. Nat Metab 1:811–829. https://doi.org/10.1038/s42255-019-0099-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Brizuela M, Antipov A, Blessing WW, Ootsuka Y (2019) Activating dopamine D2 receptors reduces brown adipose tissue thermogenesis induced by psychological stress and by activation of the lateral habenula. Sci Rep 9:1–10. https://doi.org/10.1038/s41598-019-56125-3

    Article  CAS  Google Scholar 

  16. Tavares G, Martins FO, Melo BF, Matafome P, Conde SV (2021) Peripheral dopamine directly acts on insulin-sensitive tissues to regulate insulin signaling and metabolic function. Front Pharmacol 12:713418. https://doi.org/10.3389/fphar.2021.713418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tavares G, Marques D, Barra C, Rosendo-Silva D, Costa A, Rodrigues T, Matafome P (2021) Dopamine D2 receptor agonist, bromocriptine, remodels adipose tissue dopaminergic signalling and upregulates catabolic pathways, improving metabolic profile in type 2 diabetes. Mol Metab 51:101241. https://doi.org/10.1016/j.molmet.2021.101241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cincotta AH, Meier AH, Cincotta MJ (1999) Bromocriptine improves glycaemic control and serum lipid profile in obese type 2 diabetic subjects: a new approach in the treatment of diabetes. Expert Opin Investig Drugs 8:1683–1707. https://doi.org/10.1517/13543784.8.10.1683

    Article  CAS  PubMed  Google Scholar 

  19. Aslanoglou D, Bertera S, Sánchez-Soto M, Benjamin Free R, Lee J, Zong W, Xue X, Shrestha S, Brissova M, Logan RW, Wollheim CB, Trucco M, Yechoor VK, Sibley DR, Bottino R, Freyberg Z (2021) Dopamine regulates pancreatic glucagon and insulin secretion via adrenergic and dopaminergic receptors. Transl Psychiatry 11:59. https://doi.org/10.1038/s41398-020-01171-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Caravaggio F, Borlido C, Hahn M, Feng Z, Fervaha G, Gerretsen P, Nakajima S, Plitman E, Chung JK, Iwata Y, Wilson A, Remington G, Graff-Guerrero A (2015) Reduced insulin sensitivity is related to less endogenous dopamine at D2/3 receptors in the ventral striatum of healthy nonobese humans. Int J Neuropsychopharmacol 18:1–10. https://doi.org/10.1093/ijnp/pyv014

    Article  CAS  Google Scholar 

  21. Zeng C, Han Y, Huang H, Yu C, Ren H, Shi W, He D, Huang L, Yang C, Wang X, Zhou L, Jose PA (2009) D1-like receptors inhibit insulin-induced vascular smooth muscle cell proliferation via down-regulation of insulin receptor expression. J Hypertens 27:1033–1041. https://doi.org/10.1097/HJH.0b013e3283293c7b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yu C, Wang Z, Han Y, Liu Y, Wang WE, Chen C, Wang H, Jose PA, Zeng C (2014) Dopamine D4 receptors inhibit proliferation and migration of vascular smooth muscle cells induced by insulin via down-regulation of insulin receptor expression. Cardiovasc Diabetol 13:1–11. https://doi.org/10.1186/1475-2840-13-97

    Article  CAS  Google Scholar 

  23. Reichart DL, Hinkle RT, Lefever FR, Dolan ET, Dietrich JA, Sibley DR, Isfort RJ (2011) Activation of the dopamine 1 and dopamine 5 receptors increase skeletal muscle mass and force production under non-atrophying and atrophying conditions. BMC Musculoskelet Disord 12:27. https://doi.org/10.1186/1471-2474-12-27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang Y, Ren H, Lu X, He D, Han Y, Wang H, Zeng C, Shi W (2016) Inhibition of D4 dopamine receptors on insulin receptor expression and effect in renal proximal tubule cells. J Am Heart Assoc 5:1–12. https://doi.org/10.1161/JAHA.115.002448

    Article  Google Scholar 

  25. Neve KA, Seamans JK, Trantham-Davidson H (2004) Dopamine receptor signaling. J Recept Signal Transduct Res 24:165–205. https://doi.org/10.1081/RRS-200029981

    Article  CAS  PubMed  Google Scholar 

  26. Lei S (2014) Cross interaction of dopaminergic and adrenergic systems in neural modulation. Int J Physiol Pathophysiol Pharmacol 6:137

    PubMed  PubMed Central  Google Scholar 

  27. Mund RA, Frishman WH (2013) Brown adipose tissue thermogenesis: β3 adrenoreceptors as a potential target for the treatment of obesity in humans. Cardiol Rev 21:265–269. https://doi.org/10.1097/CRD.0b013e31829cabff

    Article  PubMed  Google Scholar 

  28. Evans BA, Merlin J, Bengtsson T, Hutchinson DS (2019) Adrenoceptors in white, brown, and brite adipocytes. Br J Pharmacol 176:2416–2432. https://doi.org/10.1111/bph.14631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dang TTH, Choi M, Pham HG, Yun JW (2021) Cytochrome P450 2F2 (CYP2F2) negatively regulates browning in 3T3-L1 white adipocytes. Eur J Pharmacol 908:174318. https://doi.org/10.1016/j.ejphar.2021.174318

    Article  CAS  PubMed  Google Scholar 

  30. Haddish K, Yun JW (2022) L-dihydroxyphenylalanine (L-Dopa) induces brown-like phenotype in 3T3-L1 white adipocytes via activation of dopaminergic and β3-adrenergic receptors. Biotechnol Bioproc Eng 27:792–806. https://doi.org/10.1007/s12257-021-0361-1

    Article  CAS  Google Scholar 

  31. Haddish K, Yun JW (2022) Dopaminergic and adrenergic receptors synergistically stimulate browning in 3T3-L1 white adipocytes. J Physiol Biochem in press. https://doi.org/10.1007/s13105-022-00928-y

    Article  Google Scholar 

  32. John P, Konhilas YL (2015) AMP-Activated protein kinase signaling in cancer and cardiac hypertrophy. Cardiovasc Pharm Open Access 4:154. https://doi.org/10.4172/2329-6607.1000154

    Article  CAS  Google Scholar 

  33. Wang D, Ji X, Liu J, Li Z, Zhang X (2018) Dopamine receptor subtypes differentially regulate autophagy. Int J Mol Sci 19:1540. https://doi.org/10.3390/ijms19051540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yang W, Munhall AC, Johnson SW (2019) AMP-activated protein kinase slows D2 dopamine autoreceptor desensitization in substantia nigra neurons. Neuropharmacology 158:107705. https://doi.org/10.1016/j.neuropharm.2019.107705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fricke K, Heitland A, Maronde E (2004) Cooperative activation of lipolysis by protein kinase A and protein kinase C pathways in 3T3-L1 adipocytes. Endocrinology 145:4940–4947. https://doi.org/10.1210/en.2004-0803

    Article  CAS  PubMed  Google Scholar 

  36. Wang X, Zhong P, Yan Z (2002) Dopamine D4 receptors modulate GABAergic signaling in pyramidal neurons of prefrontal cortex. J Neurosci 22:9185–9193. https://doi.org/10.1523/JNEUROSCI.22-21-09185.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Han SF, Jiao J, Zhang W, Xu JY, Zhang W, Fu CL, Qin LQ (2017) Lipolysis and thermogenesis in adipose tissues as new potential mechanisms for metabolic benefits of dietary fiber. Nutrition 33:118–124. https://doi.org/10.1016/j.nut.2016.05.006

    Article  CAS  PubMed  Google Scholar 

  38. Liu X, Guo Y, Yang Y, Qi C, Xiong T, Chen Y, Wu G, Zeng C, Wang D (2021) DRD4 (Dopamine D4 Receptor) mitigate abdominal aortic aneurysm via decreasing p38 MAPK (mitogen-activated protein kinase)/NOX4 (NADPH Oxidase 4) axis-associated oxidative stress. Hypertension 78:294–307. https://doi.org/10.1161/HYPERTENSIONAHA.120.16738

    Article  CAS  PubMed  Google Scholar 

  39. Du M, Perry RL, Nowacki NB, Gordon JW, Salma J, Zhao J, Aziz A, Chan J, Siu KM, McDermott JC (2008) Protein kinase A represses skeletal myogenesis by targeting myocyte enhancer factor 2D. Mol Cell Biol 28:2952–2970. https://doi.org/10.1128/MCB.00248-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen AE, Ginty DD, Fan CM (2005) Protein kinase A signaling via CREB controls myogenesis induced by Wnt proteins. Nature 433:317–322. https://doi.org/10.1038/nature03126

    Article  CAS  PubMed  Google Scholar 

  41. Jiang W, Zhu J, Zhuang X, Zhang X, Luo T, Esser KA, Ren H (2015) Lipin1 regulates skeletal muscle differentiation through extracellular signal-regulated kinase (ERK) activation and cyclin D complex-regulated cell cycle withdrawal. J Biol Chem 290:23646–23655. https://doi.org/10.1074/jbc.M115.686519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dolma S, Selvadurai HJ, Lan X, Lee L, Kushida M, Voisin V, Whetstone H, So M, Aviv T, Park N, Zhu X, Xu CJ, Head R, Rowland KJ, Bernstein M, Clarke ID, Bader G, Harrington L, Brumell JH, Dirks PB (2016) Inhibition of dopamine receptor D4 impedes autophagic flux, proliferation, and survival of glioblastoma stem cells. Cancer Cell 29:859–873. https://doi.org/10.1016/j.ccell.2016.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mizuta K, Zhang Y, Xu D, Mizuta F, D’Ovidio F, Masaki E, Emala CW (2013) The dopamine D1 receptor is expressed and facilitates relaxation in airway smooth muscle. Respir Res 14:1–14. https://doi.org/10.1186/1465-9921-14-89

    Article  CAS  Google Scholar 

  44. Ikeda K, Kang Q, Yoneshiro T, Camporez JP, Maki H, Homma M, Shinoda K, Chen Y, Lu X, Maretich P, Tajima K, Ajuwon KM, Soga T, Kajimura S (2017) UCP1-independent signaling involving SERCA2b mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis. Nat Med 23:1454–1465. https://doi.org/10.1038/nm.4429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Periasamy M, Maurya SK, Sahoo SK, Singh S, Reis FCG, Bal NC (2017) Role of SERCA pump in muscle thermogenesis and metabolism. Compr Physiol 7:879–890. https://doi.org/10.1002/cphy.c160030

    Article  PubMed  Google Scholar 

  46. Pant M, Bal NC, Periasamy M (2016) Sarcolipin: a key thermogenic and metabolic regulator in skeletal muscle. Trends Endocrinol Metab 27:881–892. https://doi.org/10.1016/j.tem.2016.08.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Servan-Schreiber D, Printz H, Cohen JD (1990) A network model of catecholamine effects: gain, signal-to-noise ratio, and behavior. Science 249:892–895. https://doi.org/10.1126/science.2392679

    Article  CAS  PubMed  Google Scholar 

  48. Ciruela F, Canela L, Burgueño J, Soriguera A, Cabello N, Canela EI, Casadó V, Cortés A, Mallol J, Woods AS, Ferré S (2005) Heptaspanning membrane receptors and cytoskeletal/scaffolding proteins: focus on adenosine, dopamine, and metabotropic glutamate receptor function. J Mol Neurosci 26:277–329. https://doi.org/10.1385/jmn:26:2-3:277

    Article  CAS  PubMed  Google Scholar 

  49. De Bartolomeis A, Tomasetti C (2012) Calcium-dependent networks in dopamine–glutamate interaction: the role of postsynaptic scaffolding proteins. Mol Neurobiol 46:275–296. https://doi.org/10.1007/s12035-012-8293-6

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean Government (MSIT, No. 2019R1A2C2002163).

Author information

Authors and Affiliations

Authors

Contributions

Kiros Haddish performed the experimental design, conducted experiments, analyzed the data, performed the statistical analysis, and wrote the manuscript; and Jong Won Yun carried out scientific support, critically reviewed the manuscript and experimental design, and approved the manuscript version to be published.

Corresponding author

Correspondence to Jong Won Yun.

Ethics declarations

Ethical approval

All the procedures were performed according to the guidelines approved by the National Institutes of Health. All animal experiments were approved by the Committee for Laboratory Animal Care and Use of Daegu University (DUIACC-2022–001-0310–001).

Consent to participate

Not applicable.

Consent for publication

All authors have seen and approved the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The original article published with incorrect Figure 5. The replacement figure has been missed during correction stage.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haddish, K., Yun, J.W. Dopamine receptor D4 (DRD4) negatively regulates UCP1- and ATP-dependent thermogenesis in 3T3-L1 adipocytes and C2C12 muscle cells. Pflugers Arch - Eur J Physiol 475, 757–773 (2023). https://doi.org/10.1007/s00424-023-02816-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-023-02816-w

Keywords

Navigation