Skip to main content

Advertisement

Log in

Apolipoprotein L1 (APOL1) cation current in HEK-293 cells and in human podocytes

  • Ion channels, receptors and transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Two heterozygous missense variants (G1 and G2) of Apolipoprotein L1 (APOL1) found in individuals of recent African ancestry can attenuate the severity of infection by some forms of Trypanosoma brucei. However, these two variants within a broader African haplotype also increase the risk of kidney disease in Americans of African descent. Although overexpression of either variant G1 or G2 causes multiple pathogenic changes in cultured cells and transgenic mouse models, the mechanism(s) promoting kidney disease remain unclear. Human serum APOL1 kills trypanosomes through its cation channel activity, and cation channel activity of recombinant APOL1 has been reconstituted in lipid bilayers and proteoliposomes. Although APOL1 overexpression increases whole cell cation currents in HEK-293 cells, the ion channel activity of APOL1 has not been assessed in glomerular podocytes, the major site of APOL1-associated kidney diseases. We characterize APOL1-associated whole cell and on-cell cation currents in HEK-293 T-Rex cells and demonstrate partial inhibition of currents by anti-APOL antibodies. We detect in primary human podocytes a similar cation current inducible by interferon-γ (IFNγ) and sensitive to inhibition by anti-APOL antibody as well as by a fragment of T. brucei Serum Resistance-Associated protein (SRA). CRISPR knockout of APOL1 in human primary podocytes abrogates the IFNγ-induced, antibody-sensitive current. Our novel characterization in HEK-293 cells of heterologous APOL1-associated cation conductance inhibited by anti-APOL antibody and our documentation in primary human glomerular podocytes of endogenous IFNγ-stimulated, APOL1-mediated, SRA and anti-APOL-sensitive ion channel activity together support APOL1-mediated channel activity as a therapeutic target for treatment of APOL1-associated kidney diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Supporting data are available upon request.

References

  1. Aghajan M, Booten SL, Althage M, Hart CE, Ericsson A, Maxvall I, Ochaba J, Menschik-Lundin A, Hartleib J, Kuntz S, Gattis D, Ahlstrom C, Watt AT, Engelhardt JA, Monia BP, Magnone MC, Guo S (2019) Antisense oligonucleotide treatment ameliorates IFN-gamma-induced proteinuria in APOL1-transgenic mice. JCI Insight 4. https://doi.org/10.1172/jci.insight.126124

  2. Akilesh S, Huber TB, Wu H, Wang G, Hartleben B, Kopp JB, Miner JH, Roopenian DC, Unanue ER, Shaw AS (2008) Podocytes use FcRn to clear IgG from the glomerular basement membrane. Proc Natl Acad Sci U S A 105:967–972. https://doi.org/10.1073/pnas.0711515105

    Article  Google Scholar 

  3. Beckerman P, Bi-Karchin J, Park AS, Qiu C, Dummer PD, Soomro I, Boustany-Kari CM, Pullen SS, Miner JH, Hu CA, Rohacs T, Inoue K, Ishibe S, Saleem MA, Palmer MB, Cuervo AM, Kopp JB, Susztak K (2017) Transgenic expression of human APOL1 risk variants in podocytes induces kidney disease in mice. Nat Med 23:429–438. https://doi.org/10.1038/nm.4287

    Article  CAS  Google Scholar 

  4. Bruggeman LA, Sedor JR, O’Toole JF (2021) Apolipoprotein L1 and mechanisms of kidney disease susceptibility. Curr Opin Nephrol Hypertens 30:317–323. https://doi.org/10.1097/MNH.0000000000000704

    Article  CAS  Google Scholar 

  5. Bruggeman LA, Wu Z, Luo L, Madhavan SM, Konieczkowski M, Drawz PE, Thomas DB, Barisoni L, Sedor JR, O’Toole JF (2016) APOL1-G0 or APOL1-G2 transgenic models develop preeclampsia but not kidney disease. J Am Soc Nephrol 27:3600–3610. https://doi.org/10.1681/ASN.2015111220

    Article  CAS  Google Scholar 

  6. Bruno J, Edwards JC (2021) Kidney-disease-associated variants of Apolipoprotein L1 show gain of function in cation channel activity. J Biol Chem 296:100238. https://doi.org/10.1074/jbc.RA120.013943

    Article  CAS  Google Scholar 

  7. Bruno J, Pozzi N, Oliva J, Edwards JC (2017) Apolipoprotein L1 confers pH-switchable ion permeability to phospholipid vesicles. J Biol Chem 292:18344–18353. https://doi.org/10.1074/jbc.M117.813444

    Article  CAS  Google Scholar 

  8. Campillo N, Carrington M (2003) The origin of the serum resistance associated (SRA) gene and a model of the structure of the SRA polypeptide from Trypanosoma brucei rhodesiense. Mol Biochem Parasitol 127:79–84. https://doi.org/10.1016/s0166-6851(02)00306-7

    Article  CAS  Google Scholar 

  9. Chun J, Riella C, Hyunjae C, Shah S, Wang M, Magraner J, Ribas G, Ribas H, Zhang J-Y, Alper S, Friedman D, Pollak M (2022) DGAT2 Inhibition potentiates lipid droplet formation to reduce cytotoxicity in APOL1 kidney risk variants. JASNin: press. https://doi.org/10.1681/ASN.2021050723

    Article  Google Scholar 

  10. Chun J, Zhang JY, Wilkins MS, Subramanian B, Riella C, Magraner JM, Alper SL, Friedman DJ, Pollak MR (2019) Recruitment of APOL1 kidney disease risk variants to lipid droplets attenuates cell toxicity. Proc Natl Acad Sci U S A 116:3712–3721. https://doi.org/10.1073/pnas.1820414116

    Article  CAS  Google Scholar 

  11. Dawson LJ, Stanbury J, Venn N, Hasdimir B, Rogers SN, Smith PM (2006) Antimuscarinic antibodies in primary Sjogren’s syndrome reversibly inhibit the mechanism of fluid secretion by human submandibular salivary acinar cells. Arthritis Rheum 54:1165–1173. https://doi.org/10.1002/art.21764

    Article  CAS  Google Scholar 

  12. Deneka D, Rutz S, Hutter CAJ, Seeger MA, Sawicka M, Dutzler R (2021) Allosteric modulation of LRRC8 channels by targeting their cytoplasmic domains. Nat Commun 12:5435. https://doi.org/10.1038/s41467-021-25742-w

    Article  CAS  Google Scholar 

  13. Doench JG, Fusi N, Sullender M, Hegde M, Vaimberg EW, Donovan KF, Smith I, Tothova Z, Wilen C, Orchard R, Virgin HW, Listgarten J, Root DE (2016) Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol 34:184–191. https://doi.org/10.1038/nbt.3437

    Article  CAS  Google Scholar 

  14. Ekulu PM, Adebayo OC, Decuypere JP, Bellucci L, Elmonem MA, Nkoy AB, Mekahli D, Bussolati B, van den Heuvel LP, Arcolino FO, Levtchenko EN (2021) Novel human podocyte cell model carrying G2/G2 APOL1 high-risk genotype. Cells 10. https://doi.org/10.3390/cells10081914

  15. Friedman DJ, Pollak MR (2020) APOL1 and kidney disease: from genetics to biology. Annu Rev Physiol 82:323–342. https://doi.org/10.1146/annurev-physiol-021119-034345

    Article  CAS  Google Scholar 

  16. Friedman DJ, Pollak MR (2021) APOL1 nephropathy: from genetics to clinical applications. Clin J Am Soc Nephrol 16:294–303. https://doi.org/10.2215/CJN.15161219

    Article  CAS  Google Scholar 

  17. Genovese G, Friedman DJ, Ross MD, Lecordier L, Uzureau P, Freedman BI, Bowden DW, Langefeld CD, Oleksyk TK, Uscinski Knob AL, Bernhardy AJ, Hicks PJ, Nelson GW, Vanhollebeke B, Winkler CA, Kopp JB, Pays E, Pollak MR (2010) Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science 329:841–845. https://doi.org/10.1126/science.1193032

    Article  CAS  Google Scholar 

  18. Giovinazzo JA, Thomson RP, Khalizova N, Zager PJ, Malani N, Rodriguez-Boulan E, Raper J, Schreiner R (2020) Apolipoprotein L-1 renal risk variants form active channels at the plasma membrane driving cytotoxicity. Elife 9. https://doi.org/10.7554/eLife.51185

  19. Greka A, Mundel P (2012) Cell biology and pathology of podocytes. Annu Rev Physiol 74:299–323. https://doi.org/10.1146/annurev-physiol-020911-153238

    Article  CAS  Google Scholar 

  20. Gupta N, Wang X, Wen X, Moran P, Paluch M, Hass PE, Heidersbach A, Haley B, Kirchhofer D, Brezski RJ, Peterson AS, Scales SJ (2020) Domain-specific antibodies reveal differences in the membrane topologies of apolipoprotein L1 in serum and podocytes. J Am Soc Nephrol 31:2065–2082. https://doi.org/10.1681/ASN.2019080830

    Article  CAS  Google Scholar 

  21. Heneghan JF, Vandorpe DH, Shmukler BE, Giovinazzo JA, Raper J, Friedman DJ, Pollak MR, Alper SL (2015) BH3 domain-independent apolipoprotein L1 toxicity rescued by BCL2 prosurvival proteins. Am J Physiol Cell Physiol 309:C332-347. https://doi.org/10.1152/ajpcell.00142.2015

    Article  CAS  Google Scholar 

  22. Hutchings CJ, Colussi P, Clark TG (2019) Ion channels as therapeutic antibody targets. MAbs 11:265–296. https://doi.org/10.1080/19420862.2018.1548232

    Article  CAS  Google Scholar 

  23. Ivanov AI (2014) Pharmacological inhibitors of exocytosis and endocytosis: novel bullets for old targets. Methods Mol Biol 1174:3–18. https://doi.org/10.1007/978-1-4939-0944-5_1

    Article  CAS  Google Scholar 

  24. Iwata Y, Wakabayashi S, Ito S, Kitakaze M (2020) Production of TRPV2-targeting functional antibody ameliorating dilated cardiomyopathy and muscular dystrophy in animal models. Lab Invest 100:324–337. https://doi.org/10.1038/s41374-019-0363-1

    Article  CAS  Google Scholar 

  25. Kumar V, Singhal PC (2019) APOL1 and kidney cell function. Am J Physiol Renal Physiol 317:F463–F477. https://doi.org/10.1152/ajprenal.00233.2019

    Article  CAS  Google Scholar 

  26. Lannon H, Shah SS, Dias L, Blackler D, Alper SL, Pollak MR, Friedman DJ (2019) Apolipoprotein L1 (APOL1) risk variant toxicity depends on the haplotype background. Kidney Int 96:1303–1307. https://doi.org/10.1016/j.kint.2019.07.010

    Article  CAS  Google Scholar 

  27. McCarthy GM, Blasio A, Donovan OG, Schaller LB, Bock-Hughes A, Magraner JM, Suh JH, Tattersfield CF, Stillman IE, Shah SS, Zsengeller ZK, Subramanian B, Friedman DJ, Pollak MR (2021) Recessive, gain-of-function toxicity in an APOL1 BAC transgenic mouse model mirrors human APOL1 kidney disease. Dis Model Mech 14. https://doi.org/10.1242/dmm.048952

  28. Molina-Portela Mdel P, Lugli EB, Recio-Pinto E, Raper J (2005) Trypanosome lytic factor, a subclass of high-density lipoprotein, forms cation-selective pores in membranes. Mol Biochem Parasitol 144:218–226. https://doi.org/10.1016/j.molbiopara.2005.08.018

    Article  CAS  Google Scholar 

  29. Nichols B, Jog P, Lee JH, Blackler D, Wilmot M, D’Agati V, Markowitz G, Kopp JB, Alper SL, Pollak MR, Friedman DJ (2015) Innate immunity pathways regulate the nephropathy gene Apolipoprotein L1. Kidney Int 87:332–342. https://doi.org/10.1038/ki.2014.270

    Article  CAS  Google Scholar 

  30. O’Toole JF, Schilling W, Kunze D, Madhavan SM, Konieczkowski M, Gu Y, Luo L, Wu Z, Bruggeman LA, Sedor JR (2018) ApoL1 overexpression drives variant-independent cytotoxicity. J Am Soc Nephrol 29:869–879. https://doi.org/10.1681/ASN.2016121322

    Article  CAS  Google Scholar 

  31. Okamoto K, Rausch JW, Wakashin H, Fu Y, Chung JY, Dummer PD, Shin MK, Chandra P, Suzuki K, Shrivastav S, Rosenberg AZ, Hewitt SM, Ray PE, Noiri E, Le Grice SFJ, Hoek M, Han Z, Winkler CA, Kopp JB (2018) APOL1 risk allele RNA contributes to renal toxicity by activating protein kinase R. Commun Biol 1:188. https://doi.org/10.1038/s42003-018-0188-2

    Article  CAS  Google Scholar 

  32. Olabisi OA, Heneghan JF (2017) APOL1 nephrotoxicity: what does ion transport have to do with it? Semin Nephrol 37:546–551. https://doi.org/10.1016/j.semnephrol.2017.07.008

    Article  CAS  Google Scholar 

  33. Olabisi OA, Zhang JY, VerPlank L, Zahler N, DiBartolo S 3rd, Heneghan JF, Schlondorff JS, Suh JH, Yan P, Alper SL, Friedman DJ, Pollak MR (2016) APOL1 kidney disease risk variants cause cytotoxicity by depleting cellular potassium and inducing stress-activated protein kinases. Proc Natl Acad Sci U S A 113:830–837. https://doi.org/10.1073/pnas.1522913113

    Article  CAS  Google Scholar 

  34. Papeta N, Kiryluk K, Patel A, Sterken R, Kacak N, Snyder HJ, Imus PH, Mhatre AN, Lawani AK, Julian BA, Wyatt RJ, Novak J, Wyatt CM, Ross MJ, Winston JA, Klotman ME, Cohen DJ, Appel GB, D’Agati VD, Klotman PE, Gharavi AG (2011) APOL1 variants increase risk for FSGS and HIVAN but not IgA nephropathy. J Am Soc Nephrol 22:1991–1996. https://doi.org/10.1681/ASN.2011040434

    Article  CAS  Google Scholar 

  35. Pays E, Vanhollebeke B, Uzureau P, Lecordier L, Perez-Morga D (2014) The molecular arms race between African trypanosomes and humans. Nat Rev Microbiol 12:575–584. https://doi.org/10.1038/nrmicro3298

    Article  CAS  Google Scholar 

  36. Perez-Morga D, Vanhollebeke B, Paturiaux-Hanocq F, Nolan DP, Lins L, Homble F, Vanhamme L, Tebabi P, Pays A, Poelvoorde P, Jacquet A, Brasseur R, Pays E (2005) Apolipoprotein L-I promotes trypanosome lysis by forming pores in lysosomal membranes. Science 309:469–472. https://doi.org/10.1126/science.1114566

    Article  CAS  Google Scholar 

  37. Qian T, Hernday SE, Bao X, Olson WR, Panzer SE, Shusta EV, Palecek SP (2019) Directed differentiation of human pluripotent stem cells to podocytes under defined conditions. Sci Rep 9:2765. https://doi.org/10.1038/s41598-019-39504-8

    Article  CAS  Google Scholar 

  38. Saleem MA (2015) One hundred ways to kill a podocyte. Nephrol Dial Transplant 30:1266–1271. https://doi.org/10.1093/ndt/gfu363

    Article  CAS  Google Scholar 

  39. Scales SJ, Gupta N, De Maziere AM, Posthuma G, Chiu CP, Pierce AA, Hotzel K, Tao J, Foreman O, Koukos G, Oltrabella F, Klumperman J, Lin W, Peterson AS (2020) Apolipoprotein L1-specific antibodies detect endogenous APOL1 inside the endoplasmic reticulum and on the plasma membrane of podocytes. J Am Soc Nephrol 31:2044–2064. https://doi.org/10.1681/ASN.2019080829

    Article  CAS  Google Scholar 

  40. Schaub C, Lee P, Racho-Jansen A, Giovinazzo J, Terra N, Raper J, Thomson R (2021) Coiled-coil binding of the leucine zipper domains of APOL1 is necessary for the open cation channel conformation. J Biol Chem 297:101009. https://doi.org/10.1016/j.jbc.2021.101009

    Article  CAS  Google Scholar 

  41. Schaub C, Verdi J, Lee P, Terra N, Limon G, Raper J, Thomson R (2020) Cation channel conductance and pH gating of the innate immunity factor APOL1 are governed by pore-lining residues within the C-terminal domain. J Biol Chem 295:13138–13149. https://doi.org/10.1074/jbc.RA120.014201

    Article  CAS  Google Scholar 

  42. Shah SS, Lannon H, Dias L, Zhang JY, Alper SL, Pollak MR, Friedman DJ (2019) APOL1 kidney risk variants induce cell death via mitochondrial translocation and opening of the mitochondrial permeability transition pore. J Am Soc Nephrol 30:2355–2368. https://doi.org/10.1681/ASN.2019020114

    Article  Google Scholar 

  43. Sharma AK, Friedman DJ, Pollak MR, Alper SL (2016) Structural characterization of the C-terminal coiled-coil domains of wild-type and kidney disease-associated mutants of apolipoprotein L1. FEBS J 283:1846–1862. https://doi.org/10.1111/febs.13706

    Article  CAS  Google Scholar 

  44. Talbot BE, Vandorpe DH, Stotter BR, Alper SL, Schlondorff JS (2019) Transmembrane insertases and N-glycosylation critically determine synthesis, trafficking, and activity of the nonselective cation channel TRPC6. J Biol Chem 294:12655–12669. https://doi.org/10.1074/jbc.RA119.008299

    Article  CAS  Google Scholar 

  45. Thomson R, Finkelstein A (2015) Human trypanolytic factor APOL1 forms pH-gated cation-selective channels in planar lipid bilayers: relevance to trypanosome lysis. Proc Natl Acad Sci U S A 112:2894–2899. https://doi.org/10.1073/pnas.1421953112

    Article  CAS  Google Scholar 

  46. Thomson R, Genovese G, Canon C, Kovacsics D, Higgins MK, Carrington M, Winkler CA, Kopp J, Rotimi C, Adeyemo A, Doumatey A, Ayodo G, Alper SL, Pollak MR, Friedman DJ, Raper J (2014) Evolution of the primate trypanolytic factor APOL1. Proc Natl Acad Sci U S A 111:E2130-2139. https://doi.org/10.1073/pnas.1400699111

    Article  CAS  Google Scholar 

  47. Tzur S, Rosset S, Shemer R, Yudkovsky G, Selig S, Tarekegn A, Bekele E, Bradman N, Wasser WG, Behar DM, Skorecki K (2010) Missense mutations in the APOL1 gene are highly associated with end stage kidney disease risk previously attributed to the MYH9 gene. Hum Genet 128:345–350. https://doi.org/10.1007/s00439-010-0861-0

    Article  CAS  Google Scholar 

  48. Uzureau S, Lecordier L, Uzureau P, Hennig D, Graversen JH, Homble F, Mfutu PE, Oliveira Arcolino F, Ramos AR, La Rovere RM, Luyten T, Vermeersch M, Tebabi P, Dieu M, Cuypers B, Deborggraeve S, Rabant M, Legendre C, Moestrup SK, Levtchenko E, Bultynck G, Erneux C, Perez-Morga D, Pays E (2020) APOL1 C-terminal variants may trigger kidney disease through interference with APOL3 control of actomyosin. Cell Rep 30(3821–3836):e3813. https://doi.org/10.1016/j.celrep.2020.02.064

    Article  CAS  Google Scholar 

  49. Vanwalleghem G, Fontaine F, Lecordier L, Tebabi P, Klewe K, Nolan DP, Yamaryo-Botte Y, Botte C, Kremer A, Burkard GS, Rassow J, Roditi I, Perez-Morga D, Pays E (2015) Coupling of lysosomal and mitochondrial membrane permeabilization in trypanolysis by APOL1. Nat Commun 6:8078. https://doi.org/10.1038/ncomms9078

    Article  CAS  Google Scholar 

  50. Waters JP, Richards YC, Skepper JN, Southwood M, Upton PD, Morrell NW, Pober JS, Bradley JR (2017) A 3D tri-culture system reveals that activin receptor-like kinase 5 and connective tissue growth factor drive human glomerulosclerosis. J Pathol 243:390–400. https://doi.org/10.1002/path.4960

    Article  CAS  Google Scholar 

  51. Williams S, Charest JL, Pollak MR, Subramanian B (2022) Bioengineering strategies to develop podocyte culture systems. Tissue Eng Part B Rev 28:938–948. https://doi.org/10.1089/ten.TEB.2021.0154

    Article  CAS  Google Scholar 

  52. Winkler RL, Bruno J, Buchanan P, Edwards JC (2022) Cation channel activity of apolipoprotein L1 is modulated by haplotype background. J Am Soc Nephrol. https://doi.org/10.1681/ASN.2022020213

    Article  Google Scholar 

  53. Wu J, Ma Z, Raman A, Beckerman P, Dhillon P, Mukhi D, Palmer M, Chen HC, Cohen CR, Dunn T, Reilly J, Meyer N, Shashaty M, Arany Z, Hasko G, Laudanski K, Hung A, Susztak K (2021) APOL1 risk variants in individuals of African genetic ancestry drive endothelial cell defects that exacerbate sepsis. Immunity 54(2632–2649):e2636. https://doi.org/10.1016/j.immuni.2021.10.004

    Article  CAS  Google Scholar 

  54. Wu J, Raman A, Coffey NJ, Sheng X, Wahba J, Seasock MJ, Ma Z, Beckerman P, Laczko D, Palmer MB, Kopp JB, Kuo JJ, Pullen SS, Boustany-Kari CM, Linkermann A, Susztak K (2021) The key role of NLRP3 and STING in APOL1-associated podocytopathy. J Clin Invest 131. https://doi.org/10.1172/JCI136329

  55. Wulff H, Christophersen P, Colussi P, Chandy KG, Yarov-Yarovoy V (2019) Antibodies and venom peptides: new modalities for ion channels. Nat Rev Drug Discov 18:339–357. https://doi.org/10.1038/s41573-019-0013-8

    Article  CAS  Google Scholar 

  56. Zahr RS, Rampersaud E, Kang G, Weiss MJ, Wu G, Davis RL, Hankins JS, Estepp JH, Lebensburger J (2019) Children with sickle cell anemia and APOL1 genetic variants develop albuminuria early in life. Haematologica 104:e385–e387. https://doi.org/10.3324/haematol.2018.212779

    Article  CAS  Google Scholar 

  57. Zhang JY, Wang M, Tian L, Genovese G, Yan P, Wilson JG, Thadhani R, Mottl AK, Appel GB, Bick AG, Sampson MG, Alper SL, Friedman DJ, Pollak MR (2018) UBD modifies APOL1-induced kidney disease risk. Proc Natl Acad Sci U S A 115:3446–3451. https://doi.org/10.1073/pnas.1716113115

    Article  CAS  Google Scholar 

  58. Zoll S, Lane-Serff H, Mehmood S, Schneider J, Robinson CV, Carrington M, Higgins MK (2018) The structure of serum resistance-associated protein and its implications for human African trypanosomiasis. Nat Microbiol 3:295–301. https://doi.org/10.1038/s41564-017-0085-3

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge helpful discussions with Dr. Justin Chun (now at the University of Calgary, Calgary, Alberta), Dr. Jiayue Zhang (now at Frontera Therapeutics, Winchester, MA), Dr. Alok K. Sharma (now at Frederick National Laboratory for Cancer Research and Leidos Biomedical Research, Frederick MD), and Dr. Johannes Schlondorff of Beth Israel Deaconess Medical Center and Harvard Medical School (now at the Ohio State University School of Medicine).

Funding

This work was supported by research grants from NIMHD to MRP, SLA, and DJF, and by a grant to MRP from the Ellison Foundation.

Author information

Authors and Affiliations

Authors

Contributions

David H. Vandorpe, Beth Israel Deaconess Medical Center, Boston, MA, United States: conceived the project, performed experiments, analyzed results, prepared figures, wrote and revised the main manuscript text and reviewed the manuscript.

John F. Heneghan, Beth Israel Deaconess Medical Center, Boston, MA, United States: performed experiments, analyzed results and reviewed the manuscript.

Joshua S. Waitzman, Beth Israel Deaconess Medical Center, Boston, MA, United States: performed experiments, revised the main manuscript text and reviewed the manuscript.

Gizelle M. McCarthy, Beth Israel Deaconess Medical Center, Boston, MA, United States: performed experiments, prepared figures, analyzed results, revised the main manuscript text and reviewed the manuscript.

Angelo Blasio, Beth Israel Deaconess Medical Center, Boston, MA, United States: performed experiments, analyzed results, prepared figures and reviewed the manuscript.

Jose M. Magraner, Beth Israel Deaconess Medical Center, Boston, MA, United States: performed experiments.

Olivia G. Donovan, Beth Israel Deaconess Medical Center, Boston, MA, United States: performed experiments.

Lena B. Schaller, Beth Israel Deaconess Medical Center, Boston, MA, United States: performed experiments.

Shrijal S. Shah, Beth Israel Deaconess Medical Center, Boston, MA, United States: performed experiments, prepared figures and reviewed the manuscript.

Balaji K. Subramanian, Beth Israel Deaconess Medical Center, Boston, MA, United States: performed experiments, prepared figures and reviewed the manuscript.

Cristian V. Riella, Beth Israel Deaconess Medical Center, Boston, MA, United States: performed experiments, analyzed results and reviewed the manuscript.

David J. Friedman, Beth Israel Deaconess Medical Center, Boston, MA, United States: conceived the project, revised the main manuscript text and reviewed the manuscript.

Martin R. Pollak, Beth Israel Deaconess Medical Center, Boston, MA, United States: conceived the project, revised the main manuscript text and reviewed the manuscript.

Seth L. Alper, Beth Israel Deaconess Medical Center, Boston, MA, United States: conceived and oversaw the project, analyzed results, prepared figures, wrote and revised the main manuscript text, reviewed the manuscript.

Corresponding author

Correspondence to Seth L. Alper.

Ethics declarations

Consent for publication

All authors have read the manuscript and consent to its publication.

Competing interests

Co-authors MRP and DJF are inventors on patents related to APOL1, hold equity in Apolo1bio, and have consulted for and received research support from Vertex.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vandorpe, D.H., Heneghan, J.F., Waitzman, J.S. et al. Apolipoprotein L1 (APOL1) cation current in HEK-293 cells and in human podocytes. Pflugers Arch - Eur J Physiol 475, 323–341 (2023). https://doi.org/10.1007/s00424-022-02767-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-022-02767-8

Keywords

Navigation