Skip to main content
Log in

Upregulation of transient receptor potential melastatin 4 (TRPM4) in ventricular fibroblasts from heart failure patients

  • Original Article
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The transient receptor potential melastatin 4 (TRPM4) is a Ca2+-activated nonselective monovalent cation channel belonging to the TRP channel superfamily. TRPM4 is widely expressed in various tissues and most abundantly expressed in the heart. TRPM4 plays a critical role in cardiac conduction. Patients carrying a gain-of-function or loss-of-function mutation of TRPM4 display impaired cardiac conduction. Knockout or over-expression of TRPM4 in mice recapitulates conduction defects in patients. Moreover, recent studies have indicated that TRPM4 plays a role in hypertrophy and heart failure. Whereas the role of TRPM4 mediated by cardiac myocytes has been well investigated, little is known about TRPM4 and its role in cardiac fibroblasts. Here we show that in human left ventricular fibroblasts, TRPM4 exhibits typical Ca2+-activation characteristics, linear current–voltage (I–V) relation, and monovalent permeability. TRPM4 currents recorded in fibroblasts from heart failure patients (HF) are more than 2-fold bigger than those from control individuals (CTL). The enhanced functional TRPM4 in HF is not resulted from changed channel properties, as TRPM4 currents from both HF and CTL fibroblasts demonstrate similar sensitivity to intracellular calcium activation and extracellular 9-phenanthrol (9-phen) blockade. Consistent with enhanced TRPM4 activity, the protein level of TRPM4 is about 2-fold higher in HF than that of CTL hearts. Moreover, TRPM4 current in CTL fibroblasts is increased after 24 hours of TGFβ1 treatment, implying that TRPM4 in vivo may be upregulated by fibrogenesis promotor TGFβ1. The upregulated TRPM4 in HF fibroblasts suggests that TRPM4 may play a role in cardiac fibrogenesis under various pathological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BMI:

body mass index

CAD:

coronary artery disease

DM:

diabetes mellitus

EF:

ejection fraction

Eth:

ethnicity

Gen:

gender

HF:

heart failure

HLD:

hyperlipidemia

HTN:

hypertension

Med:

outpatient medication

MI:

myocardial infarction

VD:

valve diseases

References

  1. Autzen HE, Myasnikov AG, Campbell MG, Asarnow D, Julius D, Cheng Y (2018) Structure of the human TRPM4 ion channel in a lipid nanodisc. Science 359:228–232. https://doi.org/10.1126/science.aar4510

    Article  CAS  PubMed  Google Scholar 

  2. Barbet G, Demion M, Moura IC, Serafini N, Leger T, Vrtovsnik F, Monteiro RC, Guinamard R, Kinet JP, Launay P (2008) The calcium-activated nonselective cation channel TRPM4 is essential for the migration but not the maturation of dendritic cells. Nat Immunol 9:1148–1156. https://doi.org/10.1038/ni.1648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Barefield DY, McNamara JW, Lynch TL, Kuster DWD, Govindan S, Haar L, Wang Y, Taylor EN, Lorenz JN, Nieman ML, Zhu G, Luther PK, Varro A, Dobrev D, Ai X, Janssen PML, Kass DA, Jones WK, Gilbert RJ, Sadayappan S (2019) Ablation of the calpain-targeted site in cardiac myosin binding protein-C is cardioprotective during ischemia-reperfusion injury. J Mol Cell Cardiol 129:236–246. https://doi.org/10.1016/j.yjmcc.2019.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bianchi B, Ozhathil LC, Medeiros-Domingo A, Gollob MH, Abriel H (2018) Four TRPM4 cation channel mutations found in cardiac conduction diseases lead to altered protein stability. Front Physiol 9:177. https://doi.org/10.3389/fphys.2018.00177

    Article  PubMed  PubMed Central  Google Scholar 

  5. Burt R, Graves BM, Gao M, Li C, Williams DL, Fregoso SP, Hoover DB, Li Y, Wright GL, Wondergem R (2013) 9-Phenanthrol and flufenamic acid inhibit calcium oscillations in HL-1 mouse cardiomyocytes. Cell Calcium 54:193–201. https://doi.org/10.1016/j.ceca.2013.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chatelier A, Mercier A, Tremblier B, Theriault O, Moubarak M, Benamer N, Corbi P, Bois P, Chahine M, Faivre JF (2012) A distinct de novo expression of Nav1.5 sodium channels in human atrial fibroblasts differentiated into myofibroblasts. J Physiol 590:4307–4319. https://doi.org/10.1113/jphysiol.2012.233593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen B, Gao Y, Wei S, Low SW, Ng G, Yu D, Tu TM, Soong TW, Nilius B, Liao P (2019) TRPM4-specific blocking antibody attenuates reperfusion injury in a rat model of stroke. Arch Eur J Physiol 471:1455–1466. https://doi.org/10.1007/s00424-019-02326-8

    Article  CAS  Google Scholar 

  8. Cheng H, Beck A, Launay P, Gross SA, Stokes AJ, Kinet JP, Fleig A, Penner R (2007) TRPM4 controls insulin secretion in pancreatic beta-cells. Cell Calcium 41:51–61. https://doi.org/10.1016/j.ceca.2006.04.032

    Article  CAS  PubMed  Google Scholar 

  9. Clapham DE (2003) TRP channels as cellular sensors. Nature 426:517–524

    Article  CAS  Google Scholar 

  10. Colquhoun D, Neher E, Reuter H, Stevens CF (1981) Inward current channels activated by intracellular Ca in cultured cardiac cells. Nature 294:752–754

    Article  CAS  Google Scholar 

  11. Crnich R, Amberg GC, Leo MD, Gonzales AL, Tamkun MM, Jaggar JH, Earley S (2010) Vasoconstriction resulting from dynamic membrane trafficking of TRPM4 in vascular smooth muscle cells. Am J Physiol Cell Physiol 299:C682–C694. https://doi.org/10.1152/ajpcell.00101.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Daumy X, Amarouch MY, Lindenbaum P, Bonnaud S, Charpentier E, Bianchi B, Nafzger S, Baron E, Fouchard S, Thollet A, Kyndt F, Barc J, Le Scouarnec S, Makita N, Le Marec H, Dina C, Gourraud JB, Probst V, Abriel H, Redon R, Schott JJ (2016) Targeted resequencing identifies TRPM4 as a major gene predisposing to progressive familial heart block type I. Int J Cardiol 207:349–358. https://doi.org/10.1016/j.ijcard.2016.01.052

    Article  PubMed  Google Scholar 

  13. Demion M, Bois P, Launay P, Guinamard R (2007) TRPM4, a Ca2+-activated nonselective cation channel in mouse sino-atrial node cells. Cardiovasc Res 73:531–538. https://doi.org/10.1016/j.cardiores.2006.11.023

    Article  CAS  PubMed  Google Scholar 

  14. Demion M, Thireau J, Gueffier M, Finan A, Khoueiry Z, Cassan C, Serafini N, Aimond F, Granier M, Pasquie JL, Launay P, Richard S (2014) Trpm4 gene invalidation leads to cardiac hypertrophy and electrophysiological alterations. PLoS One 9:e115256. https://doi.org/10.1371/journal.pone.0115256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dragun M, Gazova A, Kyselovic J, Hulman M, Matus M (2019) TRP channels expression profile in human end-stage heart failure. Medicina 55. https://doi.org/10.3390/medicina55070380

  16. Du J, Xie J, Yue L (2009) Intracellular calcium activates TRPM2 and its alternative spliced isoforms. Proc Natl Acad Sci 107:7239–7244. https://doi.org/10.1073/pnas.0811725106

    Article  Google Scholar 

  17. Du J, Xie J, Zhang Z, Tsujikawa H, Fusco D, Silverman D, Liang B, Yue L (2010) TRPM7-mediated Ca2+ signals confer fibrogenesis in human atrial fibrillation. Circ Res 106:992–1003. https://doi.org/10.1161/CIRCRESAHA.109.206771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Duan J, Li Z, Li J, Santa-Cruz A, Sanchez-Martinez S, Zhang J, Clapham DE (2018) Structure of full-length human TRPM4. Proc Natl Acad Sci U S A 115:2377–2382. https://doi.org/10.1073/pnas.1722038115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Earley S (2013) TRPM4 channels in smooth muscle function. Arch Eur J Physiol 465:1223–1231. https://doi.org/10.1007/s00424-013-1250-z

    Article  CAS  Google Scholar 

  20. Earley S, Waldron BJ, Brayden JE (2004) Critical role for transient receptor potential channel TRPM4 in myogenic constriction of cerebral arteries. Circ Res 95:922–929. https://doi.org/10.1161/01.RES.0000147311.54833.03

    Article  CAS  PubMed  Google Scholar 

  21. Ehara T, Noma A, Ono K (1988) Calcium-activated non-selective cation channel in ventricular cells isolated from adult guinea-pig hearts. J Physiol 403:117–133. https://doi.org/10.1113/jphysiol.1988.sp017242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Feng J, Armillei MK, Yu AS, Liang BT, Runnels LW, Yue L (2019) Ca(2+) signaling in cardiac fibroblasts and fibrosis-associated heart diseases. Journal of cardiovascular development and disease 6. https://doi.org/10.3390/jcdd6040034

  23. Fonfria E, Murdock PR, Cusdin FS, Benham CD, Kelsell RE, McNulty S (2006) Tissue distribution profiles of the human TRPM cation channel family. J Recept Signal Transduct Res 26:159–178. https://doi.org/10.1080/10799890600637506

    Article  CAS  PubMed  Google Scholar 

  24. Frede W, Medert R, Poth T, Gorenflo M, Vennekens R, Freichel M, Uhl S (2020) TRPM4 modulates right ventricular remodeling under pressure load accompanied with decreased expression level. J Card Fail 26:599–609. https://doi.org/10.1016/j.cardfail.2020.02.006

    Article  PubMed  Google Scholar 

  25. Grand T, Demion M, Norez C, Mettey Y, Launay P, Becq F, Bois P, Guinamard R (2008) 9-phenanthrol inhibits human TRPM4 but not TRPM5 cationic channels. Br J Pharmacol 153:1697–1705. https://doi.org/10.1038/bjp.2008.38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gualandi F, Zaraket F, Malagu M, Parmeggiani G, Trabanelli C, Fini S, Dang X, Wei X, Fang M, Bertini M, Ferrari R, Ferlini A (2017) Mutation load of multiple ion channel gene mutations in Brugada syndrome. Cardiology 137:256–260. https://doi.org/10.1159/000471792

    Article  PubMed  Google Scholar 

  27. Guinamard R, Bouvagnet P, Hof T, Liu H, Simard C, Salle L (2015) TRPM4 in cardiac electrical activity. Cardiovasc Res 108:21–30. https://doi.org/10.1093/cvr/cvv213

    Article  CAS  PubMed  Google Scholar 

  28. Guinamard R, Chatelier A, Demion M, Potreau D, Patri S, Rahmati M, Bois P (2004) Functional characterization of a Ca(2+)-activated non-selective cation channel in human atrial cardiomyocytes. J Physiol 558:75–83. https://doi.org/10.1113/jphysiol.2004.063974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Guinamard R, Demion M, Magaud C, Potreau D, Bois P (2006) Functional expression of the TRPM4 cationic current in ventricular cardiomyocytes from spontaneously hypertensive rats. Hypertension 48:587–594. https://doi.org/10.1161/01.HYP.0000237864.65019.a5

    Article  CAS  PubMed  Google Scholar 

  30. Guo J, She J, Zeng W, Chen Q, Bai XC, Jiang Y (2017) Structures of the calcium-activated, non-selective cation channel TRPM4. Nature 552:205–209. https://doi.org/10.1038/nature24997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Harada M, Luo X, Qi XY, Tadevosyan A, Maguy A, Ordog B, Ledoux J, Kato T, Naud P, Voigt N, Shi Y, Kamiya K, Murohara T, Kodama I, Tardif JC, Schotten U, Van Wagoner DR, Dobrev D, Nattel S (2012) Transient receptor potential canonical-3 channel-dependent fibroblast regulation in atrial fibrillation. Circulation 126:2051–2064. https://doi.org/10.1161/CIRCULATIONAHA.112.121830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hedon C, Lambert K, Chakouri N, Thireau J, Aimond F, Cassan C, Bideaux P, Richard S, Faucherre A, Le Guennec JY, Demion M (2020) New role of TRPM4 channel in the cardiac excitation-contraction coupling in response to physiological and pathological hypertrophy in mouse. Prog Biophys Mol Biol. https://doi.org/10.1016/j.pbiomolbio.2020.09.006

  33. Hof T, Chaigne S, Recalde A, Salle L, Brette F, Guinamard R (2019) Transient receptor potential channels in cardiac health and disease. Nat Rev Cardiol 16:344–360. https://doi.org/10.1038/s41569-018-0145-2

    Article  PubMed  Google Scholar 

  34. Hof T, Salle L, Coulbault L, Richer R, Alexandre J, Rouet R, Manrique A, Guinamard R (2016) TRPM4 non-selective cation channels influence action potentials in rabbit Purkinje fibres. J Physiol 594:295–306. https://doi.org/10.1113/JP271347

    Article  CAS  PubMed  Google Scholar 

  35. Hofmann T, Chubanov V, Gudermann T, Montell C (2003) TRPM5 is a voltage-modulated and Ca(2+)-activated monovalent selective cation channel. Current biology : CB 13:1153–1158

    Article  CAS  Google Scholar 

  36. Holzmann C, Kappel S, Kilch T, Jochum MM, Urban SK, Jung V, Stockle M, Rother K, Greiner M, Peinelt C (2015) Transient receptor potential melastatin 4 channel contributes to migration of androgen-insensitive prostate cancer cells. Oncotarget 6:41783-41793. doi:10.18632/oncotarget.6157

  37. Inoue R, Kurahara LH, Hiraishi K (2018) TRP channels in cardiac and intestinal fibrosis. Semin Cell Dev Biol. https://doi.org/10.1016/j.semcdb.2018.11.002

  38. Jacobs G, Oosterlinck W, Dresselaers T, Geenens R, Kerselaers S, Himmelreich U, Herijgers P, Vennekens R (2015) Enhanced beta-adrenergic cardiac reserve in Trpm4(-)/(-) mice with ischaemic heart failure. Cardiovasc Res 105:330–339. https://doi.org/10.1093/cvr/cvv009

    Article  CAS  PubMed  Google Scholar 

  39. Jiang J, Li M, Yue L (2005) Potentiation of TRPM7 inward currents by protons. J Gen Physiol 126:137–150

    Article  CAS  Google Scholar 

  40. Kecskes M, Jacobs G, Kerselaers S, Syam N, Menigoz A, Vangheluwe P, Freichel M, Flockerzi V, Voets T, Vennekens R (2015) The Ca(2+)-activated cation channel TRPM4 is a negative regulator of angiotensin II-induced cardiac hypertrophy. Basic Res Cardiol 110:43. https://doi.org/10.1007/s00395-015-0501-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kruse M, Pongs O (2014) TRPM4 channels in the cardiovascular system. Curr Opin Pharmacol 15:68–73. https://doi.org/10.1016/j.coph.2013.12.003

    Article  CAS  PubMed  Google Scholar 

  42. Kruse M, Schulze-Bahr E, Corfield V, Beckmann A, Stallmeyer B, Kurtbay G, Ohmert I, Brink P, Pongs O (2009) Impaired endocytosis of the ion channel TRPM4 is associated with human progressive familial heart block type I. J Clin Invest 119:2737–2744. https://doi.org/10.1172/JCI38292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Launay P, Cheng H, Srivatsan S, Penner R, Fleig A, Kinet J-P (2004) TRPM4 Regulates calcium oscillations after T cell activation. Science 306:1374–1377. https://doi.org/10.1126/science.1098845

    Article  CAS  PubMed  Google Scholar 

  44. Launay P, Fleig A, Perraud AL, Scharenberg AM, Penner R, Kinet JP (2002) TRPM4 is a Ca2+-activated nonselective cation channel mediating cell membrane depolarization. Cell 109:397–407

    Article  CAS  Google Scholar 

  45. Liu H, Chatel S, Simard C, Syam N, Salle L, Probst V, Morel J, Millat G, Lopez M, Abriel H, Schott JJ, Guinamard R, Bouvagnet P (2013) Molecular genetics and functional anomalies in a series of 248 Brugada cases with 11 mutations in the TRPM4 channel. PLoS One 8:e54131. https://doi.org/10.1371/journal.pone.0054131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Liu H, El Zein L, Kruse M, Guinamard R, Beckmann A, Bozio A, Kurtbay G, Megarbane A, Ohmert I, Blaysat G, Villain E, Pongs O, Bouvagnet P (2010) Gain-of-function mutations in TRPM4 cause autosomal dominant isolated cardiac conduction disease. Circ Cardiovasc Genet 3:374–385. https://doi.org/10.1161/CIRCGENETICS.109.930867

    Article  CAS  PubMed  Google Scholar 

  47. Mathar I, Kecskes M, Van der Mieren G, Jacobs G, Camacho Londono JE, Uhl S, Flockerzi V, Voets T, Freichel M, Nilius B, Herijgers P, Vennekens R (2014) Increased beta-adrenergic inotropy in ventricular myocardium from Trpm4-/- mice. Circ Res 114:283–294. https://doi.org/10.1161/CIRCRESAHA.114.302835

    Article  CAS  PubMed  Google Scholar 

  48. Mathar I, Vennekens R, Meissner M, Kees F, Van der Mieren G, Camacho Londono JE, Uhl S, Voets T, Hummel B, van den Bergh A, Herijgers P, Nilius B, Flockerzi V, Schweda F, Freichel M (2010) Increased catecholamine secretion contributes to hypertension in TRPM4-deficient mice. J Clin Invest 120:3267–3279. https://doi.org/10.1172/JCI41348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Montell C (2005) The TRP superfamily of cation channels. Sci STKE 2005:1–24

    Google Scholar 

  50. Nilius B (2007) TRP channels in disease. Biochim Biophys Acta 1772:805–812

    Article  CAS  Google Scholar 

  51. Nilius B, Prenen J, Droogmans G, Voets T, Vennekens R, Freichel M, Wissenbach U, Flockerzi V (2003) Voltage dependence of the Ca2+-activated cation channel TRPM4. J Biol Chem 278:30813–30820

    Article  CAS  Google Scholar 

  52. Nilius B, Prenen J, Janssens A, Voets T, Droogmans G (2004) Decavanadate modulates gating of TRPM4 cation channels. J Physiol 560:753–765. https://doi.org/10.1113/jphysiol.2004.070839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nilius B, Prenen J, Voets T, Droogmans G (2004) Intracellular nucleotides and polyamines inhibit the Ca2+-activated cation channel TRPM4b. Arch Eur J Physiol 448:70–75. https://doi.org/10.1007/s00424-003-1221-x

    Article  CAS  Google Scholar 

  54. Nilius B, Vennekens R (2006) From cardiac cation channels to the molecular dissection of the transient receptor potential channel TRPM4. Arch Eur J Physiol 453:313–321. https://doi.org/10.1007/s00424-006-0088-z

    Article  CAS  Google Scholar 

  55. Numaga-Tomita T, Oda S, Shimauchi T, Nishimura A, Mangmool S, Nishida M (2017) TRPC3 channels in cardiac fibrosis. Frontiers in cardiovascular medicine 4:56. https://doi.org/10.3389/fcvm.2017.00056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Perez CA, Huang L, Rong M, Kozak JA, Preuss AK, Zhang H, Max M, Margolskee RF (2002) A transient receptor potential channel expressed in taste receptor cells. Nat Neurosci 5:1169–1176

    Article  CAS  Google Scholar 

  57. Piao H, Takahashi K, Yamaguchi Y, Wang C, Liu K, Naruse K (2015) Transient receptor potential melastatin-4 is involved in hypoxia-reoxygenation injury in the cardiomyocytes. PLoS One 10:e0121703. https://doi.org/10.1371/journal.pone.0121703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Pironet A, Syam N, Vandewiele F, Van den Haute C, Kerselaers S, Pinto S, Vande Velde G, Gijsbers R, Vennekens R (2019) AAV9-mediated overexpression of TRPM4 increases the incidence of stress-induced ventricular arrhythmias in mice. Front Physiol 10:802. https://doi.org/10.3389/fphys.2019.00802

    Article  PubMed  PubMed Central  Google Scholar 

  59. Rahaman SO, Grove LM, Paruchuri S, Southern BD, Abraham S, Niese KA, Scheraga RG, Ghosh S, Thodeti CK, Zhang DX, Moran MM, Schilling WP, Tschumperlin DJ, Olman MA (2014) TRPV4 mediates myofibroblast differentiation and pulmonary fibrosis in mice. J Clin Invest 124:5225–5238. https://doi.org/10.1172/JCI75331

    Article  PubMed  PubMed Central  Google Scholar 

  60. Schattling B, Steinbach K, Thies E, Kruse M, Menigoz A, Ufer F, Flockerzi V, Bruck W, Pongs O, Vennekens R, Kneussel M, Freichel M, Merkler D, Friese MA (2012) TRPM4 cation channel mediates axonal and neuronal degeneration in experimental autoimmune encephalomyelitis and multiple sclerosis. Nat Med 18:1805–1811. https://doi.org/10.1038/nm.3015

    Article  CAS  PubMed  Google Scholar 

  61. Serafini N, Dahdah A, Barbet G, Demion M, Attout T, Gautier G, Arcos-Fajardo M, Souchet H, Jouvin MH, Vrtovsnik F, Kinet JP, Benhamou M, Monteiro RC, Launay P (2012) The TRPM4 channel controls monocyte and macrophage, but not neutrophil, function for survival in sepsis. J Immunol 189:3689–3699. https://doi.org/10.4049/jimmunol.1102969

    Article  CAS  PubMed  Google Scholar 

  62. Shigeto M, Ramracheya R, Tarasov AI, Cha CY, Chibalina MV, Hastoy B, Philippaert K, Reinbothe T, Rorsman N, Salehi A, Sones WR, Vergari E, Weston C, Gorelik J, Katsura M, Nikolaev VO, Vennekens R, Zaccolo M, Galione A, Johnson PR, Kaku K, Ladds G, Rorsman P (2015) GLP-1 stimulates insulin secretion by PKC-dependent TRPM4 and TRPM5 activation. J Clin Invest 125:4714–4728. https://doi.org/10.1172/JCI81975

    Article  PubMed  PubMed Central  Google Scholar 

  63. Simard C, Hof T, Keddache Z, Launay P, Guinamard R (2013) The TRPM4 non-selective cation channel contributes to the mammalian atrial action potential. J Mol Cell Cardiol 59:11–19. https://doi.org/10.1016/j.yjmcc.2013.01.019

    Article  CAS  PubMed  Google Scholar 

  64. Simard C, Magaud C, Adjlane R, Dupas Q, Salle L, Manrique A, Bois P, Faivre JF, Guinamard R (2020) TRPM4 non-selective cation channel in human atrial fibroblast growth. Arch Eur J Physiol. https://doi.org/10.1007/s00424-020-02476-0

  65. Stallmeyer B, Zumhagen S, Denjoy I, Duthoit G, Hebert JL, Ferrer X, Maugenre S, Schmitz W, Kirchhefer U, Schulze-Bahr E, Guicheney P, Schulze-Bahr E (2012) Mutational spectrum in the Ca(2+)--activated cation channel gene TRPM4 in patients with cardiac conductance disturbances. Hum Mutat 33:109–117. https://doi.org/10.1002/humu.21599

    Article  CAS  PubMed  Google Scholar 

  66. Syam N, Chatel S, Ozhathil LC, Sottas V, Rougier JS, Baruteau A, Baron E, Amarouch MY, Daumy X, Probst V, Schott JJ, Abriel H (2016) Variants of transient receptor potential melastatin member 4 in childhood atrioventricular block. J Am Heart Assoc 5. https://doi.org/10.1161/JAHA.114.001625

  67. Syam N, Rougier JS, Abriel H (2014) Glycosylation of TRPM4 and TRPM5 channels: molecular determinants and functional aspects. Front Cell Neurosci 8:52. https://doi.org/10.3389/fncel.2014.00052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Vennekens R, Olausson J, Meissner M, Bloch W, Mathar I, Philipp SE, Schmitz F, Weissgerber P, Nilius B, Flockerzi V, Freichel M (2007) Increased IgE-dependent mast cell activation and anaphylactic responses in mice lacking the calcium-activated nonselective cation channel TRPM4. Nat Immunol 8:312–320. https://doi.org/10.1038/ni1441

    Article  CAS  PubMed  Google Scholar 

  69. Wang C, Naruse K, Takahashi K (2018) Role of the TRPM4 channel in cardiovascular physiology and pathophysiology. Cells 7. https://doi.org/10.3390/cells7060062

  70. Winkler PA, Huang Y, Sun W, Du J, Lu W (2017) Electron cryo-microscopy structure of a human TRPM4 channel. Nature 552:200–204. https://doi.org/10.1038/nature24674

    Article  CAS  PubMed  Google Scholar 

  71. Yan J, Bengtson CP, Buchthal B, Hagenston AM, Bading H (2020) Coupling of NMDA receptors and TRPM4 guides discovery of unconventional neuroprotectants. Science 370. https://doi.org/10.1126/science.aay3302

  72. Yue L, Feng J, Wang Z, Nattel S (2000) Effects of ambasilide, quinidine, flecainide and verapamil on ultra-rapid delayed rectifier potassium currents in canine atrial myocytes. Cardiovasc Res 46:151–161

    Article  CAS  Google Scholar 

  73. Yue Z, Xie J, Yu AS, Stock J, Du J, Yue L (2015) Role of TRP channels in the cardiovascular system. Am J Phys Heart Circ Phys 308:H157–H182. https://doi.org/10.1152/ajpheart.00457.2014

    Article  CAS  Google Scholar 

  74. Yue Z, Zhang Y, Xie J, Jiang J, Yue L (2013) Transient receptor potential (TRP) channels and cardiac fibrosis. Curr Top Med Chem 13:270–282

    Article  CAS  Google Scholar 

  75. Zhang Z, Okawa H, Wang Y, Liman ER (2005) Phosphatidylinositol 4,5-bisphosphate rescues TRPM4 channels from desensitization. J Biol Chem 280:39185–39192. https://doi.org/10.1074/jbc.M506965200

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was partially supported by the National Institute of Health (P01-HL06426, R01-AA024769, and R01-HL146744 to XA; and R01-HL143750 to LY) and American Heart Association (19TPA34890022 to LY).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lixia Yue.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the special issue on Calcium Signal Dynamics in Cardiac Myocytes and Fibroblasts: Mechanisms in Pflügers Archiv—European Journal of Physiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, J., Zong, P., Yan, J. et al. Upregulation of transient receptor potential melastatin 4 (TRPM4) in ventricular fibroblasts from heart failure patients. Pflugers Arch - Eur J Physiol 473, 521–531 (2021). https://doi.org/10.1007/s00424-021-02525-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-021-02525-2

Keywords

Navigation