Skip to main content

Advertisement

Log in

Regulation of cardiovascular calcium channel activity by post-translational modifications or interacting proteins

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Voltage-gated calcium channels are the major pathway for Ca2+ influx to initiate the contraction of smooth and cardiac muscles. Alterations of calcium channel function have been implicated in multiple cardiovascular diseases, such as hypertension, atrial fibrillation, and long QT syndrome. Post-translational modifications do expand cardiovascular calcium channel structure and function to affect processes such as channel trafficking or polyubiquitination by two E3 ubiquitin ligases, Ret finger protein 2 (Rfp2) or murine double minute 2 protein (Mdm2). Additionally, biophysical property such as Ca2+-dependent inactivation (CDI) could be altered through binding of calmodulin, or channel activity could be modulated via S-nitrosylation by nitric oxide and phosphorylation by protein kinases or by interacting protein partners, such as galectin-1 and Rem. Understanding how cardiovascular calcium channel function is post-translationally remodeled under distinctive disease conditions will provide better information about calcium channel–related disease mechanisms and improve the development of more selective therapeutic agents for cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ahern BM, Levitan BM, Veeranki S, Shah M, Ali N, Sebastian A, Su W, Gong MC, Li J, Stelzer JE, Andres DA, Satin J (2019) Myocardial-restricted ablation of the GTPase RAD results in a pro-adaptive heart response in mice. J Biol Chem 294:10913–10927. https://doi.org/10.1074/jbc.RA119.008782

    Article  CAS  Google Scholar 

  2. Al-Obaidi N, Mohan S, Liang S, Zhao Z, Nayak BK, Li B, Sriramarao P, Habib SL (2019) Galectin-1 is a new fibrosis protein in type 1 and type 2 diabetes. FASEB J 33:373–387. https://doi.org/10.1096/fj.201800555RR

    Article  CAS  Google Scholar 

  3. Altier C, Garcia-Caballero A, Simms B, You H, Chen L, Walcher J, Tedford HW, Hermosilla T, Zamponi GW (2011) The Cavbeta subunit prevents RFP2-mediated ubiquitination and proteasomal degradation of L-type channels. Nat Neurosci 14:173–180. https://doi.org/10.1038/nn.2712

    Article  CAS  Google Scholar 

  4. Arikkath J, Chen CC, Ahern C, Allamand V, Flanagan JD, Coronado R, Gregg RG, Campbell KP (2003) Gamma 1 subunit interactions within the skeletal muscle L-type voltage-gated calcium channels. J Biol Chem 278:1212–1219. https://doi.org/10.1074/jbc.M208689200

    Article  CAS  Google Scholar 

  5. Astori S, Wimmer RD, Prosser HM, Corti C, Corsi M, Liaudet N, Volterra A, Franken P, Adelman JP, Luthi A (2011) The Ca(V)3.3 calcium channel is the major sleep spindle pacemaker in thalamus. Proc Natl Acad Sci U S A 108:13823–13828. https://doi.org/10.1073/pnas.1105115108

    Article  PubMed Central  Google Scholar 

  6. Backs J, Backs T, Neef S, Kreusser MM, Lehmann LH, Patrick DM, Grueter CE, Qi X, Richardson JA, Hill JA, Katus HA, Bassel-Duby R, Maier LS, Olson EN (2009) The delta isoform of CaM kinase II is required for pathological cardiac hypertrophy and remodeling after pressure overload. Proc Natl Acad Sci U S A 106:2342–2347. https://doi.org/10.1073/pnas.0813013106

    Article  PubMed Central  Google Scholar 

  7. Balasubramanian S, Mani S, Shiraishi H, Johnston RK, Yamane K, Willey CD, Cooper G, Tuxworth WJ, Kuppuswamy D (2006) Enhanced ubiquitination of cytoskeletal proteins in pressure overloaded myocardium is accompanied by changes in specific E3 ligases. J Mol Cell Cardiol 41:669–679. https://doi.org/10.1016/j.yjmcc.2006.04.022

    Article  CAS  Google Scholar 

  8. Bartels P, Yu D, Huang H, Hu Z, Herzig S, Soong TW (2018) Alternative splicing at N terminus and domain I modulates CaV1.2 inactivation and surface expression. Biophys J 115:163. https://doi.org/10.1016/j.bpj.2018.06.001

    Article  CAS  PubMed Central  Google Scholar 

  9. Beguin P, Nagashima K, Gonoi T, Shibasaki T, Takahashi K, Kashima Y, Ozaki N, Geering K, Iwanaga T, Seino S (2001) Regulation of Ca2+ channel expression at the cell surface by the small G-protein kir/Gem. Nature 411:701–706. https://doi.org/10.1038/35079621

    Article  CAS  Google Scholar 

  10. Ben-Johny M, Yue DT (2014) Calmodulin regulation (calmodulation) of voltage-gated calcium channels. J Gen Physiol 143:679–692. https://doi.org/10.1085/jgp.201311153

    Article  CAS  PubMed Central  Google Scholar 

  11. Bers DM, Morotti S (2014) Ca(2+) current facilitation is CaMKII-dependent and has arrhythmogenic consequences. Front Pharmacol 5:144. https://doi.org/10.3389/fphar.2014.00144

    Article  CAS  PubMed Central  Google Scholar 

  12. Birks EJ, Latif N, Enesa K, Folkvang T, le Luong A, Sarathchandra P, Khan M, Ovaa H, Terracciano CM, Barton PJ, Yacoub MH, Evans PC (2008) Elevated p53 expression is associated with dysregulation of the ubiquitin-proteasome system in dilated cardiomyopathy. Cardiovasc Res 79:472–480. https://doi.org/10.1093/cvr/cvn083

    Article  CAS  Google Scholar 

  13. Blaich A, Welling A, Fischer S, Wegener JW, Kostner K, Hofmann F, Moosmang S (2010) Facilitation of murine cardiac L-type Ca(v)1.2 channel is modulated by calmodulin kinase II-dependent phosphorylation of S1512 and S1570. Proc Natl Acad Sci U S A 107:10285–10289. https://doi.org/10.1073/pnas.0914287107

    Article  PubMed Central  Google Scholar 

  14. Bodi I, Mikala G, Koch SE, Akhter SA, Schwartz A (2005) The L-type calcium channel in the heart: the beat goes on. J Clin Invest 115:3306–3317. https://doi.org/10.1172/JCI27167

    Article  CAS  PubMed Central  Google Scholar 

  15. Brunner F, Maier R, Andrew P, Wolkart G, Zechner R, Mayer B (2003) Attenuation of myocardial ischemia/reperfusion injury in mice with myocyte-specific overexpression of endothelial nitric oxide synthase. Cardiovasc Res 57:55–62. https://doi.org/10.1016/s0008-6363(02)00649-1

    Article  CAS  Google Scholar 

  16. Buraei Z, Yang J (2013) Structure and function of the beta subunit of voltage-gated Ca(2)(+) channels. Biochim Biophys Acta 1828:1530–1540. https://doi.org/10.1016/j.bbamem.2012.08.028

    Article  CAS  Google Scholar 

  17. Burger DE, Lu X, Lei M, Xiang FL, Hammoud L, Jiang M, Wang H, Jones DL, Sims SM, Feng Q (2009) Neuronal nitric oxide synthase protects against myocardial infarction-induced ventricular arrhythmia and mortality in mice. Circulation 120:1345–1354. https://doi.org/10.1161/CIRCULATIONAHA.108.846402

    Article  CAS  Google Scholar 

  18. Burkard N, Rokita AG, Kaufmann SG, Hallhuber M, Wu R, Hu K, Hofmann U, Bonz A, Frantz S, Cartwright EJ, Neyses L, Maier LS, Maier SK, Renne T, Schuh K, Ritter O (2007) Conditional neuronal nitric oxide synthase overexpression impairs myocardial contractility. Circ Res 100:e32–e44. https://doi.org/10.1161/01.RES.0000259042.04576.6a

    Article  CAS  Google Scholar 

  19. Campiglio M, Flucher BE (2015) The role of auxiliary subunits for the functional diversity of voltage-gated calcium channels. J Cell Physiol 230:2019–2031. https://doi.org/10.1002/jcp.24998

    Article  CAS  PubMed Central  Google Scholar 

  20. Catalucci D, Zhang DH, DeSantiago J, Aimond F, Barbara G, Chemin J, Bonci D, Picht E, Rusconi F, Dalton ND, Peterson KL, Richard S, Bers DM, Brown JH, Condorelli G (2009) Akt regulates L-type Ca2+ channel activity by modulating Cavalpha1 protein stability. J Cell Biol 184:923–933. https://doi.org/10.1083/jcb.200805063

    Article  CAS  PubMed Central  Google Scholar 

  21. Catterall WA, Perez-Reyes E, Snutch TP, Striessnig J (2005) International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol Rev 57:411–425. https://doi.org/10.1124/pr.57.4.5

    Article  CAS  PubMed Central  Google Scholar 

  22. Catterall WA, Lenaeus MJ, El-Din TMG (2019) Structure and pharmacology of voltage-gated sodium and calcium channels. Annu Rev Pharmacol Toxicol. https://doi.org/10.1146/annurev-pharmtox-010818-021757

  23. Chai S, Wan X, Ramirez-Navarro A, Tesar PJ, Kaufman ES, Ficker E, George AL Jr, Deschenes I (2018) Physiological genomics identifies genetic modifiers of long QT syndrome type 2 severity. J Clin Invest 128:1043–1056. https://doi.org/10.1172/JCI94996

    Article  PubMed Central  Google Scholar 

  24. Chazin WJ, Johnson CN (2020) Calmodulin mutations associated with heart arrhythmia: a status report. Int J Mol Sci:21. https://doi.org/10.3390/ijms21041418

  25. Chen X, Nakayama H, Zhang X, Ai X, Harris DM, Tang M, Zhang H, Szeto C, Stockbower K, Berretta RM, Eckhart AD, Koch WJ, Molkentin JD, Houser SR (2011) Calcium influx through Cav1.2 is a proximal signal for pathological cardiomyocyte hypertrophy. J Mol Cell Cardiol 50:460–470. https://doi.org/10.1016/j.yjmcc.2010.11.012

    Article  CAS  Google Scholar 

  26. Chiang CS, Huang CH, Chieng H, Chang YT, Chang D, Chen JJ, Chen YC, Chen YH, Shin HS, Campbell KP, Chen CC (2009) The Ca(v)3.2 T-type Ca(2+) channel is required for pressure overload-induced cardiac hypertrophy in mice. Circ Res 104:522–530. https://doi.org/10.1161/CIRCRESAHA.108.184051

    Article  CAS  Google Scholar 

  27. Cribbs LL (2006) T-type Ca2+ channels in vascular smooth muscle: multiple functions. Cell Calcium 40:221–230. https://doi.org/10.1016/j.ceca.2006.04.026

    Article  CAS  Google Scholar 

  28. Crotti L, Johnson CN, Graf E, De Ferrari GM, Cuneo BF, Ovadia M, Papagiannis J, Feldkamp MD, Rathi SG, Kunic JD, Pedrazzini M, Wieland T, Lichtner P, Beckmann BM, Clark T, Shaffer C, Benson DW, Kaab S, Meitinger T, Strom TM, Chazin WJ, Schwartz PJ, George AL Jr (2013) Calmodulin mutations associated with recurrent cardiac arrest in infants. Circulation 127:1009–1017. https://doi.org/10.1161/CIRCULATIONAHA.112.001216

    Article  CAS  Google Scholar 

  29. Crotti L, Spazzolini C, Tester DJ, Ghidoni A, Baruteau AE, Beckmann BM, Behr ER, Bennett JS, Bezzina CR, Bhuiyan ZA, Celiker A, Cerrone M, Dagradi F, De Ferrari GM, Etheridge SP, Fatah M, Garcia-Pavia P, Al-Ghamdi S, Hamilton RM, Al-Hassnan ZN, Horie M, Jimenez-Jaimez J, Kanter RJ, Kaski JP, Kotta MC, Lahrouchi N, Makita N, Norrish G, Odland HH, Ohno S, Papagiannis J, Parati G, Sekarski N, Tveten K, Vatta M, Webster G, Wilde AAM, Wojciak J, George AL, Ackerman MJ, Schwartz PJ (2019) Calmodulin mutations and life-threatening cardiac arrhythmias: insights from the International Calmodulinopathy Registry. Eur Heart J 40:2964–2975. https://doi.org/10.1093/eurheartj/ehz311

    Article  Google Scholar 

  30. David LS, Garcia E, Cain SM, Thau E, Tyson JR, Snutch TP (2010) Splice-variant changes of the Ca(V)3.2 T-type calcium channel mediate voltage-dependent facilitation and associate with cardiac hypertrophy and development. Channels (Austin) 4:375–389. https://doi.org/10.4161/chan.4.5.12874

    Article  CAS  Google Scholar 

  31. Dick IE, Tadross MR, Liang H, Tay LH, Yang W, Yue DT (2008) A modular switch for spatial Ca2+ selectivity in the calmodulin regulation of CaV channels. Nature 451:830–834. https://doi.org/10.1038/nature06529

    Article  CAS  PubMed Central  Google Scholar 

  32. Dolphin AC (2006) A short history of voltage-gated calcium channels. Br J Pharmacol 147(Suppl 1):S56–S62. https://doi.org/10.1038/sj.bjp.0706442

    Article  CAS  PubMed Central  Google Scholar 

  33. Ebner J, Cagalinec M, Kubista H, Todt H, Szabo PL, Kiss A, Podesser BK, Cserne Szappanos H, Hool LC, Hilber K, Koenig X (2020) Neuronal nitric oxide synthase regulation of calcium cycling in ventricular cardiomyocytes is independent of Cav1.2 channel modulation under basal conditions. Pflugers Arch 472:61–74. https://doi.org/10.1007/s00424-019-02335-7

    Article  CAS  Google Scholar 

  34. Fan J, Fan W, Lei J, Zhou Y, Xu H, Kapoor I, Zhu G, Wang J (2019) Galectin-1 attenuates cardiomyocyte hypertrophy through splice-variant specific modulation of CaV1.2 calcium channel. Biochim Biophys Acta Mol basis Dis 1865:218–229. https://doi.org/10.1016/j.bbadis.2018.08.016

    Article  CAS  Google Scholar 

  35. Fang K, Colecraft HM (2011) Mechanism of auxiliary beta-subunit-mediated membrane targeting of L-type (Ca(V)1.2) channels. J Physiol 589:4437–4455. https://doi.org/10.1113/jphysiol.2011.214247

    Article  CAS  PubMed Central  Google Scholar 

  36. Finlin BS, Shao H, Kadono-Okuda K, Guo N, Andres DA (2000) Rem2, a new member of the Rem/Rad/Gem/Kir family of Ras-related GTPases. Biochem J 347(Pt 1):223–231

    Article  CAS  Google Scholar 

  37. Finlin BS, Crump SM, Satin J, Andres DA (2003) Regulation of voltage-gated calcium channel activity by the Rem and Rad GTPases. Proc Natl Acad Sci U S A 100:14469–14474. https://doi.org/10.1073/pnas.2437756100

    Article  CAS  PubMed Central  Google Scholar 

  38. Franssen C, Chen S, Unger A, Korkmaz HI, De Keulenaer GW, Tschope C, Leite-Moreira AF, Musters R, Niessen HW, Linke WA, Paulus WJ, Hamdani N (2016) Myocardial microvascular inflammatory endothelial activation in heart failure with preserved ejection fraction. JACC Heart Fail 4:312–324. https://doi.org/10.1016/j.jchf.2015.10.007

    Article  Google Scholar 

  39. Freitag N, Tirado-Gonzalez I, Barrientos G, Herse F, Thijssen VL, Weedon-Fekjaer SM, Schulz H, Wallukat G, Klapp BF, Nevers T, Sharma S, Staff AC, Dechend R, Blois SM (2013) Interfering with Gal-1-mediated angiogenesis contributes to the pathogenesis of preeclampsia. Proc Natl Acad Sci U S A 110:11451–11456. https://doi.org/10.1073/pnas.1303707110

    Article  PubMed Central  Google Scholar 

  40. Fu Y, Westenbroek RE, Scheuer T, Catterall WA (2014) Basal and beta-adrenergic regulation of the cardiac calcium channel CaV1.2 requires phosphorylation of serine 1700. Proc Natl Acad Sci U S A 111:16598–16603. https://doi.org/10.1073/pnas.1419129111

    Article  CAS  PubMed Central  Google Scholar 

  41. Gadotti VM, Caballero AG, Berger ND, Gladding CM, Chen L, Pfeifer TA, Zamponi GW (2015) Small organic molecule disruptors of Cav3.2-USP5 interactions reverse inflammatory and neuropathic pain. Mol Pain 11:12. https://doi.org/10.1186/s12990-015-0011-8

    Article  CAS  PubMed Central  Google Scholar 

  42. Garcia-Caballero A, Gadotti VM, Stemkowski P, Weiss N, Souza IA, Hodgkinson V, Bladen C, Chen L, Hamid J, Pizzoccaro A, Deage M, Francois A, Bourinet E, Zamponi GW (2014) The deubiquitinating enzyme USP5 modulates neuropathic and inflammatory pain by enhancing Cav3.2 channel activity. Neuron 83:1144–1158. https://doi.org/10.1016/j.neuron.2014.07.036

    Article  CAS  Google Scholar 

  43. Glukhov AV, Balycheva M, Sanchez-Alonso JL, Ilkan Z, Alvarez-Laviada A, Bhogal N, Diakonov I, Schobesberger S, Sikkel MB, Bhargava A, Faggian G, Punjabi PP, Houser SR, Gorelik J (2015) Direct evidence for microdomain-specific localization and remodeling of functional L-type calcium channels in rat and human atrial myocytes. Circulation 132:2372–2384. https://doi.org/10.1161/CIRCULATIONAHA.115.018131

    Article  CAS  PubMed Central  Google Scholar 

  44. Gonzalez DR, Treuer A, Sun QA, Stamler JS, Hare JM (2009) S-Nitrosylation of cardiac ion channels. J Cardiovasc Pharmacol 54:188–195. https://doi.org/10.1097/FJC.0b013e3181b72c9f

    Article  CAS  PubMed Central  Google Scholar 

  45. Goonasekera SA, Hammer K, Auger-Messier M, Bodi I, Chen X, Zhang H, Reiken S, Elrod JW, Correll RN, York AJ, Sargent MA, Hofmann F, Moosmang S, Marks AR, Houser SR, Bers DM, Molkentin JD (2012) Decreased cardiac L-type Ca(2)(+) channel activity induces hypertrophy and heart failure in mice. J Clin Invest 122:280–290. https://doi.org/10.1172/jci58227

    Article  CAS  Google Scholar 

  46. Grant AO (2009) Cardiac ion channels. Circ Arrhythm Electrophysiol 2:185–194. https://doi.org/10.1161/CIRCEP.108.789081

    Article  Google Scholar 

  47. Harraz OF, Welsh DG (2013) Protein kinase A regulation of T-type Ca2+ channels in rat cerebral arterial smooth muscle. J Cell Sci 126:2944–2954. https://doi.org/10.1242/jcs.128363

    Article  CAS  Google Scholar 

  48. Hauck L, Stanley-Hasnain S, Fung A, Grothe D, Rao V, Mak TW, Billia F (2017) Cardiac-specific ablation of the E3 ubiquitin ligase Mdm2 leads to oxidative stress, broad mitochondrial deficiency and early death. PLoS One 12:e0189861. https://doi.org/10.1371/journal.pone.0189861

    Article  CAS  PubMed Central  Google Scholar 

  49. Hofmann F, Flockerzi V, Kahl S, Wegener JW (2014) L-type CaV1.2 calcium channels: from in vitro findings to in vivo function. Physiol Rev 94:303–326. https://doi.org/10.1152/physrev.00016.2013

    Article  CAS  Google Scholar 

  50. Hong TT, Smyth JW, Gao D, Chu KY, Vogan JM, Fong TS, Jensen BC, Colecraft HM, Shaw RM (2010) BIN1 localizes the L-type calcium channel to cardiac T-tubules. PLoS Biol 8:e1000312. https://doi.org/10.1371/journal.pbio.1000312

    Article  CAS  PubMed Central  Google Scholar 

  51. Hong TT, Smyth JW, Chu KY, Vogan JM, Fong TS, Jensen BC, Fang K, Halushka MK, Russell SD, Colecraft H, Hoopes CW, Ocorr K, Chi NC, Shaw RM (2012) BIN1 is reduced and Cav1.2 trafficking is impaired in human failing cardiomyocytes. Heart Rhythm 9:812–820. https://doi.org/10.1016/j.hrthm.2011.11.055

    Article  Google Scholar 

  52. Hu C, Depuy SD, Yao J, McIntire WE, Barrett PQ (2009) Protein kinase A activity controls the regulation of T-type CaV3.2 channels by Gbetagamma dimers. J Biol Chem 284:7465–7473. https://doi.org/10.1074/jbc.M808049200

    Article  CAS  PubMed Central  Google Scholar 

  53. Hu Z, Liang MC, Soong TW (2017) Alternative splicing of L-type CaV1.2 calcium channels: implications in cardiovascular diseases. Genes (Basel) 8. https://doi.org/10.3390/genes8120344

  54. Hu Z, Li G, Wang JW, Chong SY, Yu D, Wang X, Soon JL, Liang MC, Wong YP, Huang N, Colecraft HM, Liao P, Soong TW (2018) Regulation of blood pressure by targeting CaV1.2-galectin-1 protein interaction. Circulation 138:1431–1445. https://doi.org/10.1161/CIRCULATIONAHA.117.031231

    Article  CAS  PubMed Central  Google Scholar 

  55. Huang B, Qin D, Deng L, Boutjdir M, E-S N (2000) Reexpression of T-type Ca2+ channel gene and current in post-infarction remodeled rat left ventricle. Cardiovasc Res 46:442–449. https://doi.org/10.1016/s0008-6363(00)00017-1

    Article  CAS  Google Scholar 

  56. Hudmon A, Schulman H, Kim J, Maltez JM, Tsien RW, Pitt GS (2005) CaMKII tethers to L-type Ca2+ channels, establishing a local and dedicated integrator of Ca2+ signals for facilitation. J Cell Biol 171:537–547. https://doi.org/10.1083/jcb.200505155

    Article  CAS  PubMed Central  Google Scholar 

  57. Izumi T, Kihara Y, Sarai N, Yoneda T, Iwanaga Y, Inagaki K, Onozawa Y, Takenaka H, Kita T, Noma A (2003) Reinduction of T-type calcium channels by endothelin-1 in failing hearts in vivo and in adult rat ventricular myocytes in vitro. Circulation 108:2530–2535. https://doi.org/10.1161/01.CIR.0000096484.03318.AB

    Article  CAS  Google Scholar 

  58. Jensen HH, Brohus M, Nyegaard M, Overgaard MT (2018) Human calmodulin mutations. Front Mol Neurosci 11:396. https://doi.org/10.3389/fnmol.2018.00396

    Article  CAS  PubMed Central  Google Scholar 

  59. Jones SP, Greer JJ, van Haperen R, Duncker DJ, de Crom R, Lefer DJ (2003) Endothelial nitric oxide synthase overexpression attenuates congestive heart failure in mice. Proc Natl Acad Sci U S A 100:4891–4896. https://doi.org/10.1073/pnas.0837428100

    Article  CAS  PubMed Central  Google Scholar 

  60. Katchman A, Yang L, Zakharov SI, Kushner J, Abrams J, Chen BX, Liu G, Pitt GS, Colecraft HM, Marx SO (2017) Proteolytic cleavage and PKA phosphorylation of alpha1C subunit are not required for adrenergic regulation of CaV1.2 in the heart. Proc Natl Acad Sci U S A 114:9194–9199. https://doi.org/10.1073/pnas.1706054114

    Article  CAS  PubMed Central  Google Scholar 

  61. Kharade SV, Sonkusare SK, Srivastava AK, Thakali KM, Fletcher TW, Rhee SW, Rusch NJ (2013) The beta3 subunit contributes to vascular calcium channel upregulation and hypertension in angiotensin II-infused C57BL/6 mice. Hypertension 61:137–142. https://doi.org/10.1161/HYPERTENSIONAHA.112.197863

    Article  CAS  Google Scholar 

  62. Kim JA, Park JY, Kang HW, Huh SU, Jeong SW, Lee JH (2006) Augmentation of Cav3.2 T-type calcium channel activity by cAMP-dependent protein kinase A. J Pharmacol Exp Ther 318:230–237. https://doi.org/10.1124/jpet.106.101402

    Article  CAS  Google Scholar 

  63. Koval OM, Guan X, Wu Y, Joiner ML, Gao Z, Chen B, Grumbach IM, Luczak ED, Colbran RJ, Song LS, Hund TJ, Mohler PJ, Anderson ME (2010) CaV1.2 beta-subunit coordinates CaMKII-triggered cardiomyocyte death and afterdepolarizations. Proc Natl Acad Sci U S A 107:4996–5000. https://doi.org/10.1073/pnas.0913760107

    Article  PubMed Central  Google Scholar 

  64. Lai YJ, Zhu BL, Sun F, Luo D, Ma YL, Luo B, Tang J, Xiong MJ, Liu L, Long Y, Hu XT, He L, Deng XJ, Zhang JH, Yang J, Yan Z, Chen GJ (2019) Estrogen receptor alpha promotes Cav1.2 ubiquitination and degradation in neuronal cells and in APP/PS1 mice. Aging Cell 18:e12961. https://doi.org/10.1111/acel.12961

    Article  CAS  PubMed Central  Google Scholar 

  65. Lemke T, Welling A, Christel CJ, Blaich A, Bernhard D, Lenhardt P, Hofmann F, Moosmang S (2008) Unchanged beta-adrenergic stimulation of cardiac L-type calcium channels in Ca v 1.2 phosphorylation site S1928A mutant mice. J Biol Chem 283:34738–34744. https://doi.org/10.1074/jbc.M804981200

    Article  CAS  PubMed Central  Google Scholar 

  66. Lerner M, Corcoran M, Cepeda D, Nielsen ML, Zubarev R, Ponten F, Uhlen M, Hober S, Grander D, Sangfelt O (2007) The RBCC gene RFP2 (Leu5) encodes a novel transmembrane E3 ubiquitin ligase involved in ERAD. Mol Biol Cell 18:1670–1682. https://doi.org/10.1091/mbc.e06-03-0248

    Article  CAS  PubMed Central  Google Scholar 

  67. Li Y, Wang F, Zhang X, Qi Z, Tang M, Szeto C, Li Y, Zhang H, Chen X (2012) beta-Adrenergic stimulation increases Cav3.1 activity in cardiac myocytes through protein kinase A. PLoS One 7:e39965. https://doi.org/10.1371/journal.pone.0039965

    Article  CAS  PubMed Central  Google Scholar 

  68. Li G, Wang J, Liao P, Bartels P, Zhang H, Yu D, Liang MC, Poh KK, Yu CY, Jiang F, Yong TF, Wong YP, Hu Z, Huang H, Zhang G, Galupo MJ, Bian JS, Ponniah S, Trasti SL, See K, Foo R, Hoppe UC, Herzig S, Soong TW (2017) Exclusion of alternative exon 33 of CaV1.2 calcium channels in heart is proarrhythmogenic. Proc Natl Acad Sci U S A 114:E4288–E4295. https://doi.org/10.1073/pnas.1617205114

    Article  CAS  PubMed Central  Google Scholar 

  69. Li Y, Zhang X, Zhang C, Zhang X, Li Y, Qi Z, Szeto C, Tang M, Peng Y, Molkentin JD, Houser SR, Xie M, Chen X (2018) Increasing T-type calcium channel activity by beta-adrenergic stimulation contributes to beta-adrenergic regulation of heart rates. J Physiol 596:1137–1151. https://doi.org/10.1113/JP274756

    Article  CAS  PubMed Central  Google Scholar 

  70. Liao P, Yong TF, Liang MC, Yue DT, Soong TW (2005) Splicing for alternative structures of Cav1.2 Ca2+ channels in cardiac and smooth muscles. Cardiovasc Res 68:197–203. https://doi.org/10.1016/j.cardiores.2005.06.024

    Article  CAS  Google Scholar 

  71. Liao P, Yu D, Hu Z, Liang MC, Wang JJ, Yu CY, Ng G, Yong TF, Soon JL, Chua YL, Soong TW (2015) Alternative splicing generates a novel truncated Cav1.2 channel in neonatal rat heart. J Biol Chem 290:9262–9272. https://doi.org/10.1074/jbc.M114.594911

    Article  CAS  PubMed Central  Google Scholar 

  72. Lim GB (2019) New mouse model reveals nitrosative stress as a novel driver of HFpEF. Nat Rev Cardiol 16:383. https://doi.org/10.1038/s41569-019-0203-4

    Article  Google Scholar 

  73. Limpitikul WB, Dick IE, Joshi-Mukherjee R, Overgaard MT, George AL Jr, Yue DT (2014) Calmodulin mutations associated with long QT syndrome prevent inactivation of cardiac L-type Ca(2+) currents and promote proarrhythmic behavior in ventricular myocytes. J Mol Cell Cardiol 74:115–124. https://doi.org/10.1016/j.yjmcc.2014.04.022

    Article  CAS  PubMed Central  Google Scholar 

  74. Limpitikul WB, Dick IE, Tester DJ, Boczek NJ, Limphong P, Yang W, Choi MH, Babich J, DiSilvestre D, Kanter RJ, Tomaselli GF, Ackerman MJ, Yue DT (2017) A precision medicine approach to the rescue of function on malignant calmodulinopathic long-QT syndrome. Circ Res 120:39–48. https://doi.org/10.1161/CIRCRESAHA.116.309283

    Article  CAS  Google Scholar 

  75. Ling H, Zhang T, Pereira L, Means CK, Cheng H, Gu Y, Dalton ND, Peterson KL, Chen J, Bers D, Brown JH (2009) Requirement for Ca2+/calmodulin-dependent kinase II in the transition from pressure overload-induced cardiac hypertrophy to heart failure in mice. J Clin Invest 119:1230–1240. https://doi.org/10.1172/JCI38022

    Article  PubMed Central  Google Scholar 

  76. Link S, Meissner M, Held B, Beck A, Weissgerber P, Freichel M, Flockerzi V (2009) Diversity and developmental expression of L-type calcium channel beta2 proteins and their influence on calcium current in murine heart. J Biol Chem 284:30129–30137. https://doi.org/10.1074/jbc.M109.045583

    Article  CAS  PubMed Central  Google Scholar 

  77. Liu Z, Vogel HJ (2012) Structural basis for the regulation of L-type voltage-gated calcium channels: interactions between the N-terminal cytoplasmic domain and Ca(2+)-calmodulin. Front Mol Neurosci 5:38. https://doi.org/10.3389/fnmol.2012.00038

    Article  CAS  PubMed Central  Google Scholar 

  78. Liu C, Zhang CW, Lo SQ, Ang ST, Chew KCM, Yu D, Chai BH, Tan B, Tsang F, Tai YK, Tan BWQ, Liang MC, Tan HT, Tang JY, Lai MKP, Chua JJE, Chung MCM, Khanna S, Lim KL, Soong TW (2018) S-Nitrosylation of divalent metal transporter 1 enhances iron uptake to mediate loss of dopaminergic neurons and motoric deficit. J Neurosci 38:8364–8377. https://doi.org/10.1523/JNEUROSCI.3262-17.2018

    Article  CAS  PubMed Central  Google Scholar 

  79. Liu G, Papa A, Katchman AN, Zakharov SI, Roybal D, Hennessey JA, Kushner J, Yang L, Chen BX, Kushnir A, Dangas K, Gygi SP, Pitt GS, Colecraft HM, Ben-Johny M, Kalocsay M, Marx SO (2020) Mechanism of adrenergic CaV1.2 stimulation revealed by proximity proteomics. Nature 577:695–700. https://doi.org/10.1038/s41586-020-1947-z

    Article  CAS  Google Scholar 

  80. Lundby A, Andersen MN, Steffensen AB, Horn H, Kelstrup CD, Francavilla C, Jensen LJ, Schmitt N, Thomsen MB, Olsen JV (2013) In vivo phosphoproteomics analysis reveals the cardiac targets of beta-adrenergic receptor signaling. Sci Signal 6:rs11. https://doi.org/10.1126/scisignal.2003506

    Article  CAS  Google Scholar 

  81. Magyar J, Kiper CE, Sievert G, Cai W, Shi GX, Crump SM, Li L, Niederer S, Smith N, Andres DA, Satin J (2012) Rem-GTPase regulates cardiac myocyte L-type calcium current. Channels (Austin) 6:166–173. https://doi.org/10.4161/chan.20192

    Article  CAS  Google Scholar 

  82. Makarewich CA, Correll RN, Gao H, Zhang H, Yang B, Berretta RM, Rizzo V, Molkentin JD, Houser SR (2012) A caveolae-targeted L-type Ca(2)+ channel antagonist inhibits hypertrophic signaling without reducing cardiac contractility. Circ Res 110:669–674. https://doi.org/10.1161/CIRCRESAHA.111.264028

    Article  CAS  PubMed Central  Google Scholar 

  83. Mangoni ME, Couette B, Bourinet E, Platzer J, Reimer D, Striessnig J, Nargeot J (2003) Functional role of L-type Cav1.3 Ca2+ channels in cardiac pacemaker activity. Proc Natl Acad Sci U S A 100:5543–5548. https://doi.org/10.1073/pnas.0935295100

    Article  CAS  PubMed Central  Google Scholar 

  84. Marionneau C, Couette B, Liu J, Li H, Mangoni ME, Nargeot J, Lei M, Escande D, Demolombe S (2005) Specific pattern of ionic channel gene expression associated with pacemaker activity in the mouse heart. J Physiol 562:223–234. https://doi.org/10.1113/jphysiol.2004.074047

    Article  CAS  Google Scholar 

  85. Markandeya YS, Phelan LJ, Woon MT, Keefe AM, Reynolds CR, August BK, Hacker TA, Roth DM, Patel HH, Balijepalli RC (2015) Caveolin-3 overexpression attenuates cardiac hypertrophy via inhibition of T-type Ca2+ current modulated by protein kinase Calpha in cardiomyocytes. J Biol Chem 290:22085–22100. https://doi.org/10.1074/jbc.M115.674945

    Article  CAS  PubMed Central  Google Scholar 

  86. McHugh D, Sharp EM, Scheuer T, Catterall WA (2000) Inhibition of cardiac L-type calcium channels by protein kinase C phosphorylation of two sites in the N-terminal domain. Proc Natl Acad Sci U S A 97:12334–12338. https://doi.org/10.1073/pnas.210384297

    Article  CAS  PubMed Central  Google Scholar 

  87. Mearini G, Schlossarek S, Willis MS, Carrier L (2008) The ubiquitin-proteasome system in cardiac dysfunction. Biochim Biophys Acta 1782:749–763. https://doi.org/10.1016/j.bbadis.2008.06.009

    Article  CAS  Google Scholar 

  88. Mesubi OO, Anderson ME (2016) Atrial remodelling in atrial fibrillation: CaMKII as a nodal proarrhythmic signal. Cardiovasc Res 109:542–557. https://doi.org/10.1093/cvr/cvw002

    Article  CAS  PubMed Central  Google Scholar 

  89. Moosmang S, Schulla V, Welling A, Feil R, Feil S, Wegener JW, Hofmann F, Klugbauer N (2003) Dominant role of smooth muscle L-type calcium channel Cav1.2 for blood pressure regulation. EMBO J 22:6027–6034. https://doi.org/10.1093/emboj/cdg583

    Article  CAS  PubMed Central  Google Scholar 

  90. Nakayama H, Bodi I, Correll RN, Chen X, Lorenz J, Houser SR, Robbins J, Schwartz A, Molkentin JD (2009) alpha1G-dependent T-type Ca2+ current antagonizes cardiac hypertrophy through a NOS3-dependent mechanism in mice. J Clin Invest 119:3787–3796. https://doi.org/10.1172/JCI39724

    Article  CAS  PubMed Central  Google Scholar 

  91. Nystoriak MA, Nieves-Cintron M, Patriarchi T, Buonarati OR, Prada MP, Morotti S, Grandi E, Fernandes JD, Forbush K, Hofmann F, Sasse KC, Scott JD, Ward SM, Hell JW, Navedo MF (2017) Ser1928 phosphorylation by PKA stimulates the L-type Ca2+ channel CaV1.2 and vasoconstriction during acute hyperglycemia and diabetes. Sci Signal 10. https://doi.org/10.1126/scisignal.aaf9647

  92. Obata K, Nagata K, Iwase M, Odashima M, Nagasaka T, Izawa H, Murohara T, Yamada Y, Yokota M (2005) Overexpression of calmodulin induces cardiac hypertrophy by a calcineurin-dependent pathway. Biochem Biophys Res Commun 338:1299–1305. https://doi.org/10.1016/j.bbrc.2005.10.083

    Article  CAS  Google Scholar 

  93. Packer M, Carson P, Elkayam U, Konstam MA, Moe G, O’Connor C, Rouleau JL, Schocken D, Anderson SA, DeMets DL, Group P-S (2013) Effect of amlodipine on the survival of patients with severe chronic heart failure due to a nonischemic cardiomyopathy: results of the PRAISE-2 study (prospective randomized amlodipine survival evaluation 2). JACC Heart Fail 1:308–314. https://doi.org/10.1016/j.jchf.2013.04.004

    Article  Google Scholar 

  94. Pang C, Crump SM, Jin L, Correll RN, Finlin BS, Satin J, Andres DA (2010) Rem GTPase interacts with the proximal CaV1.2 C-terminus and modulates calcium-dependent channel inactivation. Channels (Austin) 4:192–202. https://doi.org/10.4161/chan.4.3.11867

    Article  CAS  Google Scholar 

  95. Patriarchi T, Qian H, Di Biase V, Malik ZA, Chowdhury D, Price JL, Hammes EA, Buonarati OR, Westenbroek RE, Catterall WA, Hofmann F, Xiang YK, Murphy GG, Chen CY, Navedo MF, Hell JW (2016) Phosphorylation of Cav1.2 on S1928 uncouples the L-type Ca2+ channel from the beta2 adrenergic receptor. EMBO J 35:1330–1345. https://doi.org/10.15252/embj.201593409

    Article  CAS  PubMed Central  Google Scholar 

  96. Paulus WJ (2020) Unfolding discoveries in heart failure. N Engl J Med 382:679–682. https://doi.org/10.1056/NEJMcibr1913825

    Article  Google Scholar 

  97. Paulus WJ, Tschope C (2013) A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol 62:263–271. https://doi.org/10.1016/j.jacc.2013.02.092

    Article  PubMed Central  Google Scholar 

  98. Pipilas DC, Johnson CN, Webster G, Schlaepfer J, Fellmann F, Sekarski N, Wren LM, Ogorodnik KV, Chazin DM, Chazin WJ, Crotti L, Bhuiyan ZA, George AL Jr (2016) Novel calmodulin mutations associated with congenital long QT syndrome affect calcium current in human cardiomyocytes. Heart Rhythm 13:2012–2019. https://doi.org/10.1016/j.hrthm.2016.06.038

    Article  PubMed Central  Google Scholar 

  99. Puckerin AA, Chang DD, Subramanyam P, Colecraft HM (2016) Similar molecular determinants on Rem mediate two distinct modes of inhibition of CaV1.2 channels. Channels (Austin) 10:379–394. https://doi.org/10.1080/19336950.2016.1180489

    Article  Google Scholar 

  100. Puckerin AA, Chang DD, Shuja Z, Choudhury P, Scholz J, Colecraft HM (2018) Engineering selectivity into RGK GTPase inhibition of voltage-dependent calcium channels. Proc Natl Acad Sci U S A 115:12051–12056. https://doi.org/10.1073/pnas.1811024115

    Article  CAS  PubMed Central  Google Scholar 

  101. Raifman TK, Kumar P, Haase H, Klussmann E, Dascal N, Weiss S (2017) Protein kinase C enhances plasma membrane expression of cardiac L-type calcium channel, CaV1.2. Channels (Austin) 11:604–615. https://doi.org/10.1080/19336950.2017.1369636

    Article  Google Scholar 

  102. Rokita AG, Anderson ME (2012) New therapeutic targets in cardiology: arrhythmias and Ca2+/calmodulin-dependent kinase II (CaMKII). Circulation 126:2125–2139. https://doi.org/10.1161/CIRCULATIONAHA.112.124990

    Article  PubMed Central  Google Scholar 

  103. Rusconi F, Ceriotti P, Miragoli M, Carullo P, Salvarani N, Rocchetti M, Di Pasquale E, Rossi S, Tessari M, Caprari S, Cazade M, Kunderfranco P, Chemin J, Bang ML, Polticelli F, Zaza A, Faggian G, Condorelli G, Catalucci D (2016) Peptidomimetic targeting of Cavbeta2 overcomes dysregulation of the L-type calcium channel density and recovers cardiac function. Circulation 134:534–546. https://doi.org/10.1161/CIRCULATIONAHA.116.021347

    Article  CAS  Google Scholar 

  104. Sano M, Minamino T, Toko H, Miyauchi H, Orimo M, Qin Y, Akazawa H, Tateno K, Kayama Y, Harada M, Shimizu I, Asahara T, Hamada H, Tomita S, Molkentin JD, Zou Y, Komuro I (2007) p53-induced inhibition of Hif-1 causes cardiac dysfunction during pressure overload. Nature 446:444–448. https://doi.org/10.1038/nature05602

    Article  CAS  Google Scholar 

  105. Santulli G, Nakashima R, Yuan Q, Marks AR (2017) Intracellular calcium release channels: an update. J Physiol 595:3041–3051. https://doi.org/10.1113/JP272781

    Article  CAS  PubMed Central  Google Scholar 

  106. Schiattarella GG, Altamirano F, Tong D, French KM, Villalobos E, Kim SY, Luo X, Jiang N, May HI, Wang ZV, Hill TM, Mammen PPA, Huang J, Lee DI, Hahn VS, Sharma K, Kass DA, Lavandero S, Gillette TG, Hill JA (2019) Nitrosative stress drives heart failure with preserved ejection fraction. Nature 568:351–356. https://doi.org/10.1038/s41586-019-1100-z

    Article  CAS  PubMed Central  Google Scholar 

  107. Seropian IM, Cerliani JP, Toldo S, Van Tassell BW, Ilarregui JM, Gonzalez GE, Matoso M, Salloum FN, Melchior R, Gelpi RJ, Stupirski JC, Benatar A, Gomez KA, Morales C, Abbate A, Rabinovich GA (2013) Galectin-1 controls cardiac inflammation and ventricular remodeling during acute myocardial infarction. Am J Pathol 182:29–40. https://doi.org/10.1016/j.ajpath.2012.09.022

    Article  CAS  PubMed Central  Google Scholar 

  108. Seropian IM, Gonzalez GE, Maller SM, Berrocal DH, Abbate A, Rabinovich GA (2018) Galectin-1 as an emerging mediator of cardiovascular inflammation: mechanisms and therapeutic opportunities. Mediat Inflamm 2018:8696543. https://doi.org/10.1155/2018/8696543

    Article  CAS  Google Scholar 

  109. Sica DA (2006) Pharmacotherapy review: calcium channel blockers. J Clin Hypertens (Greenwich) 8:53–56. https://doi.org/10.1111/j.1524-6175.2005.04140.x

    Article  CAS  Google Scholar 

  110. Simms BA, Souza IA, Rehak R, Zamponi GW (2015) The Cav1.2 N terminus contains a CaM kinase site that modulates channel trafficking and function. Pflugers Arch 467:677–686. https://doi.org/10.1007/s00424-014-1538-7

    Article  CAS  Google Scholar 

  111. Song LS, Guia A, Muth JN, Rubio M, Wang SQ, Xiao RP, Josephson IR, Lakatta EG, Schwartz A, Cheng H (2002) Ca(2+) signaling in cardiac myocytes overexpressing the alpha(1) subunit of L-type Ca(2+) channel. Circ Res 90:174–181

    Article  CAS  Google Scholar 

  112. Stamler JS, Hess DT (2010) Nascent nitrosylases. Nat Cell Biol 12:1024–1026. https://doi.org/10.1038/ncb1110-1024

    Article  CAS  Google Scholar 

  113. Stamler JS, Toone EJ, Lipton SA, Sucher NJ (1997) (S)NO signals: translocation, regulation, and a consensus motif. Neuron 18:691–696. https://doi.org/10.1016/s0896-6273(00)80310-4

    Article  CAS  Google Scholar 

  114. Striessnig J, Pinggera A, Kaur G, Bock G, Tuluc P (2014) L-type Ca(2+) channels in heart and brain. Wiley Interdiscip Rev Membr Transp Signal 3:15–38. https://doi.org/10.1002/wmts.102

    Article  CAS  PubMed Central  Google Scholar 

  115. Sun J, Picht E, Ginsburg KS, Bers DM, Steenbergen C, Murphy E (2006) Hypercontractile female hearts exhibit increased S-nitrosylation of the L-type Ca2+ channel alpha1 subunit and reduced ischemia/reperfusion injury. Circ Res 98:403–411. https://doi.org/10.1161/01.RES.0000202707.79018.0a

    Article  CAS  Google Scholar 

  116. Swaminathan PD, Purohit A, Hund TJ, Anderson ME (2012) Calmodulin-dependent protein kinase II: linking heart failure and arrhythmias. Circ Res 110:1661–1677. https://doi.org/10.1161/CIRCRESAHA.111.243956

    Article  CAS  PubMed Central  Google Scholar 

  117. Talley EM, Cribbs LL, Lee JH, Daud A, Perez-Reyes E, Bayliss DA (1999) Differential distribution of three members of a gene family encoding low voltage-activated (T-type) calcium channels. J Neurosci 19:1895–1911

    Article  CAS  Google Scholar 

  118. Wang X, Tsien RW (2020) Suspect that modulates the heartbeat is ensnared. Nature 577:624–626. https://doi.org/10.1038/d41586-020-00096-3

    Article  CAS  Google Scholar 

  119. Wang J, Thio SS, Yang SS, Yu D, Yu CY, Wong YP, Liao P, Li S, Soong TW (2011) Splice variant specific modulation of CaV1.2 calcium channel by galectin-1 regulates arterial constriction. Circ Res 109:1250–1258. https://doi.org/10.1161/CIRCRESAHA.111.248849

    Article  CAS  Google Scholar 

  120. Wang S, Stanika RI, Wang X, Hagen J, Kennedy MB, Obermair GJ, Colbran RJ, Lee A (2017) Densin-180 controls the trafficking and signaling of L-type voltage-gated Cav1.2 Ca(2+) channels at excitatory synapses. J Neurosci 37:4679–4691. https://doi.org/10.1523/JNEUROSCI.2583-16.2017

    Article  CAS  PubMed Central  Google Scholar 

  121. Weiss S, Keren-Raifman T, Oz S, Ben Mocha A, Haase H, Dascal N (2012) Modulation of distinct isoforms of L-type calcium channels by G(q)-coupled receptors in Xenopus oocytes: antagonistic effects of Gbetagamma and protein kinase C. Channels (Austin) 6:426–437. https://doi.org/10.4161/chan.22016

    Article  CAS  Google Scholar 

  122. Wu Y, Temple J, Zhang R, Dzhura I, Zhang W, Trimble R, Roden DM, Passier R, Olson EN, Colbran RJ, Anderson ME (2002) Calmodulin kinase II and arrhythmias in a mouse model of cardiac hypertrophy. Circulation 106:1288–1293. https://doi.org/10.1161/01.cir.0000027583.73268.e7

    Article  CAS  Google Scholar 

  123. Xu L, Lai D, Cheng J, Lim HJ, Keskanokwong T, Backs J, Olson EN, Wang Y (2010) Alterations of L-type calcium current and cardiac function in CaMKII{delta} knockout mice. Circ Res 107:398–407. https://doi.org/10.1161/CIRCRESAHA.110.222562

    Article  CAS  PubMed Central  Google Scholar 

  124. Xu X, Marx SO, Colecraft HM (2010) Molecular mechanisms, and selective pharmacological rescue, of Rem-inhibited CaV1.2 channels in heart. Circ Res 107:620–630. https://doi.org/10.1161/CIRCRESAHA.110.224717

    Article  CAS  PubMed Central  Google Scholar 

  125. Yang T, Colecraft HM (2013) Regulation of voltage-dependent calcium channels by RGK proteins. Biochim Biophys Acta 1828:1644–1654. https://doi.org/10.1016/j.bbamem.2012.10.005

    Article  CAS  Google Scholar 

  126. Yang L, Liu G, Zakharov SI, Morrow JP, Rybin VO, Steinberg SF, Marx SO (2005) Ser1928 is a common site for Cav1.2 phosphorylation by protein kinase C isoforms. J Biol Chem 280:207–214. https://doi.org/10.1074/jbc.M410509200

    Article  CAS  Google Scholar 

  127. Yang L, Liu G, Zakharov SI, Bellinger AM, Mongillo M, Marx SO (2007) Protein kinase G phosphorylates Cav1.2 alpha1c and beta2 subunits. Circ Res 101:465–474. https://doi.org/10.1161/CIRCRESAHA.107.156976

    Article  CAS  Google Scholar 

  128. Yang T, Xu X, Kernan T, Wu V, Colecraft HM (2010) Rem, a member of the RGK GTPases, inhibits recombinant CaV1.2 channels using multiple mechanisms that require distinct conformations of the GTPase. J Physiol 588:1665–1681. https://doi.org/10.1113/jphysiol.2010.187203

    Article  CAS  PubMed Central  Google Scholar 

  129. Yang L, Katchman A, Morrow JP, Doshi D, Marx SO (2011) Cardiac L-type calcium channel (Cav1.2) associates with gamma subunits. FASEB J 25:928–936. https://doi.org/10.1096/fj.10-172353

    Article  CAS  PubMed Central  Google Scholar 

  130. Yang L, Dai DF, Yuan C, Westenbroek RE, Yu H, West N, de la Iglesia HO, Catterall WA (2016) Loss of beta-adrenergic-stimulated phosphorylation of CaV1.2 channels on Ser1700 leads to heart failure. Proc Natl Acad Sci U S A 113:E7976–E7985. https://doi.org/10.1073/pnas.1617116113

    Article  CAS  PubMed Central  Google Scholar 

  131. Yang L, Katchman A, Kushner J, Kushnir A, Zakharov SI, Chen BX, Shuja Z, Subramanyam P, Liu G, Papa A, Roybal D, Pitt GS, Colecraft HM, Marx SO (2019) Cardiac CaV1.2 channels require beta subunits for beta-adrenergic-mediated modulation but not trafficking. J Clin Invest 129:647–658. https://doi.org/10.1172/JCI123878

    Article  PubMed Central  Google Scholar 

  132. Yoon S, Kim M, Lee H, Kang G, Nam K, Kook H, Eom GH (2019) Cardiac nitric oxide synthase 1 worsens heart failure with preserved ejection fraction through S-nitrosylation of histone deacetylase 2. bioRxiv:708297. https://doi.org/10.1101/708297

  133. Yuan Y, Zhao J, Gong Y, Wang D, Wang X, Yun F, Liu Z, Zhang S, Li W, Zhao X, Sun L, Sheng L, Pan Z, Li Y (2018) Autophagy exacerbates electrical remodeling in atrial fibrillation by ubiquitin-dependent degradation of L-type calcium channel. Cell Death Dis 9:873. https://doi.org/10.1038/s41419-018-0860-y

    Article  CAS  PubMed Central  Google Scholar 

  134. Zhang T, Maier LS, Dalton ND, Miyamoto S, Ross J Jr, Bers DM, Brown JH (2003) The deltaC isoform of CaMKII is activated in cardiac hypertrophy and induces dilated cardiomyopathy and heart failure. Circ Res 92:912–919. https://doi.org/10.1161/01.RES.0000069686.31472.C5

    Article  CAS  Google Scholar 

  135. Zhang Z, He Y, Tuteja D, Xu D, Timofeyev V, Zhang Q, Glatter KA, Xu Y, Shin HS, Low R, Chiamvimonvat N (2005) Functional roles of Cav1.3(alpha1D) calcium channels in atria: insights gained from gene-targeted null mutant mice. Circulation 112:1936–1944. https://doi.org/10.1161/CIRCULATIONAHA.105.540070

    Article  CAS  Google Scholar 

  136. Zhang P, Xu X, Hu X, van Deel ED, Zhu G, Chen Y (2007) Inducible nitric oxide synthase deficiency protects the heart from systolic overload-induced ventricular hypertrophy and congestive heart failure. Circ Res 100:1089–1098. https://doi.org/10.1161/01.RES.0000264081.78659.45

    Article  CAS  PubMed Central  Google Scholar 

  137. Zhang Y, Wang WE, Zhang X, Li Y, Chen B, Liu C, Ai X, Zhang X, Tian Y, Zhang C, Tang M, Szeto C, Hua X, Xie M, Zeng C, Wu Y, Zhou L, Zhu W, Yu D, Houser SR, Chen X (2019) Cardiomyocyte PKA ablation enhances basal contractility while eliminates cardiac beta-adrenergic response without adverse effects on the heart. Circ Res 124:1760–1777. https://doi.org/10.1161/CIRCRESAHA.118.313417

    Article  CAS  Google Scholar 

  138. Zhao XY, Chen TT, Xia L, Guo M, Xu Y, Yue F, Jiang Y, Chen GQ, Zhao KW (2010) Hypoxia inducible factor-1 mediates expression of galectin-1: the potential role in migration/invasion of colorectal cancer cells. Carcinogenesis 31:1367–1375. https://doi.org/10.1093/carcin/bgq116

    Article  CAS  Google Scholar 

  139. Zhou MH, Bavencoffe A, Pan HL (2015) Molecular basis of regulating high voltage-activated calcium channels by S-nitrosylation. J Biol Chem 290:30616–30623. https://doi.org/10.1074/jbc.M115.685206

    Article  CAS  PubMed Central  Google Scholar 

  140. Zuccotti A, Clementi S, Reinbothe T, Torrente A, Vandael DH, Pirone A (2011) Structural and functional differences between L-type calcium channels: crucial issues for future selective targeting. Trends Pharmacol Sci 32:366–375. https://doi.org/10.1016/j.tips.2011.02.012

    Article  CAS  Google Scholar 

  141. Carnes CA, Janssen PML, Ruehr ML, Nakayama H, Nakayama T, Haase H, Bauer JA, Chung MK, Fearon IM, Gillinov AM, Hamlin RL, Van Wagoner DR (2007) Atrial glutathione content, calcium current, and contractility. J Biol Chem 282(38):28063–28073

Download references

Funding

This work received funding from the Academic Research Fund (AcRF) tier 2 grant from Singapore Ministry of Education (to T.W.S.), Singapore Ministry of Education NUSMed post-doctoral fellowship (to Z.H.), and NGS PhD scholarship from the National University of Singapore (to K.W.Z.L.).

Author information

Authors and Affiliations

Authors

Contributions

Z.H. and K.W.Z.L. wrote the manuscript with input from M.C.L. (figure/table preparation). T.W.S. critically edited the manuscript. All authors approved the final version of the manuscript.

Corresponding authors

Correspondence to Tuck Wah Soong or Zhenyu Hu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loh, K.W.Z., Liang, M.C., Soong, T.W. et al. Regulation of cardiovascular calcium channel activity by post-translational modifications or interacting proteins. Pflugers Arch - Eur J Physiol 472, 653–667 (2020). https://doi.org/10.1007/s00424-020-02398-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-020-02398-x

Keywords

Navigation