Skip to main content
Log in

Allelic imbalance and haploinsufficiency in MYBPC3-linked hypertrophic cardiomyopathy

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Mutations in cardiac myosin binding protein C (MYBPC3) represent the most frequent cause of familial hypertrophic cardiomyopathy (HCM), making up approximately 50% of identified HCM mutations. MYBPC3 is distinct among other sarcomere genes associated with HCM in that truncating mutations make up the vast majority, whereas nontruncating mutations predominant in other sarcomere genes. Several studies using myocardial tissue from HCM patients have found reduced abundance of wild-type MYBPC3 compared to control hearts, suggesting haploinsufficiency of full-length MYBPC3. Further, decreased mutant versus wild-type mRNA and lack of truncated mutant MYBPC3 protein has been demonstrated, highlighting the presence of allelic imbalance. In this review, we will begin by introducing allelic imbalance and haploinsufficiency, highlighting the broad role each plays within the spectrum of human disease. We will subsequently focus on the roles allelic imbalance and haploinsufficiency play within MYBPC3-linked HCM. Finally, we will explore the implications of these findings on future directions of HCM research. An improved understanding of allelic imbalance and haploinsufficiency may help us better understand genotype-phenotype relationships in HCM and develop novel targeted therapies, providing exciting future research opportunities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Vidal DO, de Souza JE, Pires LC, Masotti C, Salim AC, Costa MC, Galante PA, de Souza SJ, Camargo AA (2011) Analysis of allelic differential expression in the human genome using allele-specific serial analysis of gene expression tags. Genome 54:120–127. https://doi.org/10.1139/g10-103

    Article  CAS  PubMed  Google Scholar 

  2. Gaur U, Li K, Mei S, Liu G (2013) Research progress in allele-specific expression and its regulatory mechanisms. J Appl Genet 54:271–283. https://doi.org/10.1007/s13353-013-0148-y

    Article  CAS  PubMed  Google Scholar 

  3. Rivas MA, Pirinen M, Conrad DF, Lek M, Tsang EK, Karczewski KJ, Maller JB, Kukurba KR, DeLuca DS, Fromer M, Ferreira PG, Smith KS, Zhang R, Zhao F, Banks E, Poplin R, Ruderfer DM, Purcell SM, Tukiainen T, Minikel EV, Stenson PD, Cooper DN, Huang KH, Sullivan TJ, Nedzel J, Consortium GT, Geuvadis C, Bustamante CD, Li JB, Daly MJ, Guigo R, Donnelly P, Ardlie K, Sammeth M, Dermitzakis ET, McCarthy MI, Montgomery SB, Lappalainen T, MacArthur DG (2015) Human genomics. Effect of predicted protein-truncating genetic variants on the human transcriptome. Science 348:666–669. https://doi.org/10.1126/science.1261877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Deutschbauer AM, Jaramillo DF, Proctor M, Kumm J, Hillenmeyer ME, Davis RW, Nislow C, Giaever G (2005) Mechanisms of haploinsufficiency revealed by genome-wide profiling in yeast. Genetics 169:1915–1925. https://doi.org/10.1534/genetics.104.036871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. MacArthur DG, Balasubramanian S, Frankish A, Huang N, Morris J, Walter K, Jostins L, Habegger L, Pickrell JK, Montgomery SB, Albers CA, Zhang ZD, Conrad DF, Lunter G, Zheng H, Ayub Q, DePristo MA, Banks E, Hu M, Handsaker RE, Rosenfeld JA, Fromer M, Jin M, Mu XJ, Khurana E, Ye K, Kay M, Saunders GI, Suner MM, Hunt T, Barnes IH, Amid C, Carvalho-Silva DR, Bignell AH, Snow C, Yngvadottir B, Bumpstead S, Cooper DN, Xue Y, Romero IG, Genomes Project C, Wang J, Li Y, Gibbs RA, McCarroll SA, Dermitzakis ET, Pritchard JK, Barrett JC, Harrow J, Hurles ME, Gerstein MB, Tyler-Smith C (2012) A systematic survey of loss-of-function variants in human protein-coding genes. Science 335:823–828. https://doi.org/10.1126/science.1215040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. MacArthur DG, Tyler-Smith C (2010) Loss-of-function variants in the genomes of healthy humans. Hum Mol Genet 19:R125–R130. https://doi.org/10.1093/hmg/ddq365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hsiao TL, Vitkup D (2008) Role of duplicate genes in robustness against deleterious human mutations. PLoS Genet 4:e1000014. https://doi.org/10.1371/journal.pgen.1000014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Alfares AA, Kelly MA, McDermott G, Funke BH, Lebo MS, Baxter SB, Shen J, McLaughlin HM, Clark EH, Babb LJ, Cox SW, DePalma SR, Ho CY, Seidman JG, Seidman CE, Rehm HL (2015) Results of clinical genetic testing of 2,912 probands with hypertrophic cardiomyopathy: expanded panels offer limited additioenal sensitivity. Genet Med. https://doi.org/10.1038/gim.2014.205

  9. Haas J, Frese KS, Peil B, Kloos W, Keller A, Nietsch R, Feng Z, Muller S, Kayvanpour E, Vogel B, Sedaghat-Hamedani F, Lim WK, Zhao X, Fradkin D, Kohler D, Fischer S, Franke J, Marquart S, Barb I, Li DT, Amr A, Ehlermann P, Mereles D, Weis T, Hassel S, Kremer A, King V, Wirsz E, Isnard R, Komajda M, Serio A, Grasso M, Syrris P, Wicks E, Plagnol V, Lopes L, Gadgaard T, Eiskjaer H, Jorgensen M, Garcia-Giustiniani D, Ortiz-Genga M, Crespo-Leiro MG, Deprez RH, Christiaans I, van Rijsingen IA, Wilde AA, Waldenstrom A, Bolognesi M, Bellazzi R, Morner S, Bermejo JL, Monserrat L, Villard E, Mogensen J, Pinto YM, Charron P, Elliott P, Arbustini E, Katus HA, Meder B (2015) Atlas of the clinical genetics of human dilated cardiomyopathy. Eur Heart J 36:1123–1135. https://doi.org/10.1093/eurheartj/ehu301

    Article  CAS  PubMed  Google Scholar 

  10. Walsh R, Thomson KL, Ware JS, Funke BH, Woodley J, McGuire KJ, Mazzarotto F, Blair E, Seller A, Taylor JC, Minikel EV, Exome Aggregation C, MacArthur DG, Farrall M, Cook SA, Watkins H (2016) Reassessment of Mendelian gene pathogenicity using 7,855 cardiomyopathy cases and 60,706 reference samples. Genet Med 19:192–203. https://doi.org/10.1038/gim.2016.90

    Article  PubMed  PubMed Central  Google Scholar 

  11. Burke MA, Cook SA, Seidman JG, Seidman CE (2016) Clinical and mechanistic insights into the genetics of cardiomyopathy. J Am Coll Cardiol 68:2871–2886. https://doi.org/10.1016/j.jacc.2016.08.079

    Article  PubMed  PubMed Central  Google Scholar 

  12. Helms AS, Davis FM, Coleman D, Bartolone SN, Glazier AA, Pagani F, Yob JM, Sadayappan S, Pedersen E, Lyons R, Westfall MV, Jones R, Russell MW, Day SM (2014) Sarcomere mutation-specific expression patterns in human hypertrophic cardiomyopathy. Circ Cardiovasc Genet 7:434–443. https://doi.org/10.1161/circgenetics.113.000448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Geiger SK, Bar H, Ehlermann P, Walde S, Rutschow D, Zeller R, Ivandic BT, Zentgraf H, Katus HA, Herrmann H, Weichenhan D (2008) Incomplete nonsense-mediated decay of mutant Lamin a/C mRNA provokes dilated cardiomyopathy and ventricular tachycardia. J Mol Med (Berlin, Germany) 86:281–289. https://doi.org/10.1007/s00109-007-0275-1

    Article  CAS  Google Scholar 

  14. Moolman JA, Reith S, Uhl K, Bailey S, Gautel M, Jeschke B, Fischer C, Ochs J, McKenna WJ, Klues H, Vosberg HP (2000) A newly created splice donor site in exon 25 of the MyBP-C gene is responsible for inherited hypertrophic cardiomyopathy with incomplete disease penetrance. Circulation 101:1396–1402

    Article  CAS  PubMed  Google Scholar 

  15. Muchir A, Massart C, van Engelen BG, Lammens M, Bonne G, Worman HJ (2006) Proteasome-mediated degradation of integral inner nuclear membrane protein emerin in fibroblasts lacking A-type lamins. Biochem Biophys Res Commun 351:1011–1017. https://doi.org/10.1016/j.bbrc.2006.10.147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. van Dijk SJ, Dooijes D, dos Remedios C, Michels M, Lamers JM, Winegrad S, Schlossarek S, Carrier L, ten Cate FJ, Stienen GJ, van der Velden J (2009) Cardiac myosin-binding protein C mutations and hypertrophic cardiomyopathy: haploinsufficiency, deranged phosphorylation, and cardiomyocyte dysfunction. Circulation 119:1473–1483. https://doi.org/10.1161/CIRCULATIONAHA.108.838672

    Article  CAS  PubMed  Google Scholar 

  17. Vignier N, Schlossarek S, Fraysse B, Mearini G, Kramer E, Pointu H, Mougenot N, Guiard J, Reimer R, Hohenberg H, Schwartz K, Vernet M, Eschenhagen T, Carrier L (2009) Nonsense-mediated mRNA decay and ubiquitin-proteasome system regulate cardiac myosin-binding protein C mutant levels in cardiomyopathic mice. Circ Res 105:239–248. https://doi.org/10.1161/CIRCRESAHA.109.201251

    Article  CAS  PubMed  Google Scholar 

  18. Mort M, Ivanov D, Cooper DN, Chuzhanova NA (2008) A meta-analysis of nonsense mutations causing human genetic disease. Hum Mutat 29:1037–1047. https://doi.org/10.1002/humu.20763

    Article  CAS  PubMed  Google Scholar 

  19. Jacques A, Hoskins AC, Kentish JC, Marston SB (2008) From genotype to phenotype: a longitudinal study of a patient with hypertrophic cardiomyopathy due to a mutation in the MYBPC3 gene. J Muscle Res Cell Motil 29:239–246. https://doi.org/10.1007/s10974-009-9174-0

    Article  PubMed  Google Scholar 

  20. Marston S, Copeland O, Jacques A, Livesey K, Tsang V, McKenna WJ, Jalilzadeh S, Carballo S, Redwood C, Watkins H (2009) Evidence from human myectomy samples that MYBPC3 mutations cause hypertrophic cardiomyopathy through haploinsufficiency. Circ Res 105:219–222. https://doi.org/10.1161/circresaha.109.202440

    Article  CAS  PubMed  Google Scholar 

  21. Montag J, Syring M, Rose J, Weber AL, Ernstberger P, Mayer AK, Becker E, Keyser B, Dos Remedios C, Perrot A, van der Velden J, Francino A, Navarro-Lopez F, Ho CY, Brenner B, Kraft T (2017) Intrinsic MYH7 expression regulation contributes to tissue level allelic imbalance in hypertrophic cardiomyopathy. J Muscle Res Cell Motil 38:291–302. https://doi.org/10.1007/s10974-017-9486-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tripathi S, Schultz I, Becker E, Montag J, Borchert B, Francino A, Navarro-Lopez F, Perrot A, Ozcelik C, Osterziel KJ, McKenna WJ, Brenner B, Kraft T (2011) Unequal allelic expression of wild-type and mutated beta-myosin in familial hypertrophic cardiomyopathy. Basic Res Cardiol 106:1041–1055. https://doi.org/10.1007/s00395-011-0205-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cher ML, MacGrogan D, Bookstein R, Brown JA, Jenkins RB, Jensen RH (1994) Comparative genomic hybridization, allelic imbalance, and fluorescence in situ hybridization on chromosome 8 in prostate cancer. Genes Chromosom Cancer 11:153–162

    Article  CAS  PubMed  Google Scholar 

  24. Mei R, Galipeau PC, Prass C, Berno A, Ghandour G, Patil N, Wolff RK, Chee MS, Reid BJ, Lockhart DJ (2000) Genome-wide detection of allelic imbalance using human SNPs and high-density DNA arrays. Genome Res 10:1126–1137

    Article  CAS  PubMed  Google Scholar 

  25. Wong KK, Tsang YT, Shen J, Cheng RS, Chang YM, Man TK, Lau CC (2004) Allelic imbalance analysis by high-density single-nucleotide polymorphic allele (SNP) array with whole genome amplified DNA. Nucleic Acids Res 32:e69. https://doi.org/10.1093/nar/gnh072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ge B, Pokholok DK, Kwan T, Grundberg E, Morcos L, Verlaan DJ, Le J, Koka V, Lam KC, Gagne V, Dias J, Hoberman R, Montpetit A, Joly MM, Harvey EJ, Sinnett D, Beaulieu P, Hamon R, Graziani A, Dewar K, Harmsen E, Majewski J, Goring HH, Naumova AK, Blanchette M, Gunderson KL, Pastinen T (2009) Global patterns of cis variation in human cells revealed by high-density allelic expression analysis. Nat Genet 41:1216–1222. https://doi.org/10.1038/ng.473

    Article  CAS  PubMed  Google Scholar 

  27. Monteiro da Rocha A, Guerrero-Serna G, Helms A, Luzod C, Mironov S, Russell M, Jalife J, Day SM, Smith GD, Herron TJ (2016) Deficient cMyBP-C protein expression during cardiomyocyte differentiation underlies human hypertrophic cardiomyopathy cellular phenotypes in disease specific human ES cell derived cardiomyocytes. J Mol Cell Cardiol 99:197–206. https://doi.org/10.1016/j.yjmcc.2016.09.004

    Article  CAS  PubMed  Google Scholar 

  28. Pastinen T (2010) Genome-wide allele-specific analysis: insights into regulatory variation. Nat Rev Genet 11:533–538. https://doi.org/10.1038/nrg2815

    Article  CAS  PubMed  Google Scholar 

  29. Prondzynski M, Kramer E, Laufer SD, Shibamiya A, Pless O, Flenner F, Muller OJ, Munch J, Redwood C, Hansen A, Patten M, Eschenhagen T, Mearini G, Carrier L (2017) Evaluation of MYBPC3 trans-splicing and gene replacement as therapeutic options in human iPSC-derived cardiomyocytes. Molecular therapy Nucleic acids 7:475–486. https://doi.org/10.1016/j.omtn.2017.05.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Andersen PS, Havndrup O, Bundgaard H, Larsen LA, Vuust J, Pedersen AK, Kjeldsen K, Christiansen M (2004) Genetic and phenotypic characterization of mutations in myosin-binding protein C (MYBPC3) in 81 families with familial hypertrophic cardiomyopathy: total or partial haploinsufficiency. Eur J Hum Genet 12:673–677. https://doi.org/10.1038/sj.ejhg.5201190

    Article  CAS  PubMed  Google Scholar 

  31. Yang Q, Sanbe A, Osinska H, Hewett TE, Klevitsky R, Robbins J (1998) A mouse model of myosin binding protein C human familial hypertrophic cardiomyopathy. J Clin Invest 102:1292–1300. https://doi.org/10.1172/JCI3880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yu B, French JA, Carrier L, Jeremy RW, McTaggart DR, Nicholson MR, Hambly B, Semsarian C, Richmond DR, Schwartz K, Trent RJ (1998) Molecular pathology of familial hypertrophic cardiomyopathy caused by mutations in the cardiac myosin binding protein C gene. J Med Genet 35:205–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Theis JL, Bos JM, Theis JD, Miller DV, Dearani JA, Schaff HV, Gersh BJ, Ommen SR, Moss RL, Ackerman MJ (2009) Expression patterns of cardiac myofilament proteins: genomic and protein analysis of surgical myectomy tissue from patients with obstructive hypertrophic cardiomyopathy. Circ Heart Fail 2:325–333. https://doi.org/10.1161/circheartfailure.108.789735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. van Dijk SJ, Paalberends ER, Najafi A, Michels M, Sadayappan S, Carrier L, Boontje NM, Kuster DW, van Slegtenhorst M, Dooijes D, dos Remedios C, ten Cate FJ, Stienen GJ, van der Velden J (2012) Contractile dysfunction irrespective of the mutant protein in human hypertrophic cardiomyopathy with normal systolic function. Circ Heart Fail 5:36–46. https://doi.org/10.1161/circheartfailure.111.963702

    Article  PubMed  Google Scholar 

  35. van Dijk SJ, Boontje NM, Heymans MW, Ten Cate FJ, Michels M, Dos Remedios C, Dooijes D, van Slegtenhorst MA, van der Velden J, Stienen GJ (2014) Preserved cross-bridge kinetics in human hypertrophic cardiomyopathy patients with MYBPC3 mutations. Pflugers Arch - Eur J Physiol 466:1619–1633. https://doi.org/10.1007/s00424-013-1391-0

    Article  CAS  Google Scholar 

  36. McNamara JW, Li A, Lal S, Bos JM, Harris SP, van der Velden J, Ackerman MJ, Cooke R, Dos Remedios CG (2017) MYBPC3 mutations are associated with a reduced super-relaxed state in patients with hypertrophic cardiomyopathy. PLoS One 12:e0180064. https://doi.org/10.1371/journal.pone.0180064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tanaka A, Yuasa S, Mearini G, Egashira T, Seki T, Kodaira M, Kusumoto D, Kuroda Y, Okata S, Suzuki T, Inohara T, Arimura T, Makino S, Kimura K, Kimura A, Furukawa T, Carrier L, Node K, Fukuda K (2014) Endothelin-1 induces myofibrillar disarray and contractile vector variability in hypertrophic cardiomyopathy-induced pluripotent stem cell-derived cardiomyocytes. J Am Heart Assoc 3:e001263. https://doi.org/10.1161/jaha.114.001263

    Article  PubMed  PubMed Central  Google Scholar 

  38. Birket MJ, Ribeiro MC, Kosmidis G, Ward D, Leitoguinho AR, van de Pol V, Dambrot C, Devalla HD, Davis RP, Mastroberardino PG, Atsma DE, Passier R, Mummery CL (2015) Contractile defect caused by mutation in MYBPC3 revealed under conditions optimized for human PSC-cardiomyocyte function. Cell Rep 13:733–745. https://doi.org/10.1016/j.celrep.2015.09.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ribeiro AJS, Schwab O, Mandegar MA, Ang YS, Conklin BR, Srivastava D, Pruitt BL (2017) Multi-imaging method to assay the contractile mechanical output of micropatterned human iPSC-derived cardiac myocytes. Circ Res 120:1572–1583. https://doi.org/10.1161/circresaha.116.310363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. McConnell BK, Jones KA, Fatkin D, Arroyo LH, Lee RT, Aristizabal O, Turnbull DH, Georgakopoulos D, Kass D, Bond M, Niimura H, Schoen FJ, Conner D, Fischman DA, Seidman CE, Seidman JG (1999) Dilated cardiomyopathy in homozygous myosin-binding protein-C mutant mice. J Clin Invest 104:1235–1244. https://doi.org/10.1172/jci7377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. McConnell BK, Fatkin D, Semsarian C, Jones KA, Georgakopoulos D, Maguire CT, Healey MJ, Mudd JO, Moskowitz IP, Conner DA, Giewat M, Wakimoto H, Berul CI, Schoen FJ, Kass DA, Seidman CE, Seidman JG (2001) Comparison of two murine models of familial hypertrophic cardiomyopathy. Circ Res 88:383–389

    Article  CAS  PubMed  Google Scholar 

  42. Fraysse B, Weinberger F, Bardswell SC, Cuello F, Vignier N, Geertz B, Starbatty J, Kramer E, Coirault C, Eschenhagen T, Kentish JC, Avkiran M, Carrier L (2012) Increased myofilament Ca2+ sensitivity and diastolic dysfunction as early consequences of Mybpc3 mutation in heterozygous knock-in mice. J Mol Cell Cardiol 52:1299–1307. https://doi.org/10.1016/j.yjmcc.2012.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Harris SP, Bartley CR, Hacker TA, McDonald KS, Douglas PS, Greaser ML, Powers PA, Moss RL (2002) Hypertrophic cardiomyopathy in cardiac myosin binding protein-C knockout mice. Circ Res 90:594–601

    Article  CAS  PubMed  Google Scholar 

  44. Korte FS, McDonald KS, Harris SP, Moss RL (2003) Loaded shortening, power output, and rate of force redevelopment are increased with knockout of cardiac myosin binding protein-C. Circ Res 93:752–758. https://doi.org/10.1161/01.res.0000096363.85588.9a

    Article  CAS  PubMed  Google Scholar 

  45. Carrier L, Knoll R, Vignier N, Keller DI, Bausero P, Prudhon B, Isnard R, Ambroisine ML, Fiszman M, Ross J Jr, Schwartz K, Chien KR (2004) Asymmetric septal hypertrophy in heterozygous cMyBP-C null mice. Cardiovasc Res 63:293–304. https://doi.org/10.1016/j.cardiores.2004.04.009

    Article  CAS  PubMed  Google Scholar 

  46. Gedicke-Hornung C, Behrens-Gawlik V, Reischmann S, Geertz B, Stimpel D, Weinberger F, Schlossarek S, Precigout G, Braren I, Eschenhagen T, Mearini G, Lorain S, Voit T, Dreyfus PA, Garcia L, Carrier L (2013) Rescue of cardiomyopathy through U7snRNA-mediated exon skipping in Mybpc3-targeted knock-in mice. EMBO Mol Med 5:1128–1145. https://doi.org/10.1002/emmm.201202168

    Article  CAS  PubMed  Google Scholar 

  47. Mearini G, Stimpel D, Geertz B, Weinberger F, Kramer E, Schlossarek S, Mourot-Filiatre J, Stoehr A, Dutsch A, Wijnker PJ, Braren I, Katus HA, Muller OJ, Voit T, Eschenhagen T, Carrier L (2014) Mybpc3 gene therapy for neonatal cardiomyopathy enables long-term disease prevention in mice. Nat Commun 5:5515. https://doi.org/10.1038/ncomms6515

    Article  CAS  PubMed  Google Scholar 

  48. Chen PP, Patel JR, Powers PA, Fitzsimons DP, Moss RL (2012) Dissociation of structural and functional phenotypes in cardiac myosin-binding protein C conditional knockout mice. Circulation 126:1194–1205. https://doi.org/10.1161/circulationaha.111.089219

    Article  PubMed  PubMed Central  Google Scholar 

  49. Meurs KM, Sanchez X, David RM, Bowles NE, Towbin JA, Reiser PJ, Kittleson JA, Munro MJ, Dryburgh K, Macdonald KA, Kittleson MD (2005) A cardiac myosin binding protein C mutation in the Maine coon cat with familial hypertrophic cardiomyopathy. Hum Mol Genet 14:3587–3593. https://doi.org/10.1093/hmg/ddi386

    Article  CAS  PubMed  Google Scholar 

  50. Carlos Sampedrano C, Chetboul V, Mary J, Tissier R, Abitbol M, Serres F, Gouni V, Thomas A, Pouchelon JL (2009) Prospective echocardiographic and tissue Doppler imaging screening of a population of Maine coon cats tested for the A31P mutation in the myosin-binding protein C gene: a specific analysis of the heterozygous status. J Vet Intern Med 23:91–99. https://doi.org/10.1111/j.1939-1676.2008.0218.x

    Article  CAS  PubMed  Google Scholar 

  51. van Dijk SJ, Bezold Kooiker K, Mazzalupo S, Yang Y, Kostyukova AS, Mustacich DJ, Hoye ER, Stern JA, Kittleson MD, Harris SP (2016) The A31P missense mutation in cardiac myosin binding protein C alters protein structure but does not cause haploinsufficiency. Arch Biochem Biophys 601:133–140. https://doi.org/10.1016/j.abb.2016.01.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chen YH, Pai CW, Huang SW, Chang SN, Lin LY, Chiang FT, Lin JL, Hwang JJ, Tsai CT (2013) Inactivation of myosin binding protein C homolog in zebrafish as a model for human cardiac hypertrophy and diastolic dysfunction. J Am Heart Assoc 2:e000231. https://doi.org/10.1161/jaha.113.000231

    Article  PubMed  PubMed Central  Google Scholar 

  53. Strande JL (2015) Haploinsufficiency MYBPC3 mutations: another stress induced cardiomyopathy? Let's take a look! J Mol Cell Cardiol 79:284–286. https://doi.org/10.1016/j.yjmcc.2014.12.008

    Article  CAS  PubMed  Google Scholar 

  54. Schlossarek S, Schuermann F, Geertz B, Mearini G, Eschenhagen T, Carrier L (2012) Adrenergic stress reveals septal hypertrophy and proteasome impairment in heterozygous Mybpc3-targeted knock-in mice. J Muscle Res Cell Motil 33:5–15. https://doi.org/10.1007/s10974-011-9273-6

    Article  CAS  PubMed  Google Scholar 

  55. Barefield D, Kumar M, Gorham J, Seidman JG, Seidman CE, de Tombe PP, Sadayappan S (2015) Haploinsufficiency of MYBPC3 exacerbates the development of hypertrophic cardiomyopathy in heterozygous mice. J Mol Cell Cardiol 79:234–243. https://doi.org/10.1016/j.yjmcc.2014.11.018

    Article  CAS  PubMed  Google Scholar 

  56. Hofmann PA, Hartzell HC, Moss RL (1991) Alterations in Ca2+ sensitive tension due to partial extraction of C-protein from rat skinned cardiac myocytes and rabbit skeletal muscle fibers. J Gen Physiol 97:1141–1163

    Article  CAS  PubMed  Google Scholar 

  57. Ashrafian H, Redwood C, Blair E, Watkins H (2003) Hypertrophic cardiomyopathy:a paradigm for myocardial energy depletion. Trends Genet 19:263–268. https://doi.org/10.1016/s0168-9525(03)00081-7

    Article  CAS  PubMed  Google Scholar 

  58. Previs MJ, Beck Previs S, Gulick J, Robbins J, Warshaw DM (2012) Molecular mechanics of cardiac myosin-binding protein C in native thick filaments. Science 337:1215–1218. https://doi.org/10.1126/science.1223602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. McNamara JW, Li A, Smith NJ, Lal S, Graham RM, Kooiker KB, van Dijk SJ, Remedios CGD, Harris SP, Cooke R (2016) Ablation of cardiac myosin binding protein-C disrupts the super-relaxed state of myosin in murine cardiomyocytes. J Mol Cell Cardiol 94:65–71. https://doi.org/10.1016/j.yjmcc.2016.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sarikas A, Carrier L, Schenke C, Doll D, Flavigny J, Lindenberg KS, Eschenhagen T, Zolk O (2005) Impairment of the ubiquitin-proteasome system by truncated cardiac myosin binding protein C mutants. Cardiovasc Res 66:33–44. https://doi.org/10.1016/j.cardiores.2005.01.004

    Article  CAS  PubMed  Google Scholar 

  61. Schlossarek S, Englmann DR, Sultan KR, Sauer M, Eschenhagen T, Carrier L (2012) Defective proteolytic systems in Mybpc3-targeted mice with cardiac hypertrophy. Basic Res Cardiol 107:235. https://doi.org/10.1007/s00395-011-0235-3

    Article  PubMed  Google Scholar 

  62. Predmore JM, Wang P, Davis F, Bartolone S, Westfall MV, Dyke DB, Pagani F, Powell SR, Day SM (2010) Ubiquitin proteasome dysfunction in human hypertrophic and dilated cardiomyopathies. Circulation 121:997–1004. https://doi.org/10.1161/circulationaha.109.904557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Thottakara T, Friedrich FW, Reischmann S, Braumann S, Schlossarek S, Kramer E, Juhr D, Schluter H, van der Velden J, Munch J, Patten M, Eschenhagen T, Moog-Lutz C, Carrier L (2015) The E3 ubiquitin ligase Asb2beta is downregulated in a mouse model of hypertrophic cardiomyopathy and targets desmin for proteasomal degradation. J Mol Cell Cardiol 87:214–224. https://doi.org/10.1016/j.yjmcc.2015.08.020

    Article  CAS  PubMed  Google Scholar 

  64. Glazier AA, Hafeez N, Mellacheruvu D, Basrur V, Nesvizhskii AI, Lee LM, Shao H, Tang V, Yob JM, Gestwicki JE, Helms AS, Day SM (2018) HSC70 is a chaperone for wild-type and mutant cardiac myosin binding protein C. JCI insight 3. https://doi.org/10.1172/jci.insight.99319

  65. Ho CY, Day SM, Ashley EA, Michels M, Pereira AC, Jacoby D, Cirino AL, Fox JC, Lakdawala NK, Ware JS, Caleshu CA, Helms AS, Colan SD, Girolami F, Cecchi F, Seidman CE, Sajeev G, Signorovitch J, Green EM, Olivotto I, (2018) Genotype and Lifetime Burden of Disease in Hypertrophic Cardiomyopathy. Circulation 138 (14):1387-1398

  66. Erdmann J, Daehmlow S, Wischke S, Senyuva M, Werner U, Raible J, Tanis N, Dyachenko S, Hummel M, Hetzer R, Regitz-Zagrosek V (2003) Mutation spectrum in a large cohort of unrelated consecutive patients with hypertrophic cardiomyopathy. Clin Genet 64:339–349

    Article  CAS  PubMed  Google Scholar 

  67. Lopes LR, Rahman MS, Elliott PM (2013) A systematic review and meta-analysis of genotype-phenotype associations in patients with hypertrophic cardiomyopathy caused by sarcomeric protein mutations. Heart 99:1800–1811. https://doi.org/10.1136/heartjnl-2013-303939

    Article  PubMed  Google Scholar 

  68. Ho CY, Lakdawala NK, Cirino AL, Lipshultz SE, Sparks E, Abbasi SA, Kwong RY, Antman EM, Semsarian C, Gonzalez A, Lopez B, Diez J, Orav EJ, Colan SD, Seidman CE (2015) Diltiazem treatment for pre-clinical hypertrophic cardiomyopathy sarcomere mutation carriers: a pilot randomized trial to modify disease expression. JACC Heart Fail 3:180–188. https://doi.org/10.1016/j.jchf.2014.08.003

    Article  PubMed  Google Scholar 

  69. Ho CY, McMurray JJV, Cirino AL, Colan SD, Day SM, Desai AS, Lipshultz SE, MacRae CA, Shi L, Solomon SD, Orav EJ, Braunwald E (2017) The Design of the Valsartan for attenuating disease evolution in early Sarcomeric hypertrophic cardiomyopathy (VANISH) trial. Am Heart J 187:145–155. https://doi.org/10.1016/j.ahj.2017.02.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Merkulov S, Chen X, Chandler MP, Stelzer JE (2012) In vivo cardiac myosin binding protein C gene transfer rescues myofilament contractile dysfunction in cardiac myosin binding protein C null mice. Circ Heart Fail 5:635–644. https://doi.org/10.1161/CIRCHEARTFAILURE.112.968941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kaul S, Heitner SB, Mitalipov S (2018) Sarcomere gene mutation correction. Eur Heart J 39:1506–1507. https://doi.org/10.1093/eurheartj/ehy179

    Article  CAS  PubMed  Google Scholar 

  72. Ohiri JC, McNally EM (2018) Gene editing and gene-based therapeutics for cardiomyopathies. Heart Fail Clin 14:179–188. https://doi.org/10.1016/j.hfc.2017.12.006

    Article  PubMed  PubMed Central  Google Scholar 

  73. Bengtsson NE, Hall JK, Odom GL, Phelps MP, Andrus CR, Hawkins RD, Hauschka SD, Chamberlain JR, Chamberlain JS (2017) Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy. Nat Commun 8:14454. https://doi.org/10.1038/ncomms14454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ishizu T, Higo S, Masumura Y, Kohama Y, Shiba M, Higo T, Shibamoto M, Nakagawa A, Morimoto S, Takashima S, Hikoso S, Sakata Y (2017) Targeted genome replacement via homology-directed repair in non-dividing cardiomyocytes. Sci Rep 7:9363. https://doi.org/10.1038/s41598-017-09716-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Xie C, Zhang YP, Song L, Luo J, Qi W, Hu J, Lu D, Yang Z, Zhang J, Xiao J, Zhou B, Du JL, Jing N, Liu Y, Wang Y, Li BL, Song BL, Yan Y (2016) Genome editing with CRISPR/Cas9 in postnatal mice corrects PRKAG2 cardiac syndrome. Cell Res 26:1099–1111. https://doi.org/10.1038/cr.2016.101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Aartsma-Rus A, Fokkema I, Verschuuren J, Ginjaar I, van Deutekom J, van Ommen GJ, den Dunnen JT (2009) Theoretic applicability of antisense-mediated exon skipping for Duchenne muscular dystrophy mutations. Hum Mutat 30:293–299. https://doi.org/10.1002/humu.20918

    Article  PubMed  Google Scholar 

  77. Aartsma-Rus A, Straub V, Hemmings R, Haas M, Schlosser-Weber G, Stoyanova-Beninska V, Mercuri E, Muntoni F, Sepodes B, Vroom E, Balabanov P (2017) Development of exon skipping therapies for Duchenne muscular dystrophy: a critical review and a perspective on the outstanding issues. Nucleic Acid Ther 27:251–259. https://doi.org/10.1089/nat.2017.0682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Green EM, Wakimoto H, Anderson RL, Evanchik MJ, Gorham JM, Harrison BC, Henze M, Kawas R, Oslob JD, Rodriguez HM, Song Y, Wan W, Leinwand LA, Spudich JA, McDowell RS, Seidman JG, Seidman CE (2016) A small-molecule inhibitor of sarcomere contractility suppresses hypertrophic cardiomyopathy in mice. Science (New York, NY) 351:617–621. https://doi.org/10.1126/science.aad3456

    Article  CAS  Google Scholar 

  79. Kawas RF, Anderson RL, Ingle SRB, Song Y, Sran AS, Rodriguez HM (2017) A small-molecule modulator of cardiac myosin acts on multiple stages of the myosin chemomechanical cycle. J Biol Chem 292:16571–16577. https://doi.org/10.1074/jbc.M117.776815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. McDonald CM, Campbell C, Torricelli RE, Finkel RS, Flanigan KM, Goemans N, Heydemann P, Kaminska A, Kirschner J, Muntoni F, Osorio AN, Schara U, Sejersen T, Shieh PB, Sweeney HL, Topaloglu H, Tulinius M, Vilchez JJ, Voit T, Wong B, Elfring G, Kroger H, Luo X, McIntosh J, Ong T, Riebling P, Souza M, Spiegel RJ, Peltz SW, Mercuri E (2017) Ataluren in patients with nonsense mutation Duchenne muscular dystrophy (ACT DMD): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet (London, England) 390:1489–1498. https://doi.org/10.1016/s0140-6736(17)31611-2

    Article  CAS  Google Scholar 

  81. Kerem E, Konstan MW, De Boeck K, Accurso FJ, Sermet-Gaudelus I, Wilschanski M, Elborn JS, Melotti P, Bronsveld I, Fajac I, Malfroot A, Rosenbluth DB, Walker PA, McColley SA, Knoop C, Quattrucci S, Rietschel E, Zeitlin PL, Barth J, Elfring GL, Welch EM, Branstrom A, Spiegel RJ, Peltz SW, Ajayi T, Rowe SM (2014) Ataluren for the treatment of nonsense-mutation cystic fibrosis: a randomised, double-blind, placebo-controlled phase 3 trial. Lancet Respir Med 2:539–547. https://doi.org/10.1016/s2213-2600(14)70100-6

    Article  CAS  PubMed  Google Scholar 

  82. Panuwet P, Hunter RE Jr, D'Souza PE, Chen X, Radford SA, Cohen JR, Marder ME, Kartavenka K, Ryan PB, Barr DB (2016) Biological matrix effects in quantitative tandem mass spectrometry-based analytical methods: advancing biomonitoring. Crit Rev Anal Chem 46:93–105. https://doi.org/10.1080/10408347.2014.980775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Albayrak C, Jordi CA, Zechner C, Lin J, Bichsel CA, Khammash M, Tay S (2016) Digital quantification of proteins and mRNA in single mammalian cells. Mol Cell 61:914–924. https://doi.org/10.1016/j.molcel.2016.02.030

    Article  CAS  PubMed  Google Scholar 

  84. Macaulay IC, Ponting CP, Voet T (2017) Single-cell multiomics: multiple measurements from single cells. Trends Genet 33:155–168. https://doi.org/10.1016/j.tig.2016.12.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Moffitt JR, Hao J, Wang G, Chen KH, Babcock HP, Zhuang X (2016) High-throughput single-cell gene-expression profiling with multiplexed error-robust fluorescence in situ hybridization. Proc Natl Acad Sci U S A 113:11046–11051. https://doi.org/10.1073/pnas.1612826113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Montag J, Kowalski K, Makul M, Ernstberger P, Radocaj A, Beck J, Becker E, Tripathi S, Keyser B, Muhlfeld C, Wissel K, Pich A, van der Velden J, Dos Remedios CG, Perrot A, Francino A, Navarro-Lopez F, Brenner B, Kraft T (2018) Burst-like transcription of mutant and wildtype MYH7-alleles as possible origin of cell-to-cell contractile imbalance in hypertrophic cardiomyopathy. Front Physiol 9:359. https://doi.org/10.3389/fphys.2018.00359

    Article  PubMed  PubMed Central  Google Scholar 

  87. Murgia M, Nagaraj N, Deshmukh AS, Zeiler M, Cancellara P, Moretti I, Reggiani C, Schiaffino S, Mann M (2015) Single muscle fiber proteomics reveals unexpected mitochondrial specialization. EMBO Rep 16:387–395. https://doi.org/10.15252/embr.201439757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Heart, Lung, and Blood Institute predoctoral fellowship grant HL131327-01 (to A.A. Glazier); The Children’s Cardiomyopathy Foundation (to S.M. Day); the Taubman Medical Institute (to S.M. Day); The Lefkofsky Foundation (to S.M. Day); and the University of Michigan Protein Folding Diseases Initiative (to S.M. Day).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharlene M. Day.

Additional information

This article is part of the special issue on Sarcomeric Mutations in Pflügers Archiv – European Journal of Physiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glazier, A.A., Thompson, A. & Day, S.M. Allelic imbalance and haploinsufficiency in MYBPC3-linked hypertrophic cardiomyopathy. Pflugers Arch - Eur J Physiol 471, 781–793 (2019). https://doi.org/10.1007/s00424-018-2226-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-018-2226-9

Keywords

Navigation