Skip to main content

Advertisement

Log in

The voltage-sensitive cardiac M2 muscarinic receptor modulates the inward rectification of the G protein-coupled, ACh-gated K+ current

  • Ion channels, receptors and transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The acetylcholine (ACh)-gated inwardly rectifying K+ current (IKACh) plays a vital role in cardiac excitability by regulating heart rate variability and vulnerability to atrial arrhythmias. These crucial physiological contributions are determined principally by the inwardly rectifying nature of IKACh. Here, we investigated the relative contribution of two distinct mechanisms of IKACh inward rectification measured in atrial myocytes: a rapid component due to KACh channel block by intracellular Mg2+ and polyamines; and a time- and concentration-dependent mechanism. The time- and ACh concentration-dependent inward rectification component was eliminated when IKACh was activated by GTPγS, a compound that bypasses the muscarinic-2 receptor (M2R) and directly stimulates trimeric G proteins to open KACh channels. Moreover, the time-dependent component of IKACh inward rectification was also eliminated at ACh concentrations that saturate the receptor. These observations indicate that the time- and concentration-dependent rectification mechanism is an intrinsic property of the receptor, M2R; consistent with our previous work demonstrating that voltage-dependent conformational changes in the M2R alter the receptor affinity for ACh. Our analysis of the initial and time-dependent components of IKACh indicate that rapid Mg2+-polyamine block accounts for 60–70% of inward rectification, with M2R voltage sensitivity contributing 30–40% at sub-saturating ACh concentrations. Thus, while both inward rectification mechanisms are extrinsic to the KACh channel, to our knowledge, this is the first description of extrinsic inward rectification of ionic current attributable to an intrinsic voltage-sensitive property of a G protein-coupled receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ACh:

acetylcholine

CCh:

carbachol

C-R:

concentration-response

I KACh :

acetylcholine-gated K+ current

M2R:

muscarinic type-2 receptor

Pilo:

pilocarpine

TMA:

tetramethylammonium

V h :

holding potential

References

  1. Anumonwo JM, Lopatin AN (2010) Cardiac strong inward rectifier potassium channels. J Mol Cell Cardiol 48:45–54. 19703462. https://doi.org/10.1016/j.yjmcc.2009.08.013

    Article  CAS  PubMed  Google Scholar 

  2. Benavides-Haro DE, Sánchez-Chapula JA (2000) Chloroquine blocks the background potassium current in guinea pig atrial myocytes. Naunyn Schmiedeberg’s Arch Pharmacol 361:311–318. 10731045

    Article  CAS  Google Scholar 

  3. Ben-Chaim Y, Tour O, Dascal N, Parnas I, Parnas H (2003) The M2 muscarinic G-protein-coupled receptor is voltage-sensitive. J Biol Chem 278:22482–22491. https://doi.org/10.1074/jbc.M301146200

    Article  CAS  PubMed  Google Scholar 

  4. Ben-Chaim Y, Chanda B, Dascal N, Bezanilla F, Parnas I, Parnas H (2006) Movement of “gating charge” is coupled to ligand binding in a G-protein-coupled receptor. Nature 444:106–109. https://doi.org/10.1038/nature05259

    Article  CAS  PubMed  Google Scholar 

  5. Boyett MR, Kodama I, Honjo H, Arai A, Suzuki R, Toyama J (1995) Ionic basis of the chronotropic effect of acetylcholine on the rabbit sinoatrial node. Cardiovasc Res 29:867–878

    Article  CAS  Google Scholar 

  6. Breitweiser G, Szabo G (1985) Uncoupling of cardiac muscarinic and β-adrenergic receptors from ion channels by a guanine nucleotide analog. Nature 317:538–540

    Article  Google Scholar 

  7. Corey S, Krapivinsky G, Krapivinsky L, Clapham DE (1998) Number and stoichiometry of subunits in the native atrial G-protein-gated K+ channel, IKACh. J Biol Chem 273:5271–5278

    Article  CAS  Google Scholar 

  8. Ehrlich JR (2008) Inward rectifier potassium currents as a target for atrial fibrillation therapy. J Cardiovasc Pharmacol 52:129–135. https://doi.org/10.1097/FJC.0b013e31816c4325

    Article  CAS  PubMed  Google Scholar 

  9. Ferrer T, Cordero-Morales JF, Arias M, Ficker E, Medovoy D, Perozo E, Tristani-Firouzi M (2011) Molecular coupling in the human ether-a-go-go-related gene-1 (hERG1) K+ channel inactivation pathway. J Biol Chem 286:39091–39099. https://doi.org/10.1074/jbc.M111.292060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ficker E, Taglialatela M, Wible BA, Henley CM, Brown AM (1994) Spermine and spermidine as gating molecules for inward rectifier K+ channels. Science 266:1068–1072

    Article  CAS  Google Scholar 

  11. Gilman AG (1987) G proteins: transducers of receptor-generated signals. Annu Rev Biochem 56:615–649

    Article  CAS  Google Scholar 

  12. Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I, Kurachi I (2010) Inwardly rectifying K+ channels: their structure, function, and physiological roles. Physiol Rev 90:291–366. https://doi.org/10.1152/physrev.00021.2009

    Article  CAS  Google Scholar 

  13. Hille B (2001) Ion channels of excitable membranes, 3rd edn. Sinauer Associates, USA

    Google Scholar 

  14. Hommers LG, Lohse MJ, Bünemann M (2003) Regulation of the inward rectifying properties of G-protein-activated inwardly rectifying K+ (GIRK) channels by Gβγ subunits. J Biol Chem 278:1037–1043. https://doi.org/10.1074/jbc.M205325200

    Article  CAS  PubMed  Google Scholar 

  15. Isenberg G, Klöckner U (1982) Calcium tolerant ventricular myocytes prepared by pre-incubation in a KB-medium. Pflügers Arch 395:6–18

    Article  CAS  Google Scholar 

  16. Ishii M, Inanobe A, Fujita S, Makino Y, Hosoya Y, Kurachi Y (2001) Ca2+ elevation evoked by membrane depolarization regulates G-protein cycle via RGS proteins in the heart. Circ Res 89:1045–1050

    Article  CAS  Google Scholar 

  17. Kenakin TP (2006) A pharmacology primer. Theory, applications, and methods. (2nd edn.). Academic Press, USA

    Google Scholar 

  18. Kennedy RH, Wyeth RP, Gerner P, Liu S, Fontenot HJ, Seifen E (1995) Tetramethylammonium is a muscarinic agonist in rat heart. Am J Physiol Cell Physiol 268:C1414–C1417. https://doi.org/10.1152/ajpcell.1995.268.6.C1414

    Article  CAS  Google Scholar 

  19. Kovoor P, Wickman K, Maguire CT, Pu W, Gehrmann J, Berul CI, Clapham DE (2001) Evaluation of the role of IKACh in atrial fibrillation using a mouse knockout model. J Am Coll Cardiol 37:2136–2143

    Article  CAS  Google Scholar 

  20. Kurachi Y (1990) Muscarinic acetylcholine-gated K+ channels in mammalian heart. In: Reuss L, Russell JM, Szabo G (eds) Regulation of potassium transport across biological membranes. The University of Texas Press, Austin, pp 403–428

    Google Scholar 

  21. Lopatin AN, Makhina EN, Nichols CG (1994) Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification. Nature 372:366–369. https://doi.org/10.1038/372366a0

    Article  CAS  PubMed  Google Scholar 

  22. Martinez-Pinna J, Gurung IS, Vial C, Leon C, Gachet C, Evans RJ, Mahaut-Smith MP (2005) Direct voltage control of signaling via P2Y1 and other Galphaq-coupled receptors. J Biol Chem 280:1490–1498. https://doi.org/10.1074/jbc.M407783200

    Article  CAS  PubMed  Google Scholar 

  23. Matsuda H, Saigusa A, Irisawa H (1987) Ohmic conductance through the inwardly rectifying K channel and blocking by internal Mg2+. Nature 325:156–159. https://doi.org/10.1038/325156a0

    Article  CAS  PubMed  Google Scholar 

  24. Meyer T, Wellner-Kienitz MC, Biewald A, Bender K, Eickel A, Pott L (2001) Depletion of phosphatidylinositol 4, 5-bisphosphate by activation of phospholipase C-coupled receptors causes slow inhibition but not desensitization of G protein-gated inward rectifier K+ current in atrial myocytes. J Biol Chem 276:5650–5658. https://doi.org/10.1074/jbc.M009179200

    Article  CAS  PubMed  Google Scholar 

  25. Moreno-Galindo EG, Sánchez-Chapula JA, Sachse FB, Rodríguez-Paredes JA, Tristani-Firouzi M, Navarro-Polanco RA (2011) Relaxation gating of the acetylcholine-activated inward rectifier K+ current is mediated by intrinsic voltage sensitivity of the muscarinic receptor. J Physiol 589:1755–1767. https://doi.org/10.1113/jphysiol.2010.204115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Moreno-Galindo EG, Alamilla J, Sanchez-Chapula JA, Tristani-Firouzi M, Navarro-Polanco RA (2016) The agonist-specific voltage dependence of M2 muscarinic receptors modulates the deactivation of the acetylcholine-gated K+ current (IKACh). Pflügers Arch 468:1207–1214. https://doi.org/10.1007/s00424-016-1812-y

    Article  CAS  PubMed  Google Scholar 

  27. Navarro-Polanco RA, Moreno-Galindo EG, Ferrer-Villada T, Arias M, Rigby JR, Sánchez-Chapula JA, Tristani-Firouzi M (2011) Conformational changes in the M2 muscarinic receptor induced by membrane voltage and agonist binding. J Physiol 589:1741–1753. https://doi.org/10.1113/jphysiol.2010.204107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Navarro-Polanco RA, Aréchiga-Figueroa IA, Salazar-Fajardo PD, Benavides-Haro DE, Rodríguez-Elías JC, Sachse FB, Tristani-Firouzi M, Sánchez-Chapula JA, Moreno-Galindo EG (2013) Voltage sensitivity of M2 muscarinic receptors underlies the delayed rectifier-like activation of ACh-gated K+ current by choline in feline atrial myocytes. J Physiol 591:4273–4286. https://doi.org/10.1113/jphysiol.2013.255166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nichols CG, Lopatin AN (1997) Inward rectifier potassium channels. Annu Rev Physiol 59:171–191. https://doi.org/10.1146/annurev.physiol.59.1.171

    Article  CAS  PubMed  Google Scholar 

  30. Ohana L, Barchad O, Parnas I, Parnas H (2006) The metabotropic glutamate G-protein-coupled receptors mGluR3 and mGluR1a are voltage-sensitive. J Biol Chem 281:24204–24215. https://doi.org/10.1074/jbc.M513447200

    Article  CAS  PubMed  Google Scholar 

  31. Pfaffinger PJ, Martin JM, Hunter DD, Nathanson NM, Hille B (1985) GTP-binding proteins couple cardiac muscarinic receptors to a K+ channel. Nature 317:536–538

    Article  CAS  Google Scholar 

  32. Rinne A, Birk A, Bunemann M (2013) Voltage regulates adrenergic receptor function. Proc Natl Acad Sci U S A 110:1536–1541. https://doi.org/10.1073/pnas.1212656110

    Article  PubMed  PubMed Central  Google Scholar 

  33. Rinne A, Mobarec JC, Mahaut-Smith M, Kolb P, Bunemann M (2015) The mode of agonist binding to a G protein-coupled receptor switches the effect that voltage changes have on signaling. Sci Signal 8:ra110. https://doi.org/10.1126/scisignal.aac7419

    Article  CAS  PubMed  Google Scholar 

  34. Sahlholm K, Marcellino D, Nilsson J, Fuxe K, Arhem P (2008) Voltage-sensitivity at the human dopamine D2S receptor is agonist-specific. Biochem Biophys Res Commun 377:1216–1221. https://doi.org/10.1016/j.bbrc.2008.10.117

    Article  CAS  PubMed  Google Scholar 

  35. Sanguinetti MC, Jiang C, Curran ME, Keating MT (1995) A mechanistic link between an inherited and an acquird cardiac arrthytmia: HERG encodes the IKr potassium channel. Cell 81:299–307

    Article  CAS  Google Scholar 

  36. Shyng SL, Sha Q, Ferrigni T, Lopatin AN, Nichols CG (1996) Depletion of intracellular polyamines relieves inward rectification of potassium channels. Proc Natl Acad Sci U S A 93:12014–12019

    Article  CAS  Google Scholar 

  37. Soejima M, Noma A (1984) Mode of regulation of the ACh-sensitive K-channel by the muscarinic receptor in rabbit atrial cells. Pflugers Arch 400:424–431

    Article  CAS  Google Scholar 

  38. Stanfield PR, Nakajima S, Nakajima Y (2002) Constitutively active and G-protein coupled inward rectifier K+ channels: Kir2. 0 and Kir3. 0. In reviews of physiology, biochemistry and pharmacology, vol. 145, (pp. 47–179). Springer, Berlin, Heidelberg

  39. Vandenberg CA (1987) Inward rectification of a potassium channel in cardiac ventricular cells depends on internal magnesium ions. Proc Natl Acad Sci U S A 84:2560–2564

    Article  CAS  Google Scholar 

  40. Wickman K, Nemec J, Gendler SJ, Clapham DE (1998) Abnormal heart rate regulation in GIRK4 knockout mice. Neuron 20:103–114

    Article  CAS  Google Scholar 

  41. Yang KC, Nerbonne JM (2016) Mechanisms contributing to myocardial K+ channel diversity, regulation and remodeling. Trends Cardiovasc Med 26:209–218. https://doi.org/10.1016/j.tcm.2015.07.002

    Article  CAS  PubMed  Google Scholar 

  42. Zakharov SI, Overholt JL, Wagner RA, Harvey RD (1993) Tetramethylammonium activation of muscarinic receptors in cardiac ventricular myocytes. Am J Physiol-Cell Physiol 264:C1625–C1630. https://doi.org/10.1152/ajpcell.1993.264.6.C1625

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Miguel Angel Flores-Virgen for technical assistance.

Funding

This work was supported by SEP-CONACYT, México. Grant No. CB-2013-01-220742 (R. A. N-P.) and CB-2011-01-167109 (E.G.M-G).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Martin Tristani-Firouzi, Ricardo A. Navarro-Polanco or Eloy G. Moreno-Galindo.

Ethics declarations

Ethical approval

All animal studies were performed in accordance with the Guide for the Care and Use of Laboratory Animals published by the US National Institutes of Health (NIH Publication No. 85-23, revised 1996) and after securing approval by the Institutional Animal Care and Use Committee of the University of Colima. This article does not contain any studies with human participation performed by any of the authors.

Electronic supplementary material

ESM 1

(PDF 514 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salazar-Fajardo, P.D., Aréchiga-Figueroa, I.A., López-Serrano, A.L. et al. The voltage-sensitive cardiac M2 muscarinic receptor modulates the inward rectification of the G protein-coupled, ACh-gated K+ current. Pflugers Arch - Eur J Physiol 470, 1765–1776 (2018). https://doi.org/10.1007/s00424-018-2196-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-018-2196-y

Keywords

Navigation