Skip to main content
Log in

Development of obesity can be prevented in rats by chronic icv infusions of AngII but less by Ang(1–7)

  • Integrative Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Considering that obesity is one of the leading risks for death worldwide, it should be noted that a brain-related mechanism is involved in AngII-induced and AT1-receptor-dependent weight loss. It is moreover established that activation of the Ang(1–7)/ACE2/Mas axis reduces weight, but it remains unclear whether this Ang(1–7) effect is also mediated via a brain-related mechanism. Additionally to Sprague Dawley (SD) rats, we used TGR(ASrAOGEN) selectively lacking brain angiotensinogen, the precursor to AngII, as we speculated that effects are more pronounced in a model with low brain RAS activity. Rats were fed with high-calorie cafeteria diet. We investigated weight regulation, food behavior, and energy balance in response to chronic icv.-infusions of AngII (200 ng•h−1), or Ang(1–7) (200/600 ng•h−1) or artificial cerebrospinal fluid. High- but not low-dose Ang(1–7) slightly decreased weight gain and energy intake in SD rats. AngII showed an anti-obese efficacy in SD rats by decreasing energy intake and increasing energy expenditure and also improved glucose control. TGR(ASrAOGEN) were protected from developing obesity. However, Ang(1–7) did not reveal any effects in TGR(ASrAOGEN) and those of AngII were minor compared to SD rats. Our results emphasize that brain AngII is a key contributor for regulating energy homeostasis and weight in obesity by serving as a negative brain-related feedback signal to alleviate weight gain. Brain-related anti-obese potency of Ang(1–7) is lower than AngII but must be further investigated by using other transgenic models as TGR(ASrAOGEN) proved to be less valuable for answering this question.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AngII:

Angiotensin II

AngI:

Angiotensin I

Ang(1–7):

Angiotensin-(1–7)

AOGEN:

Angiotensinogen

ARB:

AT1 receptor blocker

AT1 receptor:

Angiotensin II type 1 receptor

AUC:

Area under the curve

BBB:

Blood-brain barrier

BMI:

Body mass index

Bw:

Body weight

CD:

Cafeteria diet

Cmax :

Maximal concentration

EDTA:

Ethylenediaminetetraacetic acid

GFAP:

Glial fibrillary acidic protein

HDL:

High-density lipoproteins

HPA axis:

Hypothalamic-pituitary-adrenal axis

Ko:

Knock out

LepR:

Leptin receptor

LRT:

Leptin resistance test

MRI:

Magnetic resonance imaging

OGTT:

Oral glucose tolerance test

POMC:

Proopiomelanocortin

PPARγ:

Peroxisome proliferator-activated receptor delta

PPARδ:

Peroxisome proliferator-activated receptor gamma

RAS:

Renin-angiotensin system

RER:

Respiratory exchange rate

SBP:

Systolic blood pressure

SD:

Sprague Dawley rat

TEL:

Telmisartan

TG:

Transgenic rat

T2DM:

Type 2 diabetes mellitus

References

  1. Andrade JM, Lemos FO, da Fonseca PS, Millan RD, de Sousa FB, Guimaraes AL, Qureshi M, Feltenberger JD, de Paula AM, Neto JT, Lopes MT, Andrade HM, Santos RA, Santos SH (2014) Proteomic white adipose tissue analysis of obese mice fed with a high-fat diet and treated with oral angiotensin-(1-7). Peptides 60:56–62. https://doi.org/10.1016/j.peptides.2014.07.023

    Article  PubMed  CAS  Google Scholar 

  2. Baltatu O, Janssen BJ, Bricca G, Plehm R, Monti J, Ganten D, Bader M (2001) Alterations in blood pressure and heart rate variability in transgenic rats with low brain angiotensinogen. Hypertension 37(2):408–413. https://doi.org/10.1161/01.HYP.37.2.408

    Article  PubMed  CAS  Google Scholar 

  3. Banks WA (2010) Blood-brain barrier as a regulatory interface. Forum Nutr 63:102–110

    Article  PubMed  CAS  Google Scholar 

  4. Banks WA, Coon AB, Robinson SM, Moinuddin A, Shultz JM, Nakaoke R, Morley JE (2004) Triglycerides induce leptin resistance at the blood-brain barrier. Diabetes 53(5):1253–1260. https://doi.org/10.2337/diabetes.53.5.1253

    Article  PubMed  CAS  Google Scholar 

  5. Brink M, Wellen J, Delafontaine P (1996) Angiotensin II causes weight loss and decreases circulating insulin-like growth factor I in rats through a pressor-independent mechanism. J Clin Invest 97(11):2509–2516. https://doi.org/10.1172/JCI118698

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Bustin SA (2002) Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol 29(1):23–39. https://doi.org/10.1677/jme.0.0290023

    Article  PubMed  CAS  Google Scholar 

  7. Cabassi A, Coghi P, Govoni P, Barouhiel E, Speroni E, Cavazzini S, Cantoni AM, Scandroglio R, Fiaccadori E (2005) Sympathetic modulation by carvedilol and losartan reduces angiotensin II-mediated lipolysis in subcutaneous and visceral fat. J Clin Endocrinol Metab 90(5):2888–2897. https://doi.org/10.1210/jc.2004-1995

    Article  PubMed  CAS  Google Scholar 

  8. Cantley J (2014) The control of insulin secretion by adipokines: current evidence for adipocyte-beta cell endocrine signalling in metabolic homeostasis. Mamm Genome 25(9-10):442–454. https://doi.org/10.1007/s00335-014-9538-7

    Article  PubMed  CAS  Google Scholar 

  9. Claflin KE, Sandgren JA, Lambertz AM, Weidemann BJ, Littlejohn NK, Burnett CM, Pearson NA, Morgan DA, Gibson-Corley KN, Rahmouni K, Grobe JL (2017) Angiotensin AT1A receptors on leptin receptor-expressing cells control resting metabolism. J Clin Invest 127(4):1414–1424. https://doi.org/10.1172/JCI88641

    Article  PubMed  PubMed Central  Google Scholar 

  10. de Kloet AD, Krause EG, Scott KA, Foster MT, Herman JP, Sakai RR, Seeley RJ, Woods SC (2011) Central angiotensin II has catabolic action at white and brown adipose tissue. Am J Physiol Endocrinol Metab 301(6):E1081–E1091. https://doi.org/10.1152/ajpendo.00307.2011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. de Kloet AD, Pati D, Wang L, Hiller H, Sumners C, Frazier CJ, Seeley RJ, Herman JP, Woods SC, Krause EG (2013) Angiotensin type 1a receptors in the paraventricular nucleus of the hypothalamus protect against diet-induced obesity. J Neurosci 33(11):4825–4833. https://doi.org/10.1523/JNEUROSCI.3806-12.2013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Di NR, Mendelsohn FA, Hutchinson JS, Takata Y, Doyle AE (1982) Dissociation of dipsogenic and pressor responses to chronic central angiotensin II in rats. Am J Phys 242:R498–R504

    Google Scholar 

  13. Dos-Santos RC, Monteiro L, Paes-Leme B, Lustrino D, Antunes-Rodrigues J, Mecawi AS, Reis LC (2017) Central angiotensin-(1-7) increases osmotic thirst. Exp Physiol 102(11):1397–1404. https://doi.org/10.1113/EP086417

    Article  PubMed  CAS  Google Scholar 

  14. Engeli S, Negrel R, Sharma AM (2000) Physiology and pathophysiology of the adipose tissue renin-angiotensin system. Hypertension 35(6):1270–1277. https://doi.org/10.1161/01.HYP.35.6.1270

    Article  PubMed  CAS  Google Scholar 

  15. Feng Y, Xia H, Cai Y, Halabi CM, Becker LK, Santos RA, Speth RC, Sigmund CD, Lazartigues E (2010) Brain-selective overexpression of human angiotensin-converting enzyme type 2 attenuates neurogenic hypertension. Circ Res 106(2):373–382. https://doi.org/10.1161/CIRCRESAHA.109.208645

    Article  PubMed  CAS  Google Scholar 

  16. Guimaraes PS, Santiago NM, Xavier CH, Velloso EP, Fontes MA, Santos RA, Campagnole-Santos MJ (2012) Chronic infusion of angiotensin-(1-7) into the lateral ventricle of the brain attenuates hypertension in DOCA-salt rats. Am J Physiol Heart Circ Physiol 303(3):H393–H400. https://doi.org/10.1152/ajpheart.00075.2012

    Article  PubMed  CAS  Google Scholar 

  17. Huber G, Schuster F, Raasch W (2017) Brain renin-angiotensin system in the pathophysiology of cardiovascular diseases. Pharmacol Res 125(Pt A):72–90. https://doi.org/10.1016/j.phrs.2017.06.016

    Article  PubMed  CAS  Google Scholar 

  18. Jezova D, Ochedalski T, Kiss A, Brain AG (1998) Angiotensin II modulates sympathoadrenal and hypothalamic pituitary adrenocortical activation during stress. J Neuroendocrinol 10(1):67–72

    Article  PubMed  CAS  Google Scholar 

  19. Kadoguchi T, Kinugawa S, Takada S, Fukushima A, Furihata T, Homma T, Masaki Y, Mizushima W, Nishikawa M, Takahashi M, Yokota T, Matsushima S, Okita K, Tsutsui H (2015) Angiotensin II can directly induce mitochondrial dysfunction, decrease oxidative fibre number and induce atrophy in mouse hindlimb skeletal muscle. Exp Physiol 100(3):312–322. https://doi.org/10.1113/expphysiol.2014.084095

    Article  PubMed  CAS  Google Scholar 

  20. Kangussu LM, Guimaraes PS, Nadu AP, Melo MB, Santos RA, Campagnole-Santos MJ (2015) Activation of angiotensin-(1-7)/Mas axis in the brain lowers blood pressure and attenuates cardiac remodeling in hypertensive transgenic (mRen2)27 rats. Neuropharmacology 97:58–66. https://doi.org/10.1016/j.neuropharm.2015.04.036

    Article  PubMed  CAS  Google Scholar 

  21. Kasper SO, Carter CS, Ferrario CM, Ganten D, Ferder LF, Sonntag WE, Gallagher PE, Diz DI (2005) Growth, metabolism, and blood pressure disturbances during aging in transgenic rats with altered brain renin-angiotensin systems. Physiol Genomics 23(3):311–317. https://doi.org/10.1152/physiolgenomics.00163.2005

    Article  PubMed  CAS  Google Scholar 

  22. King VL, English VL, Bharadwaj K, Cassis LA (2013) Angiotensin II stimulates sympathetic neurotransmission to adipose tissue. Physiol Rep 1(2): https://doi.org/10.1002/phy2.14

  23. May CN (1996) Prolonged systemic and regional haemodynamic effects of intracerebroventricular angiotensin II in conscious sheep. Clin Exp Pharmacol Physiol 23(10-11):878–884. https://doi.org/10.1111/j.1440-1681.1996.tb01137.x

    Article  PubMed  CAS  Google Scholar 

  24. McKinley MJ, Evered M, Mathai M, Coghlan JP (1994) Effects of central losartan on plasma renin and centrally mediated natriuresis. Kidney Int 46(6):1479–1482. https://doi.org/10.1038/ki.1994.424

    Article  PubMed  CAS  Google Scholar 

  25. McKinley MJ, McBurnie MI, Mathai ML (2001) Neural mechanisms subserving central angiotensinergic influences on plasma renin in sheep. Hypertension 37(6):1375–1381. https://doi.org/10.1161/01.HYP.37.6.1375

    Article  PubMed  CAS  Google Scholar 

  26. Metzger R, Bader M, Ludwig T, Berberich C, Bunnemann B, Ganten D (1995) Expression of the mouse and rat mas proto-oncogene in the brain and peripheral tissues. FEBS Lett 357(1):27–32. https://doi.org/10.1016/0014-5793(94)01292-9

    Article  PubMed  CAS  Google Scholar 

  27. Miesel A, Müller H, Thermann M, Heidbreder M, Dominiak P, Raasch W (2010) Overfeeding-induced obesity in spontaneously hypertensive rats: an animal model of the human metabolic syndrome. Ann Nutr Metab 56(2):127–142. https://doi.org/10.1159/000278748

    Article  PubMed  CAS  Google Scholar 

  28. Müller-Fielitz H, Hübel N, Mildner M, Vogt FM, Barkhausen J, Raasch W (2014) Chronic blockade of angiotensin AT(1) receptors improves cardinal symptoms of metabolic syndrome in diet-induced obesity in rats. Br J Pharmacol 171(3):746–760. https://doi.org/10.1111/bph.12510

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Müller-Fielitz H, Landolt J, Heidbreder M, Werth S, Vogt FM, Jöhren O, Raasch W (2012) Improved insulin sensitivity after long-term treatment with AT1 blockers is not associated with PPARgamma target gene regulation. Endocrinology 153(3):1103–1115. https://doi.org/10.1210/en.2011-0183

    Article  PubMed  CAS  Google Scholar 

  30. Müller-Fielitz H, Lau M, Geissler C, Werner L, Winkler M, Raasch W (2015) Preventing leptin resistance by blocking angiotensin II AT1 receptors in diet-induced obese rats. Br J Pharmacol 172(3):857–868. https://doi.org/10.1111/bph.12949

    Article  PubMed  CAS  Google Scholar 

  31. Müller-Fielitz H, Lau M, Jöhren O, Stellmacher F, Schwaninger M, Raasch W (2012) Blood pressure response to angiotensin II is enhanced in obese Zucker rats and is attributed to an aldosterone-dependent mechanism. Br J Pharmacol 166(8):2417–2429. https://doi.org/10.1111/j.1476-5381.2012.01953.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Müller-Fielitz H, Raasch W (2013) Angiotensin II impairs glucose utilization in obese Zucker rats by increasing HPA activity via an adrenal-dependent mechanism. Horm Metab Res 45(2):173–180. https://doi.org/10.1055/s-0032-1327679

    Article  PubMed  CAS  Google Scholar 

  33. Müller H, Kroger J, Jöhren O, Szymczak S, Bader M, Dominiak P, Raasch W (2010) Stress sensitivity is increased in transgenic rats with low brain angiotensinogen. J Endocrinol 204(1):85–92. https://doi.org/10.1677/JOE-09-0363

    Article  PubMed  CAS  Google Scholar 

  34. Müller H, Schweitzer N, Jöhren O, Dominiak P, Raasch W (2007) Angiotensin II stimulates the reactivity of the pituitary-adrenal axis in leptin-resistant Zucker rats, thereby influencing the glucose utilization. Am J Physiol Endocrinol Metab 293(3):E802–E810. https://doi.org/10.1152/ajpendo.00650.2006

    Article  PubMed  CAS  Google Scholar 

  35. Nakamura K, Velho G, Bouby N (2017) Vasopressin and metabolic disorders: translation from experimental models to clinical use. J Intern Med 282(4):298–309. https://doi.org/10.1111/joim.12649

    Article  PubMed  CAS  Google Scholar 

  36. Nautiyal M, Shaltout HA, de Lima DC, do NK, Chappell MC, Diz DI (2012) Central angiotensin-(1-7) improves vagal function independent of blood pressure in hypertensive (mRen2)27 rats. Hypertension 60(5):1257–1265. https://doi.org/10.1161/HYPERTENSIONAHA.112.196782

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Oliveira Andrade JM, Paraiso AF, Garcia ZM, Ferreira AV, Sinisterra RD, Sousa FB, Guimaraes AL, de Paula AM, Campagnole-Santos MJ, dos Santos RA, Santos SH (2014) Cross talk between angiotensin-(1-7)/Mas axis and sirtuins in adipose tissue and metabolism of high-fat feed mice. Peptides 55:158–165. https://doi.org/10.1016/j.peptides.2014.03.006

    Article  PubMed  CAS  Google Scholar 

  38. Paxinos GWC (1998) The Rat Brain in Stereotaxic Coordinates. Academic Press, San Diego

    Google Scholar 

  39. Porter JP, Anderson JM, Robison RJ, Phillips AC (2003) Effect of central angiotensin II on body weight gain in young rats. Brain Res 959(1):20–28. https://doi.org/10.1016/S0006-8993(02)03676-4

    Article  PubMed  CAS  Google Scholar 

  40. Raasch W, Bartels T, Schwartz C, Häuser W, Rütten H, Dominiak P (2002) Regression of ventricular and vascular hypertrophy: are there differences between structurally different angiotensin-converting enzyme inhibitors? J Hypertens 20(12):2495–2504. https://doi.org/10.1097/00004872-200212000-00030

    Article  PubMed  CAS  Google Scholar 

  41. Raasch W, Dominiak P, Ziegler A, Dendorfer A (2004) Reduction of vascular noradrenaline sensitivity by AT1 antagonists depends on functional sympathetic innervation. Hypertension 44(3):346–351. https://doi.org/10.1161/01.HYP.0000138406.13413.0e

    Article  PubMed  CAS  Google Scholar 

  42. Santos SH, Fernandes LR, Mario EG, Ferreira AV, Porto LC, Alvarez-Leite JI, Botion LM, Bader M, Alenina N, Santos RA (2008) Mas deficiency in FVB/N mice produces marked changes in lipid and glycemic metabolism. Diabetes 57(2):340–347. https://doi.org/10.2337/db07-0953

    Article  PubMed  CAS  Google Scholar 

  43. Schinke M, Baltatu O, Bohm M, Peters J, Rascher W, Bricca G, Lippoldt A, Ganten D, Bader M (1999) Blood pressure reduction and diabetes insipidus in transgenic rats deficient in brain angiotensinogen. Proc Natl Acad Sci U S A 96(7):3975–3980. https://doi.org/10.1073/pnas.96.7.3975

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Schuchard J, Winkler M, Stolting I, Schuster F, Vogt FM, Barkhausen J, Thorns C, Santos RA, Bader M, Raasch W (2015) Lack of weight gain after angiotensin AT1 receptor blockade in diet-induced obesity is partly mediated by an angiotensin-(1-7)/Mas-dependent pathway. Br J Pharmacol 172(15):3764–3778. https://doi.org/10.1111/bph.13172

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Schulz C, Paulus K, Lobmann R, Dallman M, Lehnert H (2010) Endogenous ACTH, not only alpha-melanocyte-stimulating hormone, reduces food intake mediated by hypothalamic mechanisms. Am J Physiol Endocrinol Metab 298(2):E237–E244. https://doi.org/10.1152/ajpendo.00408.2009

    Article  PubMed  CAS  Google Scholar 

  46. Schwartz MW, Woods SC, Porte D Jr, Seeley RJ, Baskin DG (2000) Central nervous system control of food intake. Nature 404(6778):661–671. https://doi.org/10.1038/35007534

    Article  PubMed  CAS  Google Scholar 

  47. Sigmund CD (2012) Divergent mechanism regulating fluid intake and metabolism by the brain renin-angiotensin system. Am J Physiol Regul Integr Comp Physiol 302(3):R313–R320. https://doi.org/10.1152/ajpregu.00575.2011

    Article  PubMed  CAS  Google Scholar 

  48. Skurk T, van Harmelen V, Blum WF, Hauner H (2005) Angiotensin II promotes leptin production in cultured human fat cells by an ERK1/2-dependent pathway. Obes Res 13(6):969–973. https://doi.org/10.1038/oby.2005.113

    Article  PubMed  CAS  Google Scholar 

  49. Song YH, Li Y, Du J, Mitch WE, Rosenthal N, Delafontaine P (2005) Muscle-specific expression of IGF-1 blocks angiotensin II-induced skeletal muscle wasting. J Clin Invest 115(2):451–458. https://doi.org/10.1172/JCI22324

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Tabony AM, Yoshida T, Sukhanov S, Delafontaine P (2014) Protein phosphatase 2C-alpha knockdown reduces angiotensin II-mediated skeletal muscle wasting via restoration of mitochondrial recycling and function. Skelet Muscle 4(1):20. https://doi.org/10.1186/2044-5040-4-20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Wang YK, Shen D, Hao Q, Yu Q, Wu ZT, Deng Y, Chen YF, Yuan WJ, Hu QK, Su DF, Wang WZ (2014) Overexpression of angiotensin-converting enzyme 2 attenuates tonically active glutamatergic input to the rostral ventrolateral medulla in hypertensive rats. Am J Physiol Heart Circ Physiol 307(2):H182–H190. https://doi.org/10.1152/ajpheart.00518.2013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Winkler M, Schuchard J, Stolting I, Vogt FM, Barkhausen J, Thorns C, Bader M, Raasch W (2016) The brain renin-angiotensin system plays a crucial role in regulating body weight in diet-induced obesity in rats. Br J Pharmacol 173(10):1602–1617. https://doi.org/10.1111/bph.13461

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Wright JW, Harding JW (2013) The brain renin-angiotensin system: a diversity of functions and implications for CNS diseases. Pflugers Arch 465(1):133–151. https://doi.org/10.1007/s00424-012-1102-2

    Article  PubMed  CAS  Google Scholar 

  54. Wu J, Zhao D, Wu S, Wang D (2015) Ang-(1-7) exerts protective role in blood-brain barrier damage by the balance of TIMP-1/MMP-9. Eur J Pharmacol 748:30–36. https://doi.org/10.1016/j.ejphar.2014.12.007

    Article  PubMed  CAS  Google Scholar 

  55. Xia H, Sriramula S, Chhabra KH, Lazartigues E (2013) Brain angiotensin-converting enzyme type 2 shedding contributes to the development of neurogenic hypertension. Circ Res 113(9):1087–1096. https://doi.org/10.1161/CIRCRESAHA.113.301811

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Xiao L, Gao L, Lazartigues E, Zucker IH (2011) Brain-selective overexpression of angiotensin-converting enzyme 2 attenuates sympathetic nerve activity and enhances baroreflex function in chronic heart failure. Hypertension 58(6):1057–1065. https://doi.org/10.1161/HYPERTENSIONAHA.111.176636

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Xu P, Sriramula S, Lazartigues E (2011) ACE2/ANG-(1-7)/Mas pathway in the brain: the axis of good. Am J Physiol Regul Integr Comp Physiol 300(4):R804–R817. https://doi.org/10.1152/ajpregu.00222.2010

    Article  PubMed  CAS  Google Scholar 

  58. Yamazato M, Ferreira AJ, Yamazato Y, Diez-Freire C, Yuan L, Gillies R, Raizada MK (2011) Gene transfer of angiotensin-converting enzyme 2 in the nucleus tractus solitarius improves baroreceptor heart rate reflex in spontaneously hypertensive rats. J Renin-Angiotensin-Aldosterone Syst 12(4):456–461. https://doi.org/10.1177/1470320311412809

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Yamazato M, Yamazato Y, Sun C, Diez-Freire C, Raizada MK (2007) Overexpression of angiotensin-converting enzyme 2 in the rostral ventrolateral medulla causes long-term decrease in blood pressure in the spontaneously hypertensive rats. Hypertension 49(4):926–931. https://doi.org/10.1161/01.HYP.0000259942.38108.20

    Article  PubMed  CAS  Google Scholar 

  60. Yoshida T, Semprun-Prieto L, Wainford RD, Sukhanov S, Kapusta DR, Delafontaine P (2012) Angiotensin II reduces food intake by altering orexigenic neuropeptide expression in the mouse hypothalamus. Endocrinology 153(3):1411–1420. https://doi.org/10.1210/en.2011-1764

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Zhang L, Du J, Hu Z, Han G, Delafontaine P, Garcia G, Mitch WE (2009) IL-6 and serum amyloid A synergy mediates angiotensin II-induced muscle wasting. J Am Soc Nephrol 20(3):604–612. https://doi.org/10.1681/ASN.2008060628

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Zheng H, Liu X, Patel KP (2011) Angiotensin-converting enzyme 2 overexpression improves central nitric oxide-mediated sympathetic outflow in chronic heart failure. Am J Physiol Heart Circ Physiol 301(6):H2402–H2412. https://doi.org/10.1152/ajpheart.00330.2011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

MW, MB, FS, IS, SB, and WR performed the research, WR, MW, and MB designed the research study, WR and MW analyzed the data, and WR, MW, and MB wrote the paper. The authors gratefully acknowledge Sherryl Sundell for improving the English style.

Source(s) of funding

Martina Winkler received funding from the Konrad Adenauer Stiftung (Germany). Franziska Schuster was supported by a grant of the German Research Foundation to the Graduiertenkolleg 1957 ‘Adipocyte-Brain Crosstalk’, University of Lübeck. The study was supported by a grant of the German Centre for Cardiovascular Research (DZHK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Raasch.

Ethics declarations

Conflict(s) of interest/disclosure(s)

No conflict of interests

Electronic supplementary material

ESM 1

(DOCX 256 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Winkler, M., Bader, M., Schuster, F. et al. Development of obesity can be prevented in rats by chronic icv infusions of AngII but less by Ang(1–7). Pflugers Arch - Eur J Physiol 470, 867–881 (2018). https://doi.org/10.1007/s00424-018-2117-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-018-2117-0

Keywords

Navigation