Skip to main content

Advertisement

Log in

Transient receptor potential vanilloid 4 (TRPV4) channel as a target of crotamiton and its bimodal effects

  • Ion channels, receptors and transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The sensation of itching can be defined as “an unpleasant cutaneous sensation that provokes a desire to scratch.” The perception of itching is not critical for the maintenance of life, but persistent itching can be extremely irritating and decreases the quality of life. Crotamiton (N-ethyl-o-crotonotoluidide) has been used as an anti-itch agent for humans for around 70 years. In spite of the long use of crotamiton, its mechanism of action remains unknown. We hypothesized that crotamiton might have effects on transient receptor potential (TRP) channels expressed in the peripheral nervous system and the skin. We first examined the effects of crotamiton on TRP channels by whole-cell patch-clamp recordings. We found that crotamiton strongly inhibited TRPV (vanilloid) 4 channels followed by large currents after crotamiton washout. In mice, crotamiton inhibited itch-related behaviors induced by a TRPV4-selective agonist (GSK1016790A). We biophysically investigated the large TRPV4 currents after crotamiton washout. Comparing single-channel open probabilities and current amplitudes of TRPV4, increases in both parameters were found to contribute to the large washout currents of TRPV4. Because the change in current amplitudes suggested pore dilation of TRPV4, we examined this possibility with cation replacement experiments and by measuring changes in reversal potentials. Greater cation influxes and changes in reversal potentials upon crotamiton washout were observed, suggesting that the TRPV4 pore dilated in its uninhibited state. From these results, we identified the molecular target of crotamiton as TRPV4 and demonstrated pore dilation of TRPV4 upon crotamiton washout.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Akiyama T, Ivanov M, Nagamine M, Davoodi A, Carstens MI, Ikoma A, Cevikbas F, Kempkes C, Buddenkotte J, Steinhoff M, Carstens E (2016) Involvement of TRPV4 in serotonin-evoked scratching. J Invest Dermatol 136:154–160. doi:10.1038/JID.2015.388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Burckhardt W, Rymarowicz R (1946) Erfahrungen mit dem neuen Antiscabiosum Eurax (Geigy). Schweiz Med Wochenschr 76:1213

    CAS  PubMed  Google Scholar 

  3. Cao E, Liao M, Cheng Y, Julius D (2013) TRPV1 structures in distinct conformations reveal activation mechanisms. Nature 504:113–118. doi:10.1038/nature12823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824. doi:10.1038/39807

    Article  CAS  PubMed  Google Scholar 

  5. Caterina MJ, Rosen TA, Tominaga M, Brake AJ, Julius D (1999) A capsaicin-receptor homologue with a high threshold for noxious heat. Nature 398:436–441. doi:10.1038/18906

    Article  CAS  PubMed  Google Scholar 

  6. Chen J, Kim D, Bianchi BR, Cavanaugh EJ, Faltynek CR, Kym PR, Reilly RM (2009) Pore dilation occurs in TRPA1 but not in TRPM8 channels. Mol Pain 5:3. doi:10.1186/1744-8069-5-3

    PubMed  PubMed Central  Google Scholar 

  7. Chen Y, Fang Q, Wang Z, Zhang JY, MacLeod AS, Hall RP, Liedtke WB (2016) Transient receptor potential vanilloid 4 ion channel functions as a pruriceptor in epidermal keratinocytes to evoke histaminergic itch. J Biol Chem 291:10252–10262. doi:10.1074/jbc.M116.716464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Christensen AP, Akyuz N, Corey DP (2016) The outer pore and selectivity filter of TRPA1. PLoS One 11:e0166167. doi:10.1371/journal.pone.0166167

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chung MK, Lee H, Mizuno A, Suzuki M, Caterina MJ (2004) TRPV3 and TRPV4 mediate warmth-evoked currents in primary mouse keratinocytes. J Biol Chem 279:21569–21575. doi:10.1074/jbc.M401872200

    Article  CAS  PubMed  Google Scholar 

  10. Chung MK, Guler AD, Caterina MJ (2005) Biphasic currents evoked by chemical or thermal activation of the heat-gated ion channel, TRPV3. J Biol Chem 280:15928–15941. doi:10.1074/jbc.M500596200

    Article  CAS  PubMed  Google Scholar 

  11. Chung MK, Guler AD, Caterina MJ (2008) TRPV1 shows dynamic ionic selectivity during agonist stimulation. Nat Neurosci 11:555–564. doi:10.1038/nn.2102

    Article  CAS  PubMed  Google Scholar 

  12. Couperus M (1949) The use of N-ethyl-o-crotonotoluidide in the treatment of scabies and various pruritic dermatoses. J Invest Dermatol 13:35–42

    Article  CAS  PubMed  Google Scholar 

  13. Domenjoz R (1946) Ueber ein neues Antiscabiosum (Crotonsäure-N-aethyl-o-toluidid). Schweiz Med Wochenschr 76:1210–1213

    CAS  PubMed  Google Scholar 

  14. Garcia-Elias A, Mrkonjic S, Pardo-Pastor C, Inada H, Hellmich UA, Rubio-Moscardo F, Plata C, Gaudet R, Vicente R, Valverde MA (2013) Phosphatidylinositol-4,5-biphosphate-dependent rearrangement of TRPV4 cytosolic tails enables channel activation by physiological stimuli. Proc Natl Acad Sci U S A 110:9553–9558. doi:10.1073/pnas.1220231110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Grant AD, Cottrell GS, Amadesi S, Trevisani M, Nicoletti P, Materazzi S, Altier C, Cenac N, Zamponi GW, Bautista-Cruz F, Lopez CB, Joseph EK, Levine JD, Liedtke W, Vanner S, Vergnolle N, Geppetti P, Bunnett NW (2007) Protease-activated receptor 2 sensitizes the transient receptor potential vanilloid 4 ion channel to cause mechanical hyperalgesia in mice. J Physiol 578:715–733. doi:10.1113/jphysiol.2006.121111

    Article  CAS  PubMed  Google Scholar 

  16. Guler AD, Lee H, Iida T, Shimizu I, Tominaga M, Caterina M (2002) Heat-evoked activation of the ion channel, TRPV4. J Neurosci 22:6408–6414 20026679

    CAS  PubMed  Google Scholar 

  17. Han SK, Mancino V, Simon MI (2006) Phospholipase Cbeta 3 mediates the scratching response activated by the histamine H1 receptor on C-fiber nociceptive neurons. Neuron 52:691–703. doi:10.1016/j.neuron.2006.09.036

    Article  CAS  PubMed  Google Scholar 

  18. Huynh KW, Cohen MR, Jiang J, Samanta A, Lodowski DT, Zhou ZH, Moiseenkova-Bell VY (2016) Structure of the full-length TRPV2 channel by cryo-EM. Nat Commun 7:11130. doi:10.1038/ncomms11130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ikoma A, Steinhoff M, Stander S, Yosipovitch G, Schmelz M (2006) The neurobiology of itch. Nat Rev Neurosci 7:535–547. doi:10.1038/nrn1950

    Article  CAS  PubMed  Google Scholar 

  20. Imamachi N, Park GH, Lee H, Anderson DJ, Simon MI, Basbaum AI, Han SK (2009) TRPV1-expressing primary afferents generate behavioral responses to pruritogens via multiple mechanisms. Proc Natl Acad Sci U S A 106:11330–11335. doi:10.1073/pnas.0905605106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jordt SE, Bautista DM, Chuang HH, McKemy DD, Zygmunt PM, Hogestatt ED, Meng ID, Julius D (2004) Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427:260–265. doi:10.1038/nature02282

    Article  CAS  PubMed  Google Scholar 

  22. Karashima Y, Prenen J, Talavera K, Janssens A, Voets T, Nilius B (2010) Agonist-induced changes in Ca(2+) permeation through the nociceptor cation channel TRPA1. Biophys J 98:773–783. doi:10.1016/j.bpj.2009.11.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Khakh BS, Bao XR, Labarca C, Lester HA (1999) Neuronal P2X transmitter-gated cation channels change their ion selectivity in seconds. Nat Neurosci 2:322–330. doi:10.1038/7233

    Article  CAS  PubMed  Google Scholar 

  24. Kim BM, Lee SH, Shim WS, Oh U (2004) Histamine-induced Ca(2+) influx via the PLA(2)/lipoxygenase/TRPV1 pathway in rat sensory neurons. Neurosci Lett 361:159–162. doi:10.1016/j.neulet.2004.01.019

    Article  CAS  PubMed  Google Scholar 

  25. Kim S, Barry DM, Liu XY, Yin S, Munanairi A, Meng QT, Cheng W, Mo P, Wan L, Liu SB, Ratnayake K, Zhao ZQ, Gautam N, Zheng J, Karunarathne WK, Chen ZF (2016) Facilitation of TRPV4 by TRPV1 is required for itch transmission in some sensory neuron populations. Sci Signal 9:ra71. doi:10.1126/scisignal.aaf1047

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kittaka H, Tominaga M (2017) The molecular and cellular mechanisms of itch and the involvement of TRP channels in the peripheral sensory nervous system and skin. Allergol Int 66:22–30. doi:10.1016/j.alit.2016.10.003

    Article  PubMed  Google Scholar 

  27. Lenggenhager R (1947) Erfahrungen mit neuen Antiskabiosa. Praxis 36:465

    CAS  PubMed  Google Scholar 

  28. Li M, Toombes GE, Silberberg SD, Swartz KJ (2015) Physical basis of apparent pore dilation of ATP-activated P2X receptor channels. Nat Neurosci 18:1577–1583. doi:10.1038/nn.4120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liao M, Cao E, Julius D, Cheng Y (2013) Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 504:107–112. doi:10.1038/nature12822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liedtke W, Choe Y, Marti-Renom MA, Bell AM, Denis CS, Sali A, Hudspeth AJ, Friedman JM, Heller S (2000) Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 103:525–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lin Z, Chen Q, Lee M, Cao X, Zhang J, Ma D, Chen L, Hu X, Wang H, Wang X, Zhang P, Liu X, Guan L, Tang Y, Yang H, Tu P, Bu D, Zhu X, Wang K, Li R, Yang Y (2012) Exome sequencing reveals mutations in TRPV3 as a cause of Olmsted syndrome. Am J Hum Genet 90:558–564. doi:10.1016/j.ajhg.2012.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. McKemy DD, Neuhausser WM, Julius D (2002) Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416:52–58. doi:10.1038/nature719

    Article  CAS  PubMed  Google Scholar 

  33. Montell C, Rubin GM (1989) Molecular characterization of the Drosophila trp locus: a putative integral membrane protein required for phototransduction. Neuron 2:1313–1323

    Article  CAS  PubMed  Google Scholar 

  34. Morita T, McClain SP, Batia LM, Pellegrino M, Wilson SR, Kienzler MA, Lyman K, Olsen AS, Wong JF, Stucky CL, Brem RB, Bautista DM (2015) HTR7 mediates serotonergic acute and chronic itch. Neuron 87:124–138. doi:10.1016/j.neuron.2015.05.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Munns CH, Chung MK, Sanchez YE, Amzel LM, Caterina MJ (2015) Role of the outer pore domain in transient receptor potential vanilloid 1 dynamic permeability to large cations. J Biol Chem 290:5707–5724. doi:10.1074/jbc.M114.597435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Muraki K, Iwata Y, Katanosaka Y, Ito T, Ohya S, Shigekawa M, Imaizumi Y (2003) TRPV2 is a component of osmotically sensitive cation channels in murine aortic myocytes. Circ Res 93:829–838. doi:10.1161/01.RES.0000097263.10220.0C

    Article  CAS  PubMed  Google Scholar 

  37. Naziroglu M, Ozgul C, Celik O, Cig B, Sozbir E (2011) Aminoethoxydiphenyl borate and flufenamic acid inhibit Ca2+ influx through TRPM2 channels in rat dorsal root ganglion neurons activated by ADP-ribose and rotenone. J Membr Biol 241:69–75. doi:10.1007/s00232-011-9363-9

    Article  CAS  PubMed  Google Scholar 

  38. Paulsen CE, Armache JP, Gao Y, Cheng Y, Julius D (2015) Structure of the TRPA1 ion channel suggests regulatory mechanisms. Nature 520:511–517. doi:10.1038/nature14367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Peier AM, Moqrich A, Hergarden AC, Reeve AJ, Andersson DA, Story GM, Earley TJ, Dragoni I, McIntyre P, Bevan S, Patapoutian A (2002) A TRP channel that senses cold stimuli and menthol. Cell 108:705–715

    Article  CAS  PubMed  Google Scholar 

  40. Peier AM, Reeve AJ, Andersson DA, Moqrich A, Earley TJ, Hergarden AC, Story GM, Colley S, Hogenesch JB, McIntyre P, Bevan S, Patapoutian A (2002) A heat-sensitive TRP channel expressed in keratinocytes. Science 296:2046–2049. doi:10.1126/science.1073140

    Article  CAS  PubMed  Google Scholar 

  41. Rothman S (1941) Physiology of itching. Physiol Rev 21:357–381

    Google Scholar 

  42. Shim WS, Tak MH, Lee MH, Kim M, Kim M, Koo JY, Lee CH, Kim M, Oh U (2007) TRPV1 mediates histamine-induced itching via the activation of phospholipase A2 and 12-lipoxygenase. J Neurosci 27:2331–2337. doi:10.1523/JNEUROSCI.4643-06.2007

    Article  CAS  PubMed  Google Scholar 

  43. Smith GD, Gunthorpe MJ, Kelsell RE, Hayes PD, Reilly P, Facer P, Wright JE, Jerman JC, Walhin JP, Ooi L, Egerton J, Charles KJ, Smart D, Randall AD, Anand P, Davis JB (2002) TRPV3 is a temperature-sensitive vanilloid receptor-like protein. Nature 418:186–190. doi:10.1038/nature00894

    Article  CAS  PubMed  Google Scholar 

  44. Story GM, Peier AM, Reeve AJ, Eid SR, Mosbacher J, Hricik TR, Earley TJ, Hergarden AC, Andersson DA, Hwang SW, McIntyre P, Jegla T, Bevan S, Patapoutian A (2003) ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112:819–829

    Article  CAS  PubMed  Google Scholar 

  45. Strotmann R, Harteneck C, Nunnenmacher K, Schultz G, Plant TD (2000) OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nat Cell Biol 2:695–702. doi:10.1038/35036318

    Article  CAS  PubMed  Google Scholar 

  46. Surprenant A, Rassendren F, Kawashima E, North RA, Buell G (1996) The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science 272:735–738

    Article  CAS  PubMed  Google Scholar 

  47. Thorneloe KS, Sulpizio AC, Lin Z, Figueroa DJ, Clouse AK, McCafferty GP, Chendrimada TP, Lashinger ES, Gordon E, Evans L, Misajet BA, Demarini DJ, Nation JH, Casillas LN, Marquis RW, Votta BJ, Sheardown SA, Xu X, Brooks DP, Laping NJ, Westfall TD (2008) N-((1S)-1-{[4-((2S)-2-{[(2,4-dichlorophenyl)sulfonyl]amino}-3-hydroxypropanoyl)-1 -piperazinyl]carbonyl}-3-methylbutyl)-1-benzothiophene-2-carboxamide (GSK1016790A), a novel and potent transient receptor potential vanilloid 4 channel agonist induces urinary bladder contraction and hyperactivity: part I. J Pharmacol Exp Ther 326:432–442. doi:10.1124/jpet.108.139295

    Article  CAS  PubMed  Google Scholar 

  48. Togashi K, Hara Y, Tominaga T, Higashi T, Konishi Y, Mori Y, Tominaga M (2006) TRPM2 activation by cyclic ADP-ribose at body temperature is involved in insulin secretion. EMBO J 25:1804–1815. doi:10.1038/sj.emboj.7601083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tominaga M, Caterina MJ, Malmberg AB, Rosen TA, Gilbert H, Skinner K, Raumann BE, Basbaum AI, Julius D (1998) The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21:531–543

    Article  CAS  PubMed  Google Scholar 

  50. Venkatachalam K, Montell C (2007) TRP channels. Annu Rev Biochem 76:387–417. doi:10.1146/annurev.biochem.75.103004.142819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Virginio C, MacKenzie A, Rassendren FA, North RA, Surprenant A (1999) Pore dilation of neuronal P2X receptor channels. Nat Neurosci 2:315–321. doi:10.1038/7225

    Article  CAS  PubMed  Google Scholar 

  52. Voets T, Prenen J, Vriens J, Watanabe H, Janssens A, Wissenbach U, Bodding M, Droogmans G, Nilius B (2002) Molecular determinants of permeation through the cation channel TRPV4. J Biol Chem 277:33704–33710. doi:10.1074/jbc.M204828200

    Article  CAS  PubMed  Google Scholar 

  53. Vriens J, Owsianik G, Hofmann T, Philipp SE, Stab J, Chen X, Benoit M, Xue F, Janssens A, Kerselaers S, Oberwinkler J, Vennekens R, Gudermann T, Nilius B, Voets T (2011) TRPM3 is a nociceptor channel involved in the detection of noxious heat. Neuron 70:482–494. doi:10.1016/j.neuron.2011.02.051

    Article  CAS  PubMed  Google Scholar 

  54. Watanabe H, Davis JB, Smart D, Jerman JC, Smith GD, Hayes P, Vriens J, Cairns W, Wissenbach U, Prenen J, Flockerzi V, Droogmans G, Benham CD, Nilius B (2002) Activation of TRPV4 channels (hVRL-2/mTRP12) by phorbol derivatives. J Biol Chem 277:13569–13577. doi:10.1074/jbc.M200062200

    Article  CAS  PubMed  Google Scholar 

  55. Watanabe H, Vriens J, Suh SH, Benham CD, Droogmans G, Nilius B (2002) Heat-evoked activation of TRPV4 channels in a HEK293 cell expression system and in native mouse aorta endothelial cells. J Biol Chem 277:47044–47051. doi:10.1074/jbc.M208277200

    Article  CAS  PubMed  Google Scholar 

  56. Watanabe H, Vriens J, Prenen J, Droogmans G, Voets T, Nilius B (2003) Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels. Nature 424:434–438. doi:10.1038/nature01807

    Article  CAS  PubMed  Google Scholar 

  57. Wilson SR, Gerhold KA, Bifolck-Fisher A, Liu Q, Patel KN, Dong X, Bautista DM (2011) TRPA1 is required for histamine-independent, mas-related G protein-coupled receptor-mediated itch. Nat Neurosci 14:595–602. doi:10.1038/nn.2789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wilson SR, The L, Batia LM, Beattie K, Katibah GE, McClain SP, Pellegrino M, Estandian DM, Bautista DM (2013) The epithelial cell-derived atopic dermatitis cytokine TSLP activates neurons to induce itch. Cell 155:285–295. doi:10.1016/j.cell.2013.08.057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Xu H, Ramsey IS, Kotecha SA, Moran MM, Chong JA, Lawson D, Ge P, Lilly J, Silos-Santiago I, Xie Y, DiStefano PS, Curtis R, Clapham DE (2002) TRPV3 is a calcium-permeable temperature-sensitive cation channel. Nature 418:181–186. doi:10.1038/nature00882

    Article  CAS  PubMed  Google Scholar 

  60. Zubcevic L, Herzik MA Jr, Chung BC, Liu Z, Lander GC, Lee SY (2016) Cryo-electron microscopy structure of the TRPV2 ion channel. Nat Struct Mol Biol 23:180–186. doi:10.1038/nsmb.3159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Japanese Ministry of Education, Culture, Sports, Science and Technology Grants 16K21691 (to H. K.), 15H02501 (to M. T.), and 15H05928 (to M. T.).

Author information

Authors and Affiliations

Authors

Contributions

H. K. and Y. Y. designed and performed the experiments. H. K., Y. Y., and M. T wrote the manuscript.

Corresponding author

Correspondence to Makoto Tominaga.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest with the contents of this article.

Funding

This work was supported by the Japanese Ministry of Education, Culture, Sports, Science and Technology Grants 16K21691 (to H. K.), 15H02501 (to M. T.), and 15H05928 (to M. T.).

Electronic supplementary material

Supplementary figure 1

Effects of crotamiton on mTRPA1, mTRPM8, mTRPV1, mTRPV2 and mTRPV3 were investigated by whole cell patch-clamp recordings in the absence of extracellular Ca2+ in HEK293 cells. Holding potential was −60 mV. (JPEG 267 kb).

High resolution image (EPS 2294 kb)

Supplementary figure 2

Representative traces of mTRPV4 currents inhibited by crotamiton both in 2 mM extracellular calcium and extracellular calcium-free conditions by whole cell patch-clamp recordings in HEK293 cells. Ramp pulses from −100 mV to +100 mV for 500 ms were added every 5 s. Holding potential was −60 mV. (JPEG 173 kb).

High resolution image (EPS 1498 kb)

Supplementary figure 3

A, A representative trace of the membrane current in a mock-transfected HEK293T cell upon applications of crotamiton and TRP ligands. B, A representative trace of the membrane current in a HEK293T cell expressing mTRPV4 upon crotamiton application. Holding potential was −60 mV. (JPEG 188 kb).

High resolution image (EPS 1579 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kittaka, H., Yamanoi, Y. & Tominaga, M. Transient receptor potential vanilloid 4 (TRPV4) channel as a target of crotamiton and its bimodal effects. Pflugers Arch - Eur J Physiol 469, 1313–1323 (2017). https://doi.org/10.1007/s00424-017-1998-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-017-1998-7

Keywords

Navigation