Skip to main content

Advertisement

Log in

NBCe1 as a model carrier for understanding the structure–function properties of Na+-coupled SLC4 transporters in health and disease

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

SLC4 transporters are membrane proteins that in general mediate the coupled transport of bicarbonate (carbonate) and share amino acid sequence homology. These proteins differ as to whether they also transport Na+ and/or Cl, in addition to their charge transport stoichiometry, membrane targeting, substrate affinities, developmental expression, regulatory motifs, and protein–protein interactions. These differences account in part for the fact that functionally, SLC4 transporters have various physiological roles in mammals including transepithelial bicarbonate transport, intracellular pH regulation, transport of Na+ and/or Cl, and possibly water. Bicarbonate transport is not unique to the SLC4 family since the structurally unrelated SLC26 family has at least three proteins that mediate anion exchange. The present review focuses on the first of the sodium-dependent SLC4 transporters that was identified whose structure has been most extensively studied: the electrogenic Na+-base cotransporter NBCe1. Mutations in NBCe1 cause proximal renal tubular acidosis (pRTA) with neurologic and ophthalmologic extrarenal manifestations. Recent studies have characterized the important structure–function properties of the transporter and how they are perturbed as a result of mutations that cause pRTA. It has become increasingly apparent that the structure of NBCe1 differs in several key features from the SLC4 Cl–HCO3 exchanger AE1 whose structural properties have been well-studied. In this review, the structure–function properties and regulation of NBCe1 will be highlighted, and its role in health and disease will be reviewed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abdulnour-Nakhoul S, Nakhoul HN, Kalliny MI, Gyftopoulos A, Rabon E, Doetjes R, Brown K, Nakhoul NL (2011) Ion transport mechanisms linked to bicarbonate secretion in the esophageal submucosal glands. Am J Physiol Regul Integr Comp Physiol 301:R83–R96

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Abuladze N, Lee I, Newman D, Hwang J, Boorer K, Pushkin A, Kurtz I (1998) Molecular cloning, chromosomal localization, tissue distribution, and functional expression of the human pancreatic sodium bicarbonate cotransporter. J Biol Chem 273:17689–17695

    CAS  PubMed  Google Scholar 

  3. Abuladze N, Song M, Pushkin A, Newman D, Lee I, Nicholas S, Kurtz I (2000) Structural organization of the human NBC1 gene: kNBC1 is transcribed from an alternative promoter in intron 3. Gene 251:109–122

    CAS  PubMed  Google Scholar 

  4. Abuladze N, Azimov R, Newman D, Sassani P, Liu W, Tatishchev S, Pushkin A, Kurtz I (2005) Critical amino acid residues involved in the electrogenic sodium-bicarbonate cotransporter kNBC1-mediated transport. J Physiol 565:717–730

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Alvarez BV, Loiselle FB, Supuran CT, Schwartz GJ, Casey JR (2003) Direct extracellular interaction between carbonic anhydrase IV and the human NBC1 sodium/bicarbonate co-transporter. Biochemistry 42:12321–12329

    CAS  PubMed  Google Scholar 

  6. Amlal H, Habo K, Soleimani M (2000) Potassium deprivation upregulates expression of renal basolateral Na+–HCO3 cotransporter (NBC-1). Am J Physiol Renal Physiol 279:F532–F543

    CAS  PubMed  Google Scholar 

  7. Amlal H, Chen Q, Greeley T, Pavelic L, Soleimani M (2001) Coordinated down-regulation of NBC-1 and NHE-3 in sodium and bicarbonate loading. Kidney Int 60:1824–1836

    CAS  PubMed  Google Scholar 

  8. Azimov R, Abuladze N, Sassani P, Newman D, Kao L, Liu W, Orozco N, Ruchala P, Pushkin A, Kurtz I (2008) G418-mediated ribosomal read-through of a nonsense mutation causing autosomal recessive proximal renal tubular acidosis. Am J Physiol Renal Physiol 295:F633–F641

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Bachmann O, Rossmann H, Berger UV, Colledge WH, Ratcliff R, Evans MJ, Gregor M, Seidler U (2003) cAMP-mediated regulation of murine intestinal/pancreatic Na+/HCO3 cotransporter subtype pNBC1. Am J Physiol Gastrointest Liver Physiol 284:G37–G45

    CAS  PubMed  Google Scholar 

  10. Bae JS, Koo NY, Namkoong E, Davies AJ, Choi SK, Shin Y, Jin M, Hwang SM, Mikoshiba K, Park K (2013) Chaperone stress 70 protein (STCH) binds and regulates two acid/base transporters NBCe1-B and NHE1. J Biol Chem 288:6295–6305

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Bartolo RC, Harfoot N, Gill M, McLeod BJ, Butt AG (2009) Secretagogues stimulate electrogenic HCO3 secretion in the ileum of the brushtail possum, Trichosurus vulpecula: evidence for the role of a Na+/HCO3 cotransporter. J Exp Biol 212:2645–2655

    CAS  PubMed  Google Scholar 

  12. Batlle D, Haque SK (2012) Genetic causes and mechanisms of distal renal tubular acidosis. Nephrol Dial Transplant 27:3691–3704

    CAS  PubMed  Google Scholar 

  13. Becker HM, Deitmer JW (2007) Carbonic anhydrase II increases the activity of the human electrogenic Na+/HCO3 cotransporter. J Biol Chem 282:13508–13521

    CAS  PubMed  Google Scholar 

  14. Bok D, Schibler MJ, Pushkin A, Sassani P, Abuladze N, Naser Z, Kurtz I (2001) Immunolocalization of electrogenic sodium-bicarbonate cotransporters pNBC1 and kNBC1 in the rat eye. Am J Physiol Renal Physiol 281:F920–F935

    CAS  PubMed  Google Scholar 

  15. Bonar P, Schneider HP, Becker HM, Deitmer JW, Casey JR (2013) Three-dimensional model for the human Cl/HCO3 exchanger, AE1, by homology to the E. coli ClC protein. J Mol Biol 425:2591–2608

    CAS  PubMed  Google Scholar 

  16. Boron WF (2006) Acid–base transport by the renal proximal tubule. J Am Soc Nephrol 17:2368–2382

    CAS  PubMed  Google Scholar 

  17. Bosley TM, Salih MA, Alorainy IA, Islam MZ, Oystreck DT, Suliman OS, al Malki S, Suhaibani AH, Khiari H, Beckers S, van Wesenbeeck L, Perdu B, AlDrees A, Elmalik SA, Van Hul W, Abu-Amero KK (2011) The neurology of carbonic anhydrase type II deficiency syndrome. Brain 134:3502–3515

    PubMed  Google Scholar 

  18. Brandes A, Oehlke O, Schumann A, Heidrich S, Thevenod F, Roussa E (2007) Adaptive redistribution of NBCe1-A and NBCe1-B in rat kidney proximal tubule and striated ducts of salivary glands during acid–base disturbances. Am J Physiol Regul Integr Comp Physiol 293:R2400–R2411

    CAS  PubMed  Google Scholar 

  19. Brenes LG, Brenes JN, Hernandez MM (1977) Familial proximal renal tubular acidosis. A distinct clinical entity. Am J Med 63:244–252

    CAS  PubMed  Google Scholar 

  20. Capasso G, Jaeger P, Giebisch G, Guckian V, Malnic G (1987) Renal bicarbonate reabsorption in the rat. II. Distal tubule load dependence and effect of hypokalemia. J Clin Invest 80:409–414

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Ch’en FF, Villafuerte FC, Swietach P, Cobden PM, Vaughan-Jones RD (2008) S0859, an N-cyanosulphonamide inhibitor of sodium-bicarbonate cotransport in the heart. Br J Pharmacol 153:972–982

    PubMed Central  PubMed  Google Scholar 

  22. Chang MH, DiPiero J, Sonnichsen FD, Romero MF (2008) Entry to “formula tunnel” revealed by SLC4A4 human mutation and structural model. J Biol Chem 283:18402–18410

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Chen LM, Liu Y, Boron WF (2011) Role of an extracellular loop in determining the stoichiometry of Na+–HCO3 cotransporters. J Physiol 589:877–890

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Chen LM, Qin X, Moss FJ, Liu Y, Boron WF (2012) Effect of simultaneously replacing putative TM6 and TM12 of human NBCe1-A with those from NBCn1 on surface abundance in Xenopus oocytes. J Membr Biol 245:131–140

    CAS  PubMed  Google Scholar 

  25. Choi I, Romero MF, Khandoudi N, Bril A, Boron WF (1999) Cloning and characterization of a human electrogenic Na+–HCO3 cotransporter isoform (hhNBC). Am J Physiol 276:C576–C584

    CAS  PubMed  Google Scholar 

  26. Choi I, Hu L, Rojas JD, Schmitt BM, Boron WF (2003) Role of glycosylation in the renal electrogenic Na+–HCO3 cotransporter (NBCe1). Am J Physiol Renal Physiol 284:F1199–F1206

    CAS  PubMed  Google Scholar 

  27. Coppola S, Frömter E (1994) An electrophysiological study of angiotensin II regulation of Na–HCO3 cotransport and K conductance in renal proximal tubules. I. Effect of picomolar concentrations. Pflugers Arch 427:143–150

    CAS  PubMed  Google Scholar 

  28. Coppola S, Frömter E (1994) An electrophysiological study of angiotensin II regulation of Na–HCO3 cotransport and K conductance in renal proximal tubules. II. Effect of micromolar concentrations. Pflugers Arch 427:151–156

    CAS  PubMed  Google Scholar 

  29. De Giusti VC, Orlowski A, Villa-Abrille MC, de Cingolani GE, Casey JR, Alvarez BV, Aiello EA (2011) Antibodies against the cardiac sodium/bicarbonate co-transporter (NBCe1) as pharmacological tools. Br J Pharmacol 164:1976–1989

    PubMed Central  PubMed  Google Scholar 

  30. Deda G, Ekim M, Guven A, Karagol U, Tumer N (2001) Hypopotassemic paralysis: a rare presentation of proximal renal tubular acidosis. J Child Neurol 16:770–771

    CAS  PubMed  Google Scholar 

  31. Demirci FY, Chang MH, Mah TS, Romero MF, Gorin MB (2006) Proximal renal tubular acidosis and ocular pathology: a novel missense mutation in the gene (SLC4A4) for sodium bicarbonate cotransporter protein (NBCe1). Mol Vis 12:324–330

    CAS  PubMed  Google Scholar 

  32. Dinour D, Chang MH, Satoh J, Smith BL, Angle N, Knecht A, Serban I, Holtzman EJ, Romero MF (2004) A novel missense mutation in the sodium bicarbonate cotransporter (NBCe1/SLC4A4) causes proximal tubular acidosis and glaucoma through ion transport defects. J Biol Chem 279:52238–52246

    CAS  PubMed  Google Scholar 

  33. Ducoudret O, Diakov A, Müller-Berger S, Romero MF, Frömter E (2001) The renal Na–HCO3 cotransporter expressed in Xenopus laevis oocytes: inhibition by tenidap and benzamil and effect of temperature on transport rate and stoichiometry. Pflugers Arch 442:709–717

    Google Scholar 

  34. Fujinaga J, Loiselle FB, Casey JR (2003) Transport activity of chimaeric AE2-AE3 chloride/bicarbonate anion exchange proteins. Biochem J 371:687–696

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Garciarena CD, Ma YL, Swietach P, Huc L, Vaughan-Jones RD (2013) Sarcolemmal localisation of Na+/H+ exchange and Na+–HCO3 co-transport influences the spatial regulation of intracellular pH in rat ventricular myocytes. J Physiol 591:2287–2306

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Gawenis LR, Bradford EM, Prasad V, Lorenz JN, Simpson JE, Clarke LL, Woo AL, Grisham C, Sanford LP, Doetschman T, Miller ML, Shull GE (2007) Colonic anion secretory defects and metabolic acidosis in mice lacking the NBC1 Na+/HCO3 cotransporter. J Biol Chem 282:9042–9052

    CAS  PubMed  Google Scholar 

  37. Gill HS (2012) pH-sensitive self-associations of the N-terminal domain of NBCe1-A suggest a compact conformation under acidic intracellular conditions. Protein Pept Lett 19:1054–1063

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Gill HS, Boron WF (2006) Expression and purification of the cytoplasmic N-terminal domain of the Na/HCO3 cotransporter NBCe1-A: structural insights from a generalized approach. Protein Expr Purif 49:228–234

    CAS  PubMed  Google Scholar 

  39. Gross E, Abuladze N, Pushkin A, Kurtz I, Cotton CU (2001) The stoichiometry of the electrogenic sodium bicarbonate cotransporter pNBC1 in mouse pancreatic duct cells is 2 HCO3 :1 Na+. J Physiol 531:375–382

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Gross E, Pushkin A, Abuladze N, Fedotoff O, Kurtz I (2002) Regulation of the sodium bicarbonate cotransporter kNBC1 function: role of Asp986, Asp988 and kNBC1-carbonic anhydrase II binding. J Physiol 544:679–685

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Gross E, Fedotoff O, Pushkin A, Abuladze N, Newman D, Kurtz I (2003) Phosphorylation-induced modulation of pNBC1 function: distinct roles for the amino- and carboxy-termini. J Physiol 549:673–682

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Gross E, Hawkins K, Abuladze N, Pushkin A, Cotton CU, Hopfer U, Kurtz I (2001) The stoichiometry of the electrogenic sodium bicarbonate cotransporter NBC1 is cell-type dependent. J Physiol 531:597–603

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Gross E, Hawkins K, Pushkin A, Sassani P, Dukkipati R, Abuladze N, Hopfer U, Kurtz I (2001) Phosphorylation of Ser982 in the sodium bicarbonate cotransporter kNBC1 shifts the HCO3 :Na+ stoichiometry from 3: 1 to 2: 1 in murine proximal tubule cells. J Physiol 537:659–665

    Google Scholar 

  44. Hamm LL, Alperin RJ, Preisig PA (2013) Cellular mechanisms of urinary acidification. In: Alperin RJ, Caplan M, Moe OW (eds) Seldin and Giebisch’s the kidney: physiology and pathophysiology. Elsevier, Amsterdam, pp 1917–1978

    Google Scholar 

  45. Haque SK, Ariceta G, Batlle D (2012) Proximal renal tubular acidosis: a not so rare disorder of multiple etiologies. Nephrol Dial Transplant 27:4273–4287

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Heyer M, Müller-Berger S, Romero MF, Boron WF, Frömter E (1999) Stoichiometry of the rat kidney Na+–HCO3 cotransporter expressed in Xenopus laevis oocytes. Pflugers Arch 438:322–329

    CAS  PubMed  Google Scholar 

  47. Hong JH, Yang D, Shcheynikov N, Ohana E, Shin DM, Muallem S (2013) Convergence of IRBIT, phosphatidylinositol (4,5) bisphosphate, and WNK/SPAK kinases in regulation of the Na+–HCO3 cotransporters family. Proc Natl Acad Sci U S A 110:4105–4110

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Horita S, Zheng Y, Hara C, Yamada H, Kunimi M, Taniguchi S, Uwatoko S, Sugaya T, Goto A, Fujita T, Seki G (2002) Biphasic regulation of Na+–HCO3 cotransporter by angiotensin II type 1A receptor. Hypertension 40:707–712

    CAS  PubMed  Google Scholar 

  49. Horita S, Yamada H, Inatomi J, Moriyama N, Sekine T, Igarashi T, Endo Y, Dasouki M, Ekim M, Al-Gazali L, Shimadzu M, Seki G, Fujita T (2005) Functional analysis of NBC1 mutants associated with proximal renal tubular acidosis and ocular abnormalities. J Am Soc Nephrol 16:2270–2278

    CAS  PubMed  Google Scholar 

  50. Igarashi T, Ishii T, Watanabe K, Hayakawa H, Horio K, Sone Y, Ohga K (1994) Persistent isolated proximal renal tubular acidosis—a systemic disease with a distinct clinical entity. Pediatr Nephrol 8:70–71

    CAS  PubMed  Google Scholar 

  51. Igarashi T, Inatomi J, Sekine T, Seki G, Shimadzu M, Tozawa F, Takeshima Y, Takumi T, Takahashi T, Yoshikawa N, Nakamura H, Endou H (2001) Novel nonsense mutation in the Na+/HCO3 cotransporter gene (SLC4A4) in a patient with permanent isolated proximal renal tubular acidosis and bilateral glaucoma. J Am Soc Nephrol 12:713–718

    CAS  PubMed  Google Scholar 

  52. Igarashi T, Inatomi J, Sekine T, Cha SH, Kanai Y, Kunimi M, Tsukamoto K, Satoh H, Shimadzu M, Tozawa F, Mori T, Shiobara M, Seki G, Endou H (1999) Mutations in SLC4A4 cause permanent isolated proximal renal tubular acidosis with ocular abnormalities. Nat Genet 23:264–266

    CAS  PubMed  Google Scholar 

  53. Ishiguro H, Steward MC, Wilson RW, Case RM (1996) Bicarbonate secretion in interlobular ducts from guinea-pig pancreas. J Physiol 495(Pt 1):179–191

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Ishiguro H, Steward MC, Lindsay AR, Case RM (1996) Accumulation of intracellular HCO3 by Na+–HCO3 cotransport in interlobular ducts from guinea-pig pancreas. J Physiol 495(Pt 1):169–178

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Kao L, Sassani P, Azimov R, Pushkin A, Abuladze N, Peti-Peterdi J, Liu W, Newman D, Kurtz I (2008) Oligomeric structure and minimal functional unit of the electrogenic sodium bicarbonate cotransporter NBCe1-A. J Biol Chem 283:26782–26794

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Katzir Z, Dinour D, Reznik-Wolf H, Nissenkorn A, Holtzman E (2008) Familial pure proximal renal tubular acidosis—a clinical and genetic study. Nephrol Dial Transplant 23:1211–1215

    CAS  PubMed  Google Scholar 

  57. Kim YH, Kwon TH, Christensen BM, Nielsen J, Wall SM, Madsen KM, Frokiaer J, Nielsen S (2003) Altered expression of renal acid–base transporters in rats with lithium-induced NDI. Am J Physiol Renal Physiol 285:F1244–F1257

    CAS  PubMed  Google Scholar 

  58. Kreindler JL, Peters KW, Frizzell RA, Bridges RJ (2006) Identification and membrane localization of electrogenic sodium bicarbonate cotransporters in Calu-3 cells. Biochim Biophys Acta 1762:704–710

    CAS  PubMed  Google Scholar 

  59. Kristensen JM, Kristensen M, Juel C (2004) Expression of Na+/HCO3 co-transporter proteins (NBCs) in rat and human skeletal muscle. Acta Physiol Scand 182:69–76

    CAS  PubMed  Google Scholar 

  60. Kunimi M, Seki G, Hara C, Taniguchi S, Uwatoko S, Goto A, Kimura S, Fujita T (2000) Dopamine inhibits renal Na+:HCO3 cotransporter in rabbits and normotensive rats but not in spontaneously hypertensive rats. Kidney Int 57:534–543

    CAS  PubMed  Google Scholar 

  61. Kurtz I (2013) SLC4 sodium-driven bicarbonate transporters. In: Alperin RJ, Caplan M, Moe OW (eds) Seldin and Giebisch’s the kidney: physiology and pathophysiology. Elsevier, Amsterdam, pp 1837–1860

    Google Scholar 

  62. Kurtz I, Petrasek D, Tatishchev S (2004) Molecular mechanisms of electrogenic sodium bicarbonate cotransport: structural and equilibrium thermodynamic considerations. J Membr Biol 197:77–90

    CAS  PubMed  Google Scholar 

  63. Lacruz RS, Nanci A, White SN, Wen X, Wang H, Zalzal SF, Luong VQ, Schuetter VL, Conti PS, Kurtz I, Paine ML (2010) The sodium bicarbonate cotransporter (NBCe1) is essential for normal development of mouse dentition. J Biol Chem 285:24432–24438

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Lee SH, Park JH, Jung HH, Lee SH, Oh JW, Lee HM, Jun HS, Cho WJ, Lee JY (2005) Expression and distribution of ion transport mRNAs in human nasal mucosa and nasal polyps. Acta Otolaryngol 125:745–752

    PubMed  Google Scholar 

  65. Lee SK, Grichtchenko II, Boron WF (2011) Distinguishing HCO3 from CO3 2 transport by NBCe1-A. FASEB J 25:656.9

    Google Scholar 

  66. Lee SK, Boron WF, Parker MD (2012) Relief of autoinhibition of the electrogenic Na–HCO3 cotransporter NBCe1-B: role of IRBIT vs. amino-terminal truncation. Am J Physiol Cell Physiol 302:C518–C526

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Lee SK, Boron WF, Parker MD (2013) Substrate specificity of the electrogenic sodium/bicarbonate cotransporter NBCe1-A (SLC4A4, variant A) from humans and rabbits. Am J Physiol Renal Physiol 304:F883–F899

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Lemann J Jr, Adams ND, Wilz DR, Brenes LG (2000) Acid and mineral balances and bone in familial proximal renal tubular acidosis. Kidney Int 58:1267–1277

    CAS  PubMed  Google Scholar 

  69. Lewis SE, Erickson RP, Barnett LB, Venta PJ, Tashian RE (1988) N-Ethyl-N-nitrosourea-induced null mutation at the mouse Car-2 locus: an animal model for human carbonic anhydrase II deficiency syndrome. Proc Natl Acad Sci U S A 85:1962–1966

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Li HC, Szigligeti P, Worrell RT, Matthews JB, Conforti L, Soleimani M (2005) Missense mutations in Na+:HCO3 cotransporter NBC1 show abnormal trafficking in polarized kidney cells: a basis of proximal renal tubular acidosis. Am J Physiol Renal Physiol 289:F61–F71

    CAS  PubMed  Google Scholar 

  71. Li HC, Worrell RT, Matthews JB, Husseinzadeh H, Neumeier L, Petrovic S, Conforti L, Soleimani M (2004) Identification of a carboxyl-terminal motif essential for the targeting of Na+–HCO3 cotransporter NBC1 to the basolateral membrane. J Biol Chem 279:43190–43197

    CAS  PubMed  Google Scholar 

  72. Liu Y, Xu JY, Wang DK, Wang L, Chen LM (2011) Cloning and identification of two novel NBCe1 splice variants from mouse reproductive tract tissues: a comparative study of NCBT genes. Genomics 98:112–119

    CAS  PubMed  Google Scholar 

  73. Lo YF, Yang SS, Seki G, Yamada H, Horita S, Yamazaki O, Fujita T, Usui T, Tsai JD, Yu IS, Lin SW, Lin SH (2011) Severe metabolic acidosis causes early lethality in NBC1 W516X knock-in mice as a model of human isolated proximal renal tubular acidosis. Kidney Int 79:730–741

    CAS  PubMed  Google Scholar 

  74. Lu J, Boron WF (2007) Reversible and irreversible interactions of DIDS with the human electrogenic Na/HCO3 cotransporter NBCe1-A: role of lysines in the KKMIK motif of TM5. Am J Physiol Cell Physiol 292:C1787–C1798

    CAS  PubMed  Google Scholar 

  75. Lu J, Daly CM, Parker MD, Gill HS, Piermarini PM, Pelletier MF, Boron WF (2006) Effect of human carbonic anhydrase II on the activity of the human electrogenic Na/HCO3 cotransporter NBCe1-A in Xenopus oocytes. J Biol Chem 281:19241–19250

    CAS  PubMed  Google Scholar 

  76. Majumdar D, Maunsbach AB, Shacka JJ, Williams JB, Berger UV, Schultz KP, Harkins LE, Boron WF, Roth KA, Bevensee MO (2008) Localization of electrogenic Na/bicarbonate cotransporter NBCe1 variants in rat brain. Neuroscience 155:818–832

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Marino CR, Jeanes V, Boron WF, Schmitt BM (1999) Expression and distribution of the Na+–HCO3 cotransporter in human pancreas. Am J Physiol 277:G487–G494

    CAS  PubMed  Google Scholar 

  78. Maunsbach AB, Vorum H, Kwon TH, Nielsen S, Simonsen B, Choi I, Schmitt BM, Boron WF, Aalkjaer C (2000) Immunoelectron microscopic localization of the electrogenic Na/HCO3 cotransporter in rat and ambystoma kidney. J Am Soc Nephrol 11:2179–2189

    CAS  PubMed  Google Scholar 

  79. McAlear SD, Bevensee MO (2006) A cysteine-scanning mutagenesis study of transmembrane domain 8 of the electrogenic sodium/bicarbonate cotransporter NBCe1. J Biol Chem 281:32417–32427

    CAS  PubMed  Google Scholar 

  80. McAlear SD, Liu X, Williams JB, McNicholas-Bevensee CM, Bevensee MO (2006) Electrogenic Na/HCO3 cotransporter (NBCe1) variants expressed in Xenopus oocytes: functional comparison and roles of the amino and carboxy termini. J Gen Physiol 127:639–658

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Mohebbi N, Mihailova M, Wagner CA (2009) The calcineurin inhibitor FK506 (tacrolimus) is associated with transient metabolic acidosis and altered expression of renal acid–base transport proteins. Am J Physiol Renal Physiol 297:F499–F509

    CAS  PubMed  Google Scholar 

  82. Mohebbi N, Kovacikova J, Nowik M, Wagner CA (2007) Thyroid hormone deficiency alters expression of acid–base transporters in rat kidney. Am J Physiol Renal Physiol 293:F416–F427

    CAS  PubMed  Google Scholar 

  83. Moser AJ, Gangopadhyay A, Bradbury NA, Peters KW, Frizzell RA, Bridges RJ (2007) Electrogenic bicarbonate secretion by prairie dog gallbladder. Am J Physiol Gastrointest Liver Physiol 292:G1683–G1694

    CAS  PubMed  Google Scholar 

  84. Müller-Berger S, Nesterov VV, Frömter E (1997) Partial recovery of in vivo function by improved incubation conditions of isolated renal proximal tubule. II. Change of Na–HCO3 cotransport stoichiometry and of response to acetazolamide. Pflugers Arch 434:383–391

    PubMed  Google Scholar 

  85. Müller-Berger S, Ducoudret O, Diakov A, Frömter E (2001) The renal Na-HCO3 cotransporter expressed in Xenopus laevis oocytes: change in stoichiometry in response to elevation of cytosolic Ca2+ concentration. Pflugers Arch 442:718–728

    PubMed  Google Scholar 

  86. Nudelman I, Rebibo-Sabbah A, Cherniavsky M, Belakhov V, Hainrichson M, Chen F, Schacht J, Pilch DS, Ben-Yosef T, Baasov T (2009) Development of novel aminoglycoside (NB54) with reduced toxicity and enhanced suppression of disease-causing premature stop mutations. J Med Chem 52:2836–2845

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Ogando DG, Jalimarada SS, Zhang W, Vithana EN, Bonanno JA (2013) SLC4A11 is an EIPA-sensitive Na+ permeable pHi regulator. Am J Physiol Cell Physiol 305:C716–C727

    CAS  PubMed  Google Scholar 

  88. Orlowski A, De Giusti VC, Morgan PE, Aiello EA, Alvarez BV (2012) Binding of carbonic anhydrase IX to extracellular loop 4 of the NBCe1 Na+/HCO3 cotransporter enhances NBCe1-mediated HCO3 influx in the rat heart. Am J Physiol Cell Physiol 303:C69–C80

    Google Scholar 

  89. Park HW, Lee MG (2012) Transepithelial bicarbonate secretion: lessons from the pancreas. Cold Spring Harb Perspect Med 2(10):a009571

    Google Scholar 

  90. Park M, Li Q, Shcheynikov N, Zeng W, Muallem S (2004) NaBC1 is a ubiquitous electrogenic Na+-coupled borate transporter essential for cellular boron homeostasis and cell growth and proliferation. Mol Cell 16:331–341

    CAS  PubMed  Google Scholar 

  91. Parker MD, Boron WF (2013) The divergence, actions, roles, and relatives of sodium-coupled bicarbonate transporters. Physiol Rev 93:803–959

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Parker MD, Qin X, Williamson RC, Toye AM, Boron WF (2012) HCO3 -independent conductance with a mutant Na+/HCO3 cotransporter (SLC4A4) in a case of proximal renal tubular acidosis with hypokalaemic paralysis. J Physiol 590:2009–2034

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Peltz SW, Morsy M, Welch EM, Jacobson A (2013) Ataluren as an agent for therapeutic nonsense suppression. Annu Rev Med 64:407–425

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Perry C, Le H, Grichtchenko II (2007) ANG II and calmodulin/CaMKII regulate surface expression and functional activity of NBCe1 via separate means. Am J Physiol Renal Physiol 293:F68–F77

    CAS  PubMed  Google Scholar 

  95. Perry C, Blaine J, Le H, Grichtchenko II (2006) PMA- and ANG II-induced PKC regulation of the renal Na+-HCO3 cotransporter (hkNBCe1). Am J Physiol Renal Physiol 290:F417–F427

    CAS  PubMed  Google Scholar 

  96. Perry C, Baker OJ, Reyland ME, Grichtchenko II (2009) PKCαβγ- and PKCδ-dependent endocytosis of NBCe1-A and NBCe1-B in salivary parotid acinar cells. Am J Physiol Cell Physiol 297:C1409–C1423

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Piermarini PM, Kim EY, Boron WF (2007) Evidence against a direct interaction between intracellular carbonic anhydrase II and pure C-terminal domains of SLC4 bicarbonate transporters. J Biol Chem 282:1409–1421

    CAS  PubMed  Google Scholar 

  98. Planelles G, Thomas SR, Anagnostopoulos T (1993) Change of apparent stoichiometry of proximal-tubule Na+-HCO3 cotransport upon experimental reversal of its orientation. Proc Natl Acad Sci U S A 90:7406–7410

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Pushkin A, Abuladze N, Gross E, Newman D, Tatishchev S, Lee I, Fedotoff O, Bondar G, Azimov R, Ngyuen M, Kurtz I (2004) Molecular mechanism of kNBC1-carbonic anhydrase II interaction in proximal tubule cells. J Physiol 559:55–565

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Rebello G, Ramesar R, Vorster A, Roberts L, Ehrenreich L, Oppon E, Gama D, Bardien S, Greenberg J, Bonapace G, Waheed A, Shah GN, Sly WS (2004) Apoptosis-inducing signal sequence mutation in carbonic anhydrase IV identified in patients with the RP17 form of retinitis pigmentosa. Proc Natl Acad Sci U S A 101:6617–6622

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Rector FC Jr, Bloomer HA, Seldin DW (1964) Effect of potassium deficiency on the reabsorption of bicarbonate in the proximal tubule of the rat kidney. J Clin Invest 43:1976–1982

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Roberts KE, Randall HT, Sanders HL, Hood M (1955) Effects of potassium on renal tubular reabsorption of bicarbonate. J Clin Invest 34:666–672

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Rodriguez Soriano J (2002) Renal tubular acidosis: the clinical entity. J Am Soc Nephrol 13:2160–2170

    PubMed  Google Scholar 

  104. Romero MF, Hediger MA, Boulpaep EL, Boron WF (1997) Expression cloning and characterization of a renal electrogenic Na+/HCO3 cotransporter. Nature 387:409–413

    CAS  PubMed  Google Scholar 

  105. Sasaki S, Marumo F (1991) Mechanisms of inhibition of proximal acidification by PTH. Am J Physiol 260:F833–F838

    CAS  PubMed  Google Scholar 

  106. Satoh H, Moriyama N, Hara C, Yamada H, Horita S, Kunimi M, Tsukamoto K, Iso ON, Inatomi J, Kawakami H, Kudo A, Endou H, Igarashi T, Goto A, Fujita T, Seki G (2003) Localization of Na+-HCO3 cotransporter (NBC-1) variants in rat and human pancreas. Am J Physiol Cell Physiol 284:C729–C737

    CAS  PubMed  Google Scholar 

  107. Schueler C, Becker HM, McKenna R, Deitmer JW (2011) Transport activity of the sodium bicarbonate cotransporter NBCe1 is enhanced by different isoforms of carbonic anhydrase. PLoS One 6:e27167

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Seki G, Coppola S, Frömter E (1993) The Na+-HCO3 cotransporter operates with a coupling ratio of 2 HCO3 to 1 Na+ in isolated rabbit renal proximal tubule. Pflugers Arch 425:409–416

    CAS  PubMed  Google Scholar 

  109. Sergeev M, Godin AG, Kao L, Abuladze N, Wiseman PW, Kurtz I (2012) Determination of membrane protein transporter oligomerization in native tissue using spatial fluorescence intensity fluctuation analysis. PLoS One 7:e36215

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Shnitsar V, Li J, Li X, Calmettes C, Basu A, Casey JR, Moraes TF, Reithmeier RA (2013) A substrate access tunnel in the cytosolic domain is not an essential feature of the solute carrier 4 (SLC4) family of bicarbonate transporters. J Biol Chem 288:33848–33860

    CAS  PubMed  Google Scholar 

  111. Skelton LA, Boron WF, Zhou Y (2010) Acid–base transport by the renal proximal tubule. J Nephrol 23(Suppl 16):S4–S18

    PubMed  Google Scholar 

  112. Sly WS, Whyte MP, Sundaram V, Tashian RE, Hewett-Emmett D, Guibaud P, Vainsel M, Baluarte HJ, Gruskin A, Al-Mosawi M et al (1985) Carbonic anhydrase II deficiency in 12 families with the autosomal recessive syndrome of osteopetrosis with renal tubular acidosis and cerebral calcification. N Engl J Med 313:139–145

    CAS  PubMed  Google Scholar 

  113. Sonalker PA, Tofovic SP, Jackson EK (2004) Increased expression of the sodium transporter BSC-1 in spontaneously hypertensive rats. J Pharmacol Exp Ther 311:1052–1061

    CAS  PubMed  Google Scholar 

  114. Sonalker PA, Tofovic SP, Bastacky SI, Jackson EK (2008) Chronic noradrenaline increases renal expression of NHE-3, NBC-1, BSC-1 and aquaporin-2. Clin Exp Pharmacol Physiol 35:594–600

    CAS  PubMed  Google Scholar 

  115. Spackman T, Fuchs F, Assali NS (1963) Acid–base status of the fetus in human pregnancy. Obstet Gynecol 22:785–791

    CAS  PubMed  Google Scholar 

  116. Suzuki M, Vaisbich MH, Yamada H, Horita S, Li Y, Sekine T, Moriyama N, Igarashi T, Endo Y, Cardoso TP, de Sa LC, Koch VH, Seki G, Fujita T (2008) Functional analysis of a novel missense NBC1 mutation and of other mutations causing proximal renal tubular acidosis. Pflugers Arch 455:583–593

    CAS  PubMed  Google Scholar 

  117. Suzuki M, Van Paesschen W, Stalmans I, Horita S, Yamada H, Bergmans BA, Legius E, Riant F, De Jonghe P, Li Y, Sekine T, Igarashi T, Fujimoto I, Mikoshiba K, Shimadzu M, Shiohara M, Braverman N, Al-Gazali L, Fujita T, Seki G (2010) Defective membrane expression of the Na+-HCO3 cotransporter NBCe1 is associated with familial migraine. Proc Natl Acad Sci U S A 107:15963–15968

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Tang XB, Kovacs M, Sterling D, Casey JR (1999) Identification of residues lining the translocation pore of human AE1, plasma membrane anion exchange protein. J Biol Chem 274:3557–3564

    CAS  PubMed  Google Scholar 

  119. Thornell IM, Wu J, Liu X, Bevensee MO (2012) PIP2 hydrolysis stimulates the electrogenic Na+-bicarbonate cotransporter NBCe1-B and -C variants expressed in Xenopus laevis oocytes. J Physiol 590:5993–6011

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Toye AM, Parker MD, Daly CM, Lu J, Virkki LV, Pelletier MF, Boron WF (2006) The human NBCe1-A mutant R881C, associated with proximal renal tubular acidosis, retains function but is mistargeted in polarized renal epithelia. Am J Physiol Cell Physiol 291:C788–C801

    CAS  PubMed  Google Scholar 

  121. Usui T, Hara M, Satoh H, Moriyama N, Kagaya H, Amano S, Oshika T, Ishii Y, Ibaraki N, Hara C, Kunimi M, Noiri E, Tsukamoto K, Inatomi J, Kawakami H, Endou H, Igarashi T, Goto A, Fujita T, Araie M, Seki G (2001) Molecular basis of ocular abnormalities associated with proximal renal tubular acidosis. J Clin Invest 108:107–115

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Velic A, Hirsch JR, Bartel J, Thomas R, Schroter R, Stegemann H, Edemir B, August C, Schlatter E, Gabriels G (2004) Renal transplantation modulates expression and function of receptors and transporters of rat proximal tubules. J Am Soc Nephrol 15:967–977

    CAS  PubMed  Google Scholar 

  123. Vilas GL, Loganathan SK, Liu J, Riau AK, Young JD, Mehta JS, Vithana EN, Casey JR (2013) Transmembrane water-flux through SLC4A11: a route defective in genetic corneal diseases. Hum Mol Genet 22:4579–4590

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Wang G, Li C, Kim SW, Ring T, Wen J, Djurhuus JC, Wang W, Nielsen S, Frokiaer J (2008) Ureter obstruction alters expression of renal acid–base transport proteins in rat kidney. Am J Physiol Renal Physiol 295:F497–F506

    CAS  PubMed  Google Scholar 

  125. Watanabe A, Choe S, Chaptal V, Rosenberg JM, Wright EM, Grabe M, Abramson J (2010) The mechanism of sodium and substrate release from the binding pocket of vSGLT. Nature 468:988–991

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Wen X, Kurtz I, Paine ML (2014) Rescue of the disrupted enamel phenotype in Slc4a4-null mice using explant organ culture maintained in a living host kidney capsule. FASEB J.

  127. Wolosin JM, Alvarez LJ, Candia OA (1990) HCO3 transport in the toad lens epithelium is mediated by an electronegative Na+-dependent symport. Am J Physiol 258:C855–C861

    CAS  PubMed  Google Scholar 

  128. Wolosin JM, Chen M, Gordon RE, Stegman Z, Butler GA (1993) Separation of the rabbit ciliary body epithelial layers in viable form: identification of differences in bicarbonate transport. Exp Eye Res 56:401–409

    CAS  PubMed  Google Scholar 

  129. Wu J, McNicholas CM, Bevensee MO (2009) Phosphatidylinositol 4,5-bisphosphate (PIP2) stimulates the electrogenic Na/HCO3 cotransporter NBCe1-A expressed in Xenopus oocytes. Proc Natl Acad Sci U S A 106:14150–14155

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Yamada H, Horita S, Suzuki M, Fujita T, Seki G (2011) Functional role of a putative carbonic anhydrase II-binding domain in the electrogenic Na+–HCO3 cotransporter NBCe1 expressed in Xenopus oocytes. Channels (Austin) 5:106–109

    CAS  Google Scholar 

  131. Yamaguchi S, Ishikawa T (2005) Electrophysiological characterization of native Na+–HCO3 cotransporter current in bovine parotid acinar cells. J Physiol 568:181–197

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Yamaguchi S, Ishikawa T (2008) The electrogenic Na+–HCO3 cotransporter NBCe1-B is regulated by intracellular Mg2+. Biochem Biophys Res Commun 376:100–104

    CAS  PubMed  Google Scholar 

  133. Yamaguchi S, Ishikawa T (2012) IRBIT reduces the apparent affinity for intracellular Mg2+ in inhibition of the electrogenic Na+–HCO3 cotransporter NBCe1-B. Biochem Biophys Res Commun 424:433–438

    CAS  PubMed  Google Scholar 

  134. Yamaguchi T, Ikeda Y, Abe Y, Kuma H, Kang D, Hamasaki N, Hirai T (2010) Structure of the membrane domain of human erythrocyte anion exchanger 1 revealed by electron crystallography. J Mol Biol 397:179–189

    CAS  PubMed  Google Scholar 

  135. Yamashita A, Singh SK, Kawate T, Jin Y, Gouaux E (2005) Crystal structure of a bacterial homologue of Na+/Cl-dependent neurotransmitter transporters. Nature 437:215–223

    Google Scholar 

  136. Yamazaki O, Yamada H, Suzuki M, Horita S, Shirai A, Nakamura M, Seki G, Fujita T (2011) Functional characterization of nonsynonymous single nucleotide polymorphisms in the electrogenic Na+–HCO3 cotransporter NBCe1A. Pflugers Arch 461:249–259

    CAS  PubMed  Google Scholar 

  137. Yamazaki O, Yamada H, Suzuki M, Horita S, Shirai A, Nakamura M, Satoh N, Fujita T, Seki G (2013) Identification of dominant negative effect of L522P mutation in the electrogenic Na+–HCO3 cotransporter NBCe1. Pflugers Arch 465:1281–1291

    CAS  PubMed  Google Scholar 

  138. Yang D, Li Q, So I, Huang CL, Ando H, Mizutani A, Seki G, Mikoshiba K, Thomas PJ, Muallem S (2011) IRBIT governs epithelial secretion in mice by antagonizing the WNK/SPAK kinase pathway. J Clin Invest 121:956–965

    CAS  PubMed Central  PubMed  Google Scholar 

  139. Yang HS, Kim E, Lee S, Park HJ, Cooper DS, Rajbhandari I, Choi I (2009) Mutation of aspartate 555 of the sodium/bicarbonate transporter SLC4A4/NBCe1 induces chloride transport. J Biol Chem 284:15970–15979

    CAS  PubMed Central  PubMed  Google Scholar 

  140. Yoshitomi K, Burckhardt BC, Frömter E (1985) Rheogenic sodium-bicarbonate cotransport in the peritubular cell membrane of rat renal proximal tubule. Pflugers Arch 405:360–366

    CAS  PubMed  Google Scholar 

  141. Yu H, Riederer B, Stieger N, Boron WF, Shull GE, Manns MP, Seidler UE, Bachmann O (2009) Secretagogue stimulation enhances NBCe1 (electrogenic Na+/HCO3 cotransporter) surface expression in murine colonic crypts. Am J Physiol Gastrointest Liver Physiol 297:G1223–G1231

    CAS  PubMed Central  PubMed  Google Scholar 

  142. Zheng Y, Horita S, Hara C, Kunimi M, Yamada H, Sugaya T, Goto A, Fujita T, Seki G (2003) Biphasic regulation of renal proximal bicarbonate absorption by luminal AT1A receptor. J Am Soc Nephrol 14:1116–1122

    CAS  PubMed  Google Scholar 

  143. Zhu Q, Casey JR (2004) The substrate anion selectivity filter in the human erythrocyte Cl/HCO3 exchange protein, AE1. J Biol Chem 279:23565–23573

    CAS  PubMed  Google Scholar 

  144. Zhu Q, Lee DW, Casey JR (2003) Novel topology in C-terminal region of the human plasma membrane anion exchanger, AE1. J Biol Chem 278:3112–3120

    CAS  PubMed  Google Scholar 

  145. Zhu Q, Kao L, Liu W, Newman D, Azimov R, Kurtz I (2012) Extracellular loop 3 forms domain-like structure on the surface of NBCe1-A. J Am Soc Nephrol 23:31A

    Google Scholar 

  146. Zhu Q, Liu W, Kao L, Azimov R, Newman D, Abuladze N, Kurtz I (2013) Topology of NBCe1 protein transmembrane segment 1 and structural effect of proximal renal tubular acidosis (pRTA) S427L mutation. J Biol Chem 288:7894–7906

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Zhu Q, Azimov R, Kao L, Newman D, Liu W, Abuladze N, Pushkin A, Kurtz I (2009) NBCe1-A transmembrane segment 1 lines the ion translocation pathway. J Biol Chem 284:8918–8929

    CAS  PubMed Central  PubMed  Google Scholar 

  148. Zhu Q, Kao L, Azimov R, Newman D, Liu W, Pushkin A, Abuladze N, Kurtz I (2010) Topological location and structural importance of the NBCe1-A residues mutated in proximal renal tubular acidosis. J Biol Chem 285:13416–13426

    CAS  PubMed Central  PubMed  Google Scholar 

  149. Zhu Q, Shao XM, Kao L, Azimov R, Weinstein AM, Newman D, Liu W, Kurtz I (2013) Missense mutation T485S alters NBCe1-A electrogenicity causing proximal renal tubular acidosis. Am J Physiol Cell Physiol 305:C392–C405

    CAS  PubMed  Google Scholar 

  150. Zhu Q, Kao L, Azimov R, Abuladze N, Newman D, Pushkin A, Liu W, Chang C, Kurtz I (2010) Structural and functional characterization of the C-terminal transmembrane region of NBCe1-A. J Biol Chem 285:37178–37187

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the NIH grants DK077162 and DK058563. The author thanks Quansheng Zhu for several insightful discussions and Liyo Kao for technical help in preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ira Kurtz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurtz, I. NBCe1 as a model carrier for understanding the structure–function properties of Na+-coupled SLC4 transporters in health and disease. Pflugers Arch - Eur J Physiol 466, 1501–1516 (2014). https://doi.org/10.1007/s00424-014-1448-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-014-1448-8

Keywords

Navigation