Skip to main content
Log in

The SLC34 family of sodium-dependent phosphate transporters

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The SLC34 family of sodium-driven phosphate cotransporters comprises three members: NaPi-IIa (SLC34A1), NaPi-IIb (SLC34A2), and NaPi-IIc (SLC34A3). These transporters mediate the translocation of divalent inorganic phosphate (HPO4 2−) together with two (NaPi-IIc) or three sodium ions (NaPi-IIa and NaPi-IIb), respectively. Consequently, phosphate transport by NaPi-IIa and NaPi-IIb is electrogenic. NaPi-IIa and NaPi-IIc are predominantly expressed in the brush border membrane of the proximal tubule, whereas NaPi-IIb is found in many more organs including the small intestine, lung, liver, and testis. The abundance and activity of these transporters are mostly regulated by changes in their expression at the cell surface and are determined by interactions with proteins involved in scaffolding, trafficking, or intracellular signaling. All three transporters are highly regulated by factors including dietary phosphate status, hormones like parathyroid hormone, 1,25-OH2 vitamin D3 or FGF23, electrolyte, and acid–base status. The physiological relevance of the three members of the SLC34 family is underlined by rare Mendelian disorders causing phosphaturia, hypophosphatemia, or ectopic organ calcifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abramson J, Wright EM (2009) Structure and function of Na+-symporters with inverted repeats. Curr Opin Struct Biol 19:425–432

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Ambuhl PM, Zajicek HK, Wang H, Puttaparthi K, Levi M (1998) Regulation of renal phosphate transport by acute and chronic metabolic acidosis in the rat. Kidney Int 53:1288–1298

    CAS  PubMed  Google Scholar 

  3. Andrini O, Ghezzi C, Murer H, Forster IC (2008) The leak mode of type II Na+-Pi cotransporters. Channels (Austin) 2:346–357

    Google Scholar 

  4. Andrini O, Meinild AK, Ghezzi C, Murer H, Forster IC (2012) Lithium interactions with Na+-coupled inorganic phosphate cotransporters: insights into the mechanism of sequential cation binding. Am J Physiol Cell Physiol 302:C539–C554

    CAS  PubMed  Google Scholar 

  5. Andrukhova O, Zeitz U, Goetz R, Mohammadi M, Lanske B, Erben RG (2012) FGF23 acts directly on renal proximal tubules to induce phosphaturia through activation of the ERK1/2-SGK1 signaling pathway. Bone 51:621–628

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Arima K, Hines ER, Kiela PR, Drees JB, Collins JF, Ghishan FK (2002) Glucocorticoid regulation and glycosylation of mouse intestinal type IIb Na-Pi cotransporter during ontogeny. Am J Physiol Gastrointest Liver Physiol 283:G426–G434

    CAS  PubMed  Google Scholar 

  7. Ash SL, Goldin BR (1988) Effects of age and estrogen on renal vitamin D metabolism in the female rat. Am J Clin Nutr 47:694–699

    CAS  PubMed  Google Scholar 

  8. Bacconi A, Virkki LV, Biber J, Murer H, Forster IC (2005) Renouncing electrogenicity is not free of charge: switching on electrogenicity in a Na+-coupled phosphate cotransporter. Proc Natl Acad Sci U S A 102:12606–12611

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Bachmann S, Schlichting U, Geist B, Mutig K, Petsch T, Bacic D, Wagner CA, Kaissling B, Biber J, Murer H, Willnow TE (2004) Kidney-specific inactivation of the megalin gene impairs trafficking of renal inorganic sodium phosphate cotransporter (NaPi-IIa). J Am Soc Nephrol 15:892–900

    CAS  PubMed  Google Scholar 

  10. Bacic D, Capuano P, Baum M, Zhang J, Stange G, Biber J, Kaissling B, Moe OW, Wagner CA, Murer H (2005) Activation of dopamine D1-like receptors induces acute internalization of the renal Na+/phosphate cotransporter NaPi-IIa in mouse kidney and OK cells. Am J Physiol Renal Physiol 288:F740–F747

    CAS  PubMed  Google Scholar 

  11. Bacic D, Capuano P, Gisler SM, Pribanic S, Christensen EI, Biber J, Loffing J, Kaissling B, Wagner CA, Murer H (2003) Impaired PTH-induced endocytotic down-regulation of the renal type IIa Na+/Pi-cotransporter in RAP-deficient mice with reduced megalin expression. Pflugers Arch 446:475–484

    CAS  PubMed  Google Scholar 

  12. Bacic D, Hernando N, Traebert M, Lederer E, Völkl H, Biber J, Kaissling B, Murer H (2001) Regulation of the renal type IIa Na/Pi cotransporter by cGMP. Pflugers Arch 443:306–313

    CAS  PubMed  Google Scholar 

  13. Bacic D, Lehir M, Biber J, Kaissling B, Murer H, Wagner CA (2006) The renal Na+/phosphate cotransporter NaPi-IIa is internalized via the receptor-mediated endocytic route in response to parathyroid hormone. Kidney Int 69:495–503

    CAS  PubMed  Google Scholar 

  14. Bacic D, Schulz N, Biber J, Kaissling B, Murer H, Wagner CA (2003) Involvement of the MAPK-kinase pathway in the PTH-mediated regulation of the proximal tubule type IIa Na+/Pi cotransporter in mouse kidney. Pflugers Arch 446:52–60

    CAS  PubMed  Google Scholar 

  15. Beck L, Karaplis AC, Amizuka N, Hewson AS, Ozawa H, Tenenhouse HS (1998) Targeted inactivation of Npt2 in mice leads to severe renal phosphate wasting, hypercalciuria, and skeletal abnormalities. Proc Natl Acad Sci U S A 95:5372–5377

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Beene LC, Halluer J, Yoshinaga M, Hamdi M, Liu Z (2011) Pentavalent arsenate transport by zebrafish phosphate transporter NaPi-IIb1. Zebrafish 8:125–131

    CAS  PubMed  Google Scholar 

  17. Bergwitz C, Juppner H (2010) Regulation of phosphate homeostasis by PTH, vitamin D, and FGF23. Annu Rev Med 61:91–104

    CAS  PubMed  Google Scholar 

  18. Bergwitz C, Juppner H (2012) FGF23 and syndromes of abnormal renal phosphate handling. Adv Exp Med Biol 728:41–64

    CAS  PubMed  Google Scholar 

  19. Bergwitz C, Roslin NM, Tieder M, Loredo-Osti JC, Bastepe M, Abu-Zahra H, Frappier D, Burkett K, Carpenter TO, Anderson D, Garabedian M, Sermet I, Fujiwara TM, Morgan K, Tenenhouse HS, Juppner H (2006) SLC34A3 mutations in patients with hereditary hypophosphatemic rickets with hypercalciuria predict a key role for the sodium-phosphate cotransporter NaPi-IIc in maintaining phosphate homeostasis. Am J Hum Genet 78:179–192

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Berndt T, Kumar R (2007) Phosphatonins and the regulation of phosphate homeostasis. Annu Rev Physiol 69:341–359

    CAS  PubMed  Google Scholar 

  21. Biber J, Hernando N, Forster I (2013) Phosphate transporters and their function. Annu Rev Physiol 75:535–550

    CAS  PubMed  Google Scholar 

  22. Borowitz SM, Granrud GS (1992) Glucocorticoids inhibit intestinal phosphate absorption in developing rabbits. J Nutr 122:1273–1279

    CAS  PubMed  Google Scholar 

  23. Borowitz SM, Granrud GS (1992) Ontogeny of intestinal phosphate absorption in rabbits. Am J Physiol 262:G847–G853

    CAS  PubMed  Google Scholar 

  24. Bourgeois S, Capuano P, Stange G, Muhlemann R, Murer H, Biber J, Wagner CA (2013) The phosphate transporter NaPi-IIa determines the rapid renal adaptation to dietary phosphate intake in mouse irrespective of persistently high FGF23 levels. Pflugers Arch 465:1557–1572

    CAS  PubMed  Google Scholar 

  25. Brazy PC, Gullans SR, Mandel LJ, Dennis VW (1982) Metabolic requirement for inorganic phosphate by the rabbit proximal tubule. J Clin Invest 70:53–62

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Brazy PC, Mandel LJ, Gullans SR, Soltoff SP (1984) Interactions between phosphate and oxidative metabolism in proximal renal tubules. Am J Physiol 247:F575–F581

    CAS  PubMed  Google Scholar 

  27. Breusegem SY, Takahashi H, Giral-Arnal H, Wang X, Jiang T, Verlander JW, Wilson P, Miyazaki-Anzai S, Sutherland E, Caldas Y, Blaine JT, Segawa H, Miyamoto K, Barry NP, Levi M (2009) Differential regulation of the renal sodium-phosphate cotransporters NaPi-IIa, NaPi-IIc, and PiT-2 in dietary potassium deficiency. Am J Physiol Renal Physiol 297:F350–F361

    CAS  PubMed  Google Scholar 

  28. Brodie MJ, Boobis AR, Hillyard CJ, Abeyasekera G, Stevenson JC, MacIntyre I, Park BK (1982) Effect of rifampicin and isoniazid on vitamin D metabolism. Clin Pharmacol Ther 32:525–530

    CAS  PubMed  Google Scholar 

  29. Brunelli SM, Goldfarb S (2007) Hypophosphatemia: clinical consequences and management. J Am Soc Nephrol 18:1999–2003

    CAS  PubMed  Google Scholar 

  30. Capuano P, Bacic D, Roos M, Gisler SM, Stange G, Biber J, Kaissling B, Weinman EJ, Shenolikar S, Wagner CA, Murer H (2007) Defective coupling of apical PTH receptors to phospholipase C prevents internalization of the Na+-phosphate cotransporter NaPi-IIa in Nherf1-deficient mice. Am J Physiol Cell Physiol 292:C927–C934

    CAS  PubMed  Google Scholar 

  31. Capuano P, Radanovic T, Wagner CA, Bacic D, Kato S, Uchiyama Y, St-Arnoud R, Murer H, Biber J (2005) Intestinal and renal adaptation to a low-Pi diet of type II NaPi cotransporters in vitamin D receptor- and 1alphaOHase-deficient mice. Am J Physiol Cell Physiol 288:C429–C434

    CAS  PubMed  Google Scholar 

  32. Coladonato JA (2005) Control of hyperphosphatemia among patients with ESRD. J Am Soc Nephrol 16(Suppl 2):S107–S114

    CAS  PubMed  Google Scholar 

  33. Corut A, Senyigit A, Ugur SA, Altin S, Ozcelik U, Calisir H, Yildirim Z, Gocmen A, Tolun A (2006) Mutations in SLC34A2 cause pulmonary alveolar microlithiasis and are possibly associated with testicular microlithiasis. Am J Hum Genet 79:650–656

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Custer M, Lötscher M, Biber J, Murer H, Kaissling B (1994) Expression of Na-Pi cotransport in rat kidney: localization by RT-PCR and immunohistochemistry. Am J Physiol 266:F767–F774

    CAS  PubMed  Google Scholar 

  35. Deliot N, Hernando N, Horst-Liu Z, Gisler SM, Capuano P, Wagner CA, Bacic D, O’Brien S, Biber J, Murer H (2005) Parathyroid hormone treatment induces dissociation of type IIa Na+-P(i) cotransporter-Na+/H+ exchanger regulatory factor-1 complexes. Am J Physiol Cell Physiol 289:C159–C167

    CAS  PubMed  Google Scholar 

  36. Dobrinskikh E, Lanzano L, Rachelson J, Cranston D, Moldovan R, Lei T, Gratton E, Doctor RB (2013) Shank2 contributes to the apical retention and intracellular redistribution of NaPiIIa in OK cells. Am J Physiol Cell Physiol 304:C561–C573

    CAS  PubMed  Google Scholar 

  37. Farrow EG, Davis SI, Summers LJ, White KE (2009) Initial FGF23-mediated signaling occurs in the distal convoluted tubule. J Am Soc Nephrol 20:955–960

    CAS  PubMed  Google Scholar 

  38. Farrow EG, White KE (2010) Recent advances in renal phosphate handling. Nat Rev Nephrol 6:207–217

    PubMed Central  PubMed  Google Scholar 

  39. Ferraro C, Ladizesky M, Cabrejas M, Montoreano R, Mautalen C (1976) Intestinal absorption of phosphate: action of protein synthesis inhibitors and glucocorticoids in the rat. J Nutr 106:1752–1756

    CAS  PubMed  Google Scholar 

  40. Ferreira Francisco FA, Pereira e Silva JL, Hochhegger B, Zanetti G, Marchiori E (2013) Pulmonary alveolar microlithiasis. State-of-the-art review. Respir Med 107:1–9

    PubMed  Google Scholar 

  41. Foller M, Kempe DS, Boini KM, Pathare G, Siraskar B, Capuano P, Alesutan I, Sopjani M, Stange G, Mohebbi N, Bhandaru M, Ackermann TF, Judenhofer MS, Pichler BJ, Biber J, Wagner CA, Lang F (2011) PKB/SGK-resistant GSK3 enhances phosphaturia and calciuria. J Am Soc Nephrol 22:873–880

    PubMed  Google Scholar 

  42. Forrest LR, Kramer R, Ziegler C (2011) The structural basis of secondary active transport mechanisms. Biochim Biophys Acta 1807:167–188

    CAS  PubMed  Google Scholar 

  43. Forster I, Hernando N, Biber J, Murer H (1998) The voltage dependence of a cloned mammalian renal type II Na+/Pi cotransporter (NaPi-2). J Gen Physiol 112:1–18

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Forster I, Hernando N, Sorribas V, Werner A (2011) Phosphate transporters in renal, gastrointestinal, and other tissues. Adv Chron Kidney Dis 18:63–76

    Google Scholar 

  45. Forster IC, Biber J, Murer H (2000) Proton-sensitive transitions of renal type II Na+-coupled phosphate cotransporter kinetics. Biophys J 79:215–230

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Forster IC, Hernando N, Biber J, Murer H (2006) Proximal tubular handling of phosphate: a molecular perspective. Kidney Int 70:1548–1559

    CAS  PubMed  Google Scholar 

  47. Forster IC, Hernando N, Biber J, Murer H (2012) Phosphate transport kinetics and structure-function relationships of SLC34 and SLC20 proteins. Curr Top Membr 70:313–356

    CAS  PubMed  Google Scholar 

  48. Forster IC, Kohler K, Biber J, Murer H (2002) Forging the link between structure and function of electrogenic cotransporters: the renal type IIa Na+/Pi cotransporter as a case study. Prog Biophys Mol Biol 80:69–108

    CAS  PubMed  Google Scholar 

  49. Forster IC, Loo DD, Eskandari S (1999) Stoichiometry and Na+ binding cooperativity of rat and flounder renal type II Na+-Pi cotransporters. Am J Physiol 276:F644–F649

    CAS  PubMed  Google Scholar 

  50. Forster IC, Virkki LV, Bossi E, Murer H, Biber J (2006) Electrogenic kinetics of a mammalian intestinal Na+/Pi-cotransporter. J Membr Biol 212:177–190

    CAS  PubMed  Google Scholar 

  51. Freeman D, Bartlett S, Radda G, Ross B (1983) Energetics of sodium transport in the kidney. Saturation transfer 31P-NMR. Biochim Biophys Acta 762:325–336

    CAS  PubMed  Google Scholar 

  52. Ghezzi C, Meinild AK, Murer H, Forster IC (2011) Voltage- and substrate-dependent interactions between sites in putative re-entrant domains of a Na+-coupled phosphate cotransporter. Pflugers Arch 461:645–663

    CAS  PubMed  Google Scholar 

  53. Ghezzi C, Murer H, Forster IC (2009) Substrate interactions of the electroneutral Na+-coupled inorganic phosphate cotransporter (NaPi-IIc). J Physiol 587:4293–4307

    CAS  PubMed  Google Scholar 

  54. Giral H, Caldas Y, Sutherland E, Wilson P, Breusegem S, Barry N, Blaine J, Jiang T, Wang XX, Levi M (2009) Regulation of rat intestinal Na-dependent phosphate transporters by dietary phosphate. Am J Physiol Renal Physiol 297:F1466–F1475

    CAS  PubMed  Google Scholar 

  55. Giral H, Cranston D, Lanzano L, Caldas Y, Sutherland E, Rachelson J, Dobrinskikh E, Weinman EJ, Doctor RB, Gratton E, Levi M (2012) NHE3 regulatory factor 1 (NHERF1) modulates intestinal sodium-dependent phosphate transporter (NaPi-2b) expression in apical microvilli. J Biol Chem 287:35047–35056

    CAS  PubMed  Google Scholar 

  56. Gisler SM, Kittanakom S, Fuster D, Wong V, Bertic M, Radanovic T, Hall RA, Murer H, Biber J, Markovich D, Moe OW, Stagljar I (2008) Monitoring protein-protein interactions between the mammalian integral membrane transporters and PDZ-interacting partners using a modified split-ubiquitin membrane yeast two-hybrid system. Mol Cell Proteomics 7:1362–1377

    CAS  PubMed  Google Scholar 

  57. Gisler SM, Stagljar I, Traebert M, Bacic D, Biber J, Murer H (2001) Interaction of the type IIa Na/Pi cotransporter with PDZ proteins. J Biol Chem 276(12):9206–9213

    CAS  PubMed  Google Scholar 

  58. Grewer C, Rauen T (2005) Electrogenic glutamate transporters in the CNS: molecular mechanism, pre-steady-state kinetics, and their impact on synaptic signaling. J Membr Biol 203:1–20

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Haito-Sugino S, Ito M, Ohi A, Shiozaki Y, Kangawa N, Nishiyama T, Aranami F, Sasaki S, Mori A, Kido S, Tatsumi S, Segawa H, Miyamoto KI (2011) Processing and stability of type IIc sodium-dependent phosphate cotransporter mutations in patients with hereditary hypophosphatemic rickets with hypercalciuria. Am J Physiol Cell Physiol 302:C1316–C1330

    PubMed  Google Scholar 

  60. Hatano R, Fujii E, Segawa H, Mukaisho K, Matsubara M, Miyamoto K, Hattori T, Sugihara H, Asano S (2013) Ezrin, a membrane cytoskeletal cross-linker, is essential for the regulation of phosphate and calcium homeostasis. Kidney Int 83:41–49

    CAS  PubMed  Google Scholar 

  61. Hattenhauer O, Traebert M, Murer H, Biber J (1999) Regulation of small intestinal Na-Pi type IIb cotransporter by dietary phosphate intake. Am J Physiol 277:G756–G762

    CAS  PubMed  Google Scholar 

  62. Hayes G, Busch A, Lötscher M, Waldegger S, Lang F, Verrey F, Biber J, Murer H (1994) Role of N-linked glycosylation in rat renal Na/Pi-cotransport. J Biol Chem 269:24143–24149

    CAS  PubMed  Google Scholar 

  63. Hazama A, Loo DD, Wright EM (1997) Presteady-state currents of the rabbit Na+/glucose cotransporter (SGLT1). J Membr Biol 155:175–186

    CAS  PubMed  Google Scholar 

  64. Hegan PS, Giral H, Levi M, Mooseker MS (2012) Myosin VI is required for maintenance of brush border structure, composition, and membrane trafficking functions in the intestinal epithelial cell. Cytoskeleton (Hoboken) 69:235–251

    CAS  Google Scholar 

  65. Henning SJ (1978) Plasma concentrations of total and free corticosterone during development in the rat. Am J Physiol 235:E451–E456

    CAS  PubMed  Google Scholar 

  66. Hernando N, Deliot N, Gisler SM, Lederer E, Weinman EJ, Biber J, Murer H (2002) PDZ-domain interactions and apical expression of type IIa Na/Pi cotransporters. Proc Natl Acad Sci U S A 99:11957–11962

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Hernando N, Karim-Jimenez Z, Biber J, Murer H (2001) Molecular determinants for apical expression and regulatory membrane retrieval of the type IIa Na/Pi cotransporter. Kidney Int 60:431–435

    CAS  PubMed  Google Scholar 

  68. Hilfiker H, Hattenhauer O, Traebert M, Forster I, Murer H, Biber J (1998) Characterization of a murine type II sodium-phosphate cotransporter expressed in mammalian small intestine. Proc Natl Acad Sci U S A 95:14564–14569

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Hu MC, Shi M, Zhang J, Pastor J, Nakatani T, Lanske B, Shawkat Razzaque M, Rosenblatt KP, Baum MG, Kuro OM, Moe OW (2010) Klotho: a novel phosphaturic substance acting as an autocrine enzyme in the renal proximal tubule. FASEB J 24:3438–3450

    CAS  PubMed  Google Scholar 

  70. Iwaki T, Sandoval-Cooper MJ, Tenenhouse HS, Castellino FJ (2008) A missense mutation in the sodium phosphate co-transporter Slc34a1 impairs phosphate homeostasis. J Am Soc Nephrol 19:1753–1762

    CAS  PubMed  Google Scholar 

  71. Jaeger P, Bonjour JP, Karlmark B, Stanton B, Kirk RG, Duplinsky T, Giebisch G (1983) Influence of acute potassium loading on renal phosphate transport in the rat kidney. Am J Physiol 245:F601–F605

    CAS  PubMed  Google Scholar 

  72. Jaeger P, Karlmark B, Stanton B, Kirk RG, Duplinsky T, Giebisch G (1980) Micropuncture study of distal tubular activation of phosphate reabsorption in the rat. Adv Exp Med Biol 128:77–82

    CAS  PubMed  Google Scholar 

  73. Jaureguiberry G, Carpenter TO, Forman S, Juppner H, Bergwitz C (2008) A novel missense mutation in SLC34A3 that causes hereditary hypophosphatemic rickets with hypercalciuria in humans identifies threonine 137 as an important determinant of sodium-phosphate cotransport in NaPi-IIc. Am J Physiol Renal Physiol 295:F371–F379

    CAS  PubMed  Google Scholar 

  74. Jehle AW, Forgo J, Biber J, Lederer E, Krapf R, Murer H (1998) IGF-I and vanadate stimulate Na/Pi-cotransport in OK cells by increasing type II Na/Pi-cotransporter protein stability. Pflugers Arch 437:149–154

    CAS  PubMed  Google Scholar 

  75. Juppner H (2011) Phosphate and FGF-23. Kidney Int Suppl:S24–27

  76. Karim-Jimenez Z, Hernando N, Biber J, Murer H (2000) Requirement of a leucine residue for (apical) membrane expression of type IIb NaPi cotransporters. Proc Natl Acad Sci U S A 97:2916–2921

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Karim-Jimenez Z, Hernando N, Biber J, Murer H (2001) Molecular determinants for apical expression of the renal type IIa Na+/Pi-cotransporter. Pflugers Arch 442:782–790

    CAS  PubMed  Google Scholar 

  78. Karim Z, Gerard B, Bakouh N, Alili R, Leroy C, Beck L, Silve C, Planelles G, Urena-Torres P, Grandchamp B, Friedlander G, Prie D (2008) NHERF1 mutations and responsiveness of renal parathyroid hormone. N Engl J Med 359:1128–1135

    CAS  PubMed  Google Scholar 

  79. Karlin A, Akabas MH (1998) Substituted-cysteine accessibility method. Methods Enzymol 293:123–145

    CAS  PubMed  Google Scholar 

  80. Kempe DS, Ackermann TF, Boini KM, Klaus F, Umbach AT, Dermaku-Sopjani M, Judenhofer MS, Pichler BJ, Capuano P, Stange G, Wagner CA, Birnbaum MJ, Pearce D, Foller M, Lang F (2010) Akt2/PKBbeta-sensitive regulation of renal phosphate transport. Acta Physiol (Oxf) 200:75–85

    CAS  Google Scholar 

  81. Keusch I, Traebert M, Lötscher M, Kaissling B, Murer H, Biber J (1998) Parathyroid hormone and dietary phosphate provoke a lysosomal routing of the proximal tubular Na/Pi-cotransporter type II. Kidney Int 54:1224–1232

    CAS  PubMed  Google Scholar 

  82. Kohler K, Forster IC, Lambert G, Biber J, Murer H (2000) The functional unit of the renal type IIa Na+/Pi cotransporter is a monomer. J Biol Chem 275:26113–26120

    CAS  PubMed  Google Scholar 

  83. Kohler K, Forster IC, Stange G, Biber J, Murer H (2002) Identification of functionally important sites in the first intracellular loop of the NaPi-IIa cotransporter. Am J Physiol 282:F687–F696

    CAS  Google Scholar 

  84. Konno Y, Moore R, Kamiya N, Negishi M (2010) Nuclear xenobiotic receptor PXR-null mouse exhibits hypophosphatemia and represses the Na/Pi-cotransporter SLC34A2. Pharmacogenet Genomics 20:9–17

    CAS  PubMed  Google Scholar 

  85. Kurosu H, Ogawa Y, Miyoshi M, Yamamoto M, Nandi A, Rosenblatt KP, Baum MG, Schiavi S, Hu MC, Moe OW, Kuro-o M (2006) Regulation of fibroblast growth factor-23 signaling by klotho. J Biol Chem 281:6120–6123

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Lambert G, Forster IC, Stange G, Biber J, Murer H (1999) Properties of the mutant Ser-460-Cys implicate this site in a functionally important region of the type IIa Na+/Pi cotransporter protein. J Gen Physiol 114:637–652

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Lambert G, Forster IC, Stange G, Kohler K, Biber J, Murer H (2001) Cysteine mutagenesis reveals novel structure-function features within the predicted third extracellular loop of the type IIa Na+/Pi cotransporter. J Gen Physiol 117:533–546

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Lee DB, Walling MW, Brautbar N (1986) Intestinal phosphate absorption: influence of vitamin D and non-vitamin D factors. Am J Physiol 250:G369–G373

    CAS  PubMed  Google Scholar 

  89. Levi M, Lötscher M, Sorribas V, Custer M, Arar M, Kaissling B, Murer H, Biber J (1994) Cellular mechanisms of acute and chronic adaptation of rat renal Pi transporter to alterations in dietary Pi. Am J Physiol 267:F900–F908

    CAS  PubMed  Google Scholar 

  90. Loghman-Adham M (1996) Use of phosphonocarboxylic acids as inhibitors of sodium-phosphate cotransport. Gen Pharmacol 27:305–312

    CAS  PubMed  Google Scholar 

  91. Loo DD, Hirayama BA, Cha A, Bezanilla F, Wright EM (2005) Perturbation analysis of the voltage-sensitive conformational changes of the Na+/glucose cotransporter. J Gen Physiol 125:13–36

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Lorenz-Depiereux B, Benet-Pages A, Eckstein G, Tenenbaum-Rakover Y, Wagenstaller J, Tiosano D, Gershoni-Baruch R, Albers N, Lichtner P, Schnabel D, Hochberg Z, Strom TM (2006) Hereditary hypophosphatemic rickets with hypercalciuria is caused by mutations in the sodium-phosphate cotransporter gene SLC34A3. Am J Hum Genet 78:193–201

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Magagnin S, Werner A, Markovich D, Sorribas V, Stange G, Biber J, Murer H (1993) Expression cloning of human and rat renal cortex Na/Pi cotransport. Proc Natl Acad Sci U S A 90(13):5979–5983

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Magen D, Berger L, Coady MJ, Ilivitzki A, Militianu D, Tieder M, Selig S, Lapointe JY, Zelikovic I, Skorecki K (2010) A loss-of-function mutation in NaPi-IIa and renal Fanconi’s syndrome. N Engl J Med 362:1102–1109

    CAS  PubMed  Google Scholar 

  95. Mahon MJ, Donowitz M, Yun CC, Segre GV (2002) Na+/H+ exchanger regulatory factor 2 directs parathyroid hormone 1 receptor signalling. Nature 417:858–861

    CAS  PubMed  Google Scholar 

  96. Marks J, Debnam ES, Unwin RJ (2010) Phosphate homeostasis and the renal-gastrointestinal axis. Am J Physiol Renal Physiol 299:F285–F296

    CAS  PubMed  Google Scholar 

  97. Marks J, Srai SK, Biber J, Murer H, Unwin RJ, Debnam ES (2006) Intestinal phosphate absorption and the effect of vitamin D: a comparison of rats with mice. Exp Physiol 91:531–537

    CAS  PubMed  Google Scholar 

  98. Martin A, David V, Quarles LD (2012) Regulation and function of the FGF23/klotho endocrine pathways. Physiol Rev 92:131–155

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Matsuo A, Negoro T, Seo T, Kitao Y, Shindo M, Segawa H, Miyamoto K (2005) Inhibitory effect of JTP-59557, a new triazole derivative, on intestinal phosphate transport in vitro and in vivo. Eur J Pharmacol 517:111–119

    CAS  PubMed  Google Scholar 

  100. McWilliams RR, Breusegem SY, Brodsky KF, Kim E, Levi M, Doctor RB (2005) Shank2E binds NaP(i) cotransporter at the apical membrane of proximal tubule cells. Am J Physiol Cell Physiol 289:C1042–C1051

    CAS  PubMed  Google Scholar 

  101. Meinild AK, Forster IC (2012) Using lithium to probe sequential cation interactions with GAT1. Am J Physiol Cell Physiol 302(11):C1661–C1675

    CAS  PubMed  Google Scholar 

  102. Mohrluder J, Schwarten M, Willbold D (2009) Structure and potential function of gamma-aminobutyrate type A receptor-associated protein. FEBS J 276:4989–5005

    PubMed  Google Scholar 

  103. Murer H, Hernando N, Forster I, Biber J (2000) Proximal tubular phosphate reabsorption: molecular mechanisms. Physiol Rev 80:1373–1409

    CAS  PubMed  Google Scholar 

  104. Murer H, Hernando N, Forster I, Biber J (2003) Regulation of Na/Pi transporter in the proximal tubule. Annu Rev Physiol 65:531–542

    CAS  PubMed  Google Scholar 

  105. Nishimura M, Naito S (2008) Tissue-specific mRNA expression profiles of human solute carrier transporter superfamilies. Drug Metab Pharmacokinet 23:22–44

    CAS  PubMed  Google Scholar 

  106. Nowik M, Picard N, Stange G, Capuano P, Tenenhouse HS, Biber J, Murer H, Wagner CA (2008) Renal phosphaturia during metabolic acidosis revisited: molecular mechanisms for decreased renal phosphate reabsorption. Pflugers Arch 457:539–549

    CAS  PubMed  Google Scholar 

  107. Okamoto PM, Gamby C, Wells D, Fallon J, Vallee RB (2001) Dynamin isoform-specific interaction with the shank/ProSAP scaffolding proteins of the postsynaptic density and actin cytoskeleton. J Biol Chem 276:48458–48465

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Pathare G, Foller M, Daryadel A, Mutig K, Bogatikov E, Fajol A, Almilaji A, Michael D, Stange G, Voelkl J, Wagner CA, Bachmann S, Lang F (2012) OSR1-sensitive renal tubular phosphate reabsorption. Kidney Blood Press Res 36:149–161

    CAS  PubMed  Google Scholar 

  109. Pathare G, Foller M, Michael D, Walker B, Hierlmeier M, Mannheim JG, Pichler BJ, Lang F (2012) Enhanced FGF23 serum concentrations and phosphaturia in gene targeted mice expressing WNK-resistant SPAK. Kidney Blood Press Res 36:355–364

    CAS  PubMed  Google Scholar 

  110. Patti M, Ghezzi C, Forster IC (2013) Conferring electrogenicity to the electroneutral phosphate cotransporter NaPi-IIc (SLC34A3) reveals an internal cation release step. Pflugers Arch 465:1261–1279

    CAS  PubMed  Google Scholar 

  111. Pfister MF, Ruf I, Stange G, Ziegler U, Lederer E, Biber J, Murer H (1998) Parathyroid hormone leads to the lysosomal degradation of the renal type II Na/Pi cotransporter. Proc Natl Acad Sci U S A 95:1909–1914

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Picard N, Capuano P, Stange G, Mihailova M, Kaissling B, Murer H, Biber J, Wagner CA (2010) Acute parathyroid hormone differentially regulates renal brush border membrane phosphate cotransporters. Pflugers Arch 460:677–687

    CAS  PubMed  Google Scholar 

  113. Prie D, Huart V, Bakouh N, Planelles G, Dellis O, Gerard B, Hulin P, Benque-Blanchet F, Silve C, Grandchamp B, Friedlander G (2002) Nephrolithiasis and osteoporosis associated with hypophosphatemia caused by mutations in the type 2a sodium-phosphate cotransporter. N Engl J Med 347:983–991

    CAS  PubMed  Google Scholar 

  114. Radanovic T, Wagner CA, Murer H, Biber J (2005) Regulation of intestinal phosphate transport. I. Segmental expression and adaptation to low-P(i) diet of the type IIb Na+-Pi cotransporter in mouse small intestine. Am J Physiol Gastrointest Liver Physiol 288:G496–G500

    CAS  PubMed  Google Scholar 

  115. Razzaque MS (2013) Phosphate toxicity and vascular mineralization. Contrib Nephrol 180:74–85

    CAS  PubMed  Google Scholar 

  116. Reining SC, Gisler SM, Fuster D, Moe OW, O’Sullivan GA, Betz H, Biber J, Murer H, Hernando N (2009) GABARAP deficiency modulates expression of NaPi-IIa in renal brush-border membranes. Am J Physiol Renal Physiol 296:F1118–F1128

    CAS  PubMed  Google Scholar 

  117. Reining SC, Liesegang A, Betz H, Biber J, Murer H, Hernando N (2010) Expression of renal and intestinal Na/Pi cotransporters in the absence of GABARAP. Pflugers Arch 460:207–217

    CAS  PubMed  Google Scholar 

  118. Sabbagh Y, O’Brien SP, Song W, Boulanger JH, Stockmann A, Arbeeny C, Schiavi SC (2009) Intestinal npt2b plays a major role in phosphate absorption and homeostasis. J Am Soc Nephrol 20:2348–2358

    CAS  PubMed  Google Scholar 

  119. Saito H, Kusano K, Kinosaki M, Ito H, Hirata M, Segawa H, Miyamoto K, Fukushima N (2003) Human fibroblast growth factor-23 mutants suppress Na+-dependent phosphate co-transport activity and 1alpha,25-dihydroxyvitamin D3 production. J Biol Chem 278:2206–2211

    CAS  PubMed  Google Scholar 

  120. Screpanti E, Hunte C (2007) Discontinuous membrane helices in transport proteins and their correlation with function. J Struct Biol 159:261–267

    CAS  PubMed  Google Scholar 

  121. Segawa H, Kaneko I, Takahashi A, Kuwahata M, Ito M, Ohkido I, Tatsumi S, Miyamoto K (2002) Growth-related renal type II Na/Pi cotransporter. J Biol Chem 277:19665–19672

    CAS  PubMed  Google Scholar 

  122. Segawa H, Kaneko I, Takahashi A, Kuwahata M, Ito M, Ohkido I, Tatsumi S, Miyamoto K (2002) Growth-related renal type II Na/Pi cotransporter. J Biol Chem 277:19665–19672

    CAS  PubMed  Google Scholar 

  123. Segawa H, Kaneko I, Yamanaka S, Ito M, Kuwahata M, Inoue Y, Kato S, Miyamoto K (2004) Intestinal Na-P(i) cotransporter adaptation to dietary P(i) content in vitamin D receptor null mice. Am J Physiol Renal Physiol 287:F39–F47

    CAS  PubMed  Google Scholar 

  124. Segawa H, Kawakami E, Kaneko I, Kuwahata M, Ito M, Kusano K, Saito H, Fukushima N, Miyamoto K (2003) Effect of hydrolysis-resistant FGF23-R179Q on dietary phosphate regulation of the renal type-II Na/Pi transporter. Pflugers Arch 446:585–592

    CAS  PubMed  Google Scholar 

  125. Segawa H, Onitsuka A, Kuwahata M, Hanabusa E, Furutani J, Kaneko I, Tomoe Y, Aranami F, Matsumoto N, Ito M, Matsumoto M, Li M, Amizuka N, Miyamoto K (2009) Type IIc sodium-dependent phosphate transporter regulates calcium metabolism. J Am Soc Nephrol 20:104–113

    CAS  PubMed  Google Scholar 

  126. Segawa H, Yamanaka S, Ito M, Kuwahata M, Shono M, Yamamoto T, Miyamoto K (2005) Internalization of renal type IIc Na-Pi cotransporter in response to a high-phosphate diet. Am J Physiol Renal Physiol 288:F587–F596

    CAS  PubMed  Google Scholar 

  127. Segawa H, Yamanaka S, Onitsuka A, Tomoe Y, Kuwahata M, Ito M, Taketani Y, Miyamoto K (2007) Parathyroid hormone-dependent endocytosis of renal type IIc Na-Pi cotransporter. Am J Physiol Renal Physiol 292:F395–F403

    CAS  PubMed  Google Scholar 

  128. Shenolikar S, Voltz JW, Minkoff CM, Wade JB, Weinman EJ (2002) Targeted disruption of the mouse NHERF-1 gene promotes internalization of proximal tubule sodium-phosphate cotransporter type IIa and renal phosphate wasting. Proc Natl Acad Sci U S A 99:11470–11475

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Shojaiefard M, Hosseinzadeh Z, Pakladok T, Bhavsar SK, Lang F (2013) Stimulation of Na+ coupled phosphate transporter NaPiIIa by janus kinase JAK2. Biochem Biophys Res Commun 431:186–191

    CAS  PubMed  Google Scholar 

  130. Stauber A, Radanovic T, Stange G, Murer H, Wagner CA, Biber J (2005) Regulation of intestinal phosphate transport. II. Metabolic acidosis stimulates Na(+)-dependent phosphate absorption and expression of the Na+-Pi cotransporter NaPi-IIb in small intestine. Am J Physiol Gastrointest Liver Physiol 288:G501–G506

    CAS  PubMed  Google Scholar 

  131. Tonelli M (2013) Serum phosphorus in people with chronic kidney disease: you are what you eat. Kidney Int 84:871–873

    CAS  PubMed  Google Scholar 

  132. Tonelli M, Curhan G, Pfeffer M, Sacks F, Thadhani R, Melamed ML, Wiebe N, Muntner P (2009) Relation between alkaline phosphatase, serum phosphate, and all-cause or cardiovascular mortality. Circulation 120:1784–1792

    CAS  PubMed  Google Scholar 

  133. Traebert M, Hattenhauer O, Murer H, Kaissling B, Biber J (1999) Expression of type II Na-Pi cotransporter in alveolar type II cells. Am J Physiol 277:L868–L873

    CAS  PubMed  Google Scholar 

  134. Traebert M, Roth J, Biber J, Murer H, Kaissling B (2000) Internalization of proximal tubular type II Na-Pi cotransporter by PTH: immunogold electron microscopy. Am J Physiol Renal Physiol 278:F148–F154

    CAS  PubMed  Google Scholar 

  135. Villa-Bellosta R, Bogaert YE, Levi M, Sorribas V (2007) Characterization of phosphate transport in rat vascular smooth muscle cells. Implications for vascular calcification. Arterioscler Thromb Vasc Biol 27:1030–1036

    CAS  PubMed  Google Scholar 

  136. Villa-Bellosta R, Sorribas V (2008) Role of rat sodium/phosphate cotransporters in the cell membrane transport of arsenate. Toxicol Appl Pharmacol 232:125–134

    CAS  PubMed  Google Scholar 

  137. Villa-Bellosta R, Sorribas V (2009) Different effects of arsenate and phosphonoformate on P(i) transport adaptation in opossum kidney cells. Am J Physiol Cell Physiol 297:C516–C525

    CAS  PubMed  Google Scholar 

  138. Villa-Bellosta R, Sorribas V (2010) Arsenate transport by sodium/phosphate cotransporter type IIb. Toxicol Appl Pharmacol 247:36–40

    CAS  PubMed  Google Scholar 

  139. Virkki LV, Biber J, Murer H, Forster IC (2007) Phosphate transporters: a tale of two solute carrier families. Am J Physiol Renal Physiol 293:F643–F654

    CAS  PubMed  Google Scholar 

  140. Virkki LV, Forster IC, Hernando N, Biber J, Murer H (2003) Functional characterization of two naturally occurring mutations in the human sodium-phosphate cotransporter type IIa. J Bone Miner Res 18:2135–2141

    CAS  PubMed  Google Scholar 

  141. Virkki LV, Murer H, Forster IC (2006) Mapping conformational changes of the type IIb Na+/Pi cotransporter by voltage clamp fluorometry. J Biol Chem 281:28837–28849

    CAS  PubMed  Google Scholar 

  142. Virkki LV, Murer H, Forster IC (2006) Voltage clamp fluorometric measurements on a type II Na+-coupled Pi cotransporter: shedding light on substrate binding order. J Gen Physiol 127:539–555

    CAS  PubMed Central  PubMed  Google Scholar 

  143. Weinman EJ, Biswas RS, Peng G, Shen L, Turner CL, E X, Steplock D, Shenolikar S, Cunningham R (2007) Parathyroid hormone inhibits renal phosphate transport by phosphorylation of serine 77 of sodium-hydrogen exchanger regulatory factor-1. J Clin Invest 117:3412–3420

    CAS  PubMed Central  PubMed  Google Scholar 

  144. Weinman EJ, Steplock D, Shenolikar S, Biswas R (2011) Fibroblast growth factor-23-mediated inhibition of renal phosphate transport in mice requires sodium-hydrogen exchanger regulatory factor-1 (NHERF-1) and synergizes with parathyroid hormone. J Biol Chem 286:37216–37221

    CAS  PubMed  Google Scholar 

  145. Weinman EJ, Steplock D, Zhang Y, Biswas R, Bloch RJ, Shenolikar S (2010) Cooperativity between the phosphorylation of Thr95 and Ser77 of NHERF-1 in the hormonal regulation of renal phosphate transport. J Biol Chem 285:25134–25138

    CAS  PubMed  Google Scholar 

  146. Weinstock J (2004) Inhibitors of sodium-dependent phosphate transport. Expert Opin Ther Pat 14:3

    Google Scholar 

  147. Werner A, Kinne RK (2001) Evolution of the Na-Pi cotransport systems. Am J Physiol 280:R301–R312

    CAS  Google Scholar 

  148. Xu H, Bai L, Collins JF, Ghishan FK (2002) Age-dependent regulation of rat intestinal type IIb sodium-phosphate cotransporter by 1,25-(OH)2 vitamin D3. Am J Physiol Cell Physiol 282:C487–C493

    CAS  PubMed  Google Scholar 

  149. Xu H, Uno JK, Inouye M, Xu L, Drees JB, Collins JF, Ghishan FK (2003) Regulation of intestinal NaPi-IIb cotransporter gene expression by estrogen. Am J Physiol Gastrointest Liver Physiol 285:G1317–G1324

    CAS  PubMed  Google Scholar 

  150. Yamada F, Horie D, Nakamura A, Tanimura A, Yamamoto H, Segawa H, Ito M, Miyamoto K, Taketani Y, Takeda E (2013) Role of serine 249 of ezrin in the regulation of sodium-dependent phosphate transporter NaPi-IIa activity in renal proximal tubular cells. J Med Invest 60:27–34

    PubMed  Google Scholar 

Download references

Acknowledgments

The work in the laboratories of the authors has been supported by the Swiss National Science foundation with individual grants to C.A. Wagner, N. Hernando, and J. Biber, and to I. Forster. Additional support comes from the National Center for Competence in Research NCCR Kidney. CH is supported by the Swiss National Science Foundation. The authors thank also H. Murer for his on-going interest in and support for all “NaPis.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten A. Wagner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagner, C.A., Hernando, N., Forster, I.C. et al. The SLC34 family of sodium-dependent phosphate transporters. Pflugers Arch - Eur J Physiol 466, 139–153 (2014). https://doi.org/10.1007/s00424-013-1418-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-013-1418-6

Keywords

Navigation