Skip to main content
Log in

PGC-1α-mediated adaptations in skeletal muscle

  • Muscle Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Lifestyle-related diseases are rapidly increasing at least in part due to less physical activity. The health beneficial effects of regular physical activity include metabolic adaptations in skeletal muscle, which are thought to be elicited by cumulative effects of transient gene responses to each single exercise, but how is this regulated? A potential candidate in this is the transcriptional coactivator peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α, which has been identified as a master regulator of mitochondrial biogenesis, but also been shown to regulate proteins involved in angiogenesis and the anti-oxidant defence as well as to affect expression of inflammatory markers. Exercise increases PGC-1α transcription and potentially PGC-1α activity through post-translational modifications, and concomitant PGC-1α-mediated gene regulation is suggested to be an underlying mechanism for adaptations in skeletal muscle, when exercise is repeated. The current review presents some of the key findings in PGC-1α-mediated regulation of metabolically related, anti-oxidant and inflammatory proteins in skeletal muscle in the basal state and in response to exercise training, and describes functional significance of PGC-1α-mediated effects in skeletal muscle. In addition, regulation of PGC-1α expression and activity in skeletal muscle is described. The impact of changes in PGC-1α expression in mouse skeletal muscle and the ability of PGC-1α to regulate multiple pathways and functions underline the potential importance of PGC-1α in skeletal muscle adaptations in humans. The absence of exercise-induced PGC-1α-mediated gene regulation during a physical inactive lifestyle is suggested to lead to reduced oxidative capacity of skeletal muscle and concomitant impaired metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Adhihetty PJ, Uguccioni G, Leick L et al (2009) The role of PGC-1{alpha} on mitochondrial function and apoptotic susceptibility in muscle. Am J Physiol Cell Physiol 297:C217–C225

    Article  CAS  PubMed  Google Scholar 

  2. Arany Z, Foo SY, Ma Y et al (2008) HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1alpha. Nature 451:1008–1012

    Article  CAS  PubMed  Google Scholar 

  3. Arany Z, He L, Lin J (2005) Transcriptional coactivator PGC-1α controls the energy state and contractile function of cardiac muscle. Cell Metabol 1:259–271

    Article  CAS  Google Scholar 

  4. Baar K, Wende AR, Jones TE et al (2002) Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1. FASEB J 16:1879–1886

    Article  CAS  PubMed  Google Scholar 

  5. Barres R, Osler ME, Rune A et al (2009) Non-CpG methylation of the PGC-1a promoter through DNMT3B controls mitochondrial density. Cell Metabol 10:189–198

    Article  CAS  Google Scholar 

  6. Booth FW, Baldwin KM (1996) Muscle plasticity: energy demand and supply processes. In: Rowell LB, Shepherd JT (eds) The handbook of physiology. Exercise: regulation and integration of multiple systems. American Physiological Society, Bethesda, pp 1075–1123

    Google Scholar 

  7. Calvo JA, Daniels TG, Wang X et al (2008) Muscle-specific expression of PPARgamma coactivator-1alpha improves exercise performance and increases peak oxygen uptake. J Appl Physiol 104:1304–1312

    Article  CAS  PubMed  Google Scholar 

  8. Canto C, Gerhart-Hines Z, Feige JN et al (2009) AMPK regulates energy expenditure by modulating NAD + metabolism and SIRT1 activity. Nature 458:1056–1062

    Article  CAS  PubMed  Google Scholar 

  9. Chinsomboon J, Ruas J, Gupta R et al (2009) The transcriptional coactivator PGC-1alpha mediates exercise-induced angiogenesis in skeletal muscle. PNAS 106:21401–21406

    Article  CAS  PubMed  Google Scholar 

  10. Conley KE, Jubrias SA, Esselman PC (2000) Oxidative capacity and ageing in human muscle. J Physiol 526:203–210

    Article  CAS  PubMed  Google Scholar 

  11. Constantin-Teodosiu D, Baker DJ, Constantin D, Greenhaff PL (2009) PPARdelta agonism inhibits skeletal muscle PDC activity, mitochondrial ATP production and force generation during prolonged contraction. J Physiol 587:231–239

    Article  CAS  PubMed  Google Scholar 

  12. De FE, Alvarez G, Berria R et al (2008) Insulin-resistant muscle is exercise resistant: evidence for reduced response of nuclear-encoded mitochondrial genes to exercise. Am J Physiol 294:E607–E614

    Google Scholar 

  13. Dominy JE Jr, Lee Y, Gerhart-Hines Z, Puigserver P (2010) Nutrient-dependent regulation of PGC-1alpha's acetylation state and metabolic function through the enzymatic activities of Sirt1/GCN5. Biochem Biophys doi:10.1016/j.bbapap.2009.11.023

  14. Geng T, Li P, Okutsu M et al (2010) PGC-1α plays a functional role in exercise-induced mitochondrial biogenesis and angiogenesis but not fiber-type transformation in mouse skeletal muscle. Am J Physiol Cell Physiol 298:572–579

    Article  CAS  PubMed  Google Scholar 

  15. Gerhart-Hines Z, Rodgers JT, Bare O et al (2007) Metabolic control of mitochondrial function and fatty acid oxidation through PGC-1alpha/SIRT1. EMBO J 26:1902–1912

    Article  Google Scholar 

  16. Handschin C, Chin S, Li P et al (2007) Skeletal muscle fiber-type switching, exercise intolerance, and myopathy in PGC-1alpha muscle-specific knock-out animals. J Biol Chem 282:30014–30021

    Article  CAS  PubMed  Google Scholar 

  17. Handschin C, Choi CS, Chin S et al (2007) Abnormal glucose homeostasis in skeletal muscle-specific PGC-1α knockout mice reveals skeletal muscle-pancreatic βcell crosstalk. J Clin Invest 117:3463–3474

    Article  CAS  PubMed  Google Scholar 

  18. Handschin C, Rhee J, Lin J et al (2003) An autoregulatory loop controls peroxisome proliferator-activated receptor gamma coactivator 1alpha expression in muscle. PNAS 100:7111–7116

    Article  CAS  PubMed  Google Scholar 

  19. Handschin C, Spiegelman BM (2008) The role of exercise and PGC1α in inflammation and chronic disease. Nature 454:463–469

    Article  CAS  PubMed  Google Scholar 

  20. Irrcher I, Adhihetty JP, Sheehan T et al (2003) PPARγ coactivator-1α expression during thyroid hormone- and contractile activity-induced mitochondrial adaptations. Am J Physiol 284:C1669–C1677

    CAS  Google Scholar 

  21. Jager S, Handschin C, St-Pierre J, Spiegelman BM (2007) AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1{alpha}. PNAS 104:12017–12022

    Article  PubMed  Google Scholar 

  22. Jorgensen SB, Treebak JT, Viollet B et al (2007) Role of AMPKalpha2 in basal, training-, and AICAR-induced GLUT4, hexokinase II, and mitochondrial protein expression in mouse muscle. Am J Physiol 292:E331–E339

    Google Scholar 

  23. Jorgensen SB, Wojtaszewski JFP, Viollet B et al (2005) Effects of alpha-AMPK knockout on exercise-induced gene activation in mouse skeletal muscle. FASEB J 19:1146–1148

    PubMed  Google Scholar 

  24. Kelly DP, Scarpulla RC (2007) Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev 18:357–368

    Article  Google Scholar 

  25. Kiilerich K, Adser H, Jakobsen AH et al (2009) Role of PGC-1α in PDH regulation in mouse skeletal muscle. Biochem Exerc (in press)

  26. Koval JA, DeFronzo RA, O'Doherty RM et al (1998) Regulation of hexokinase II activity and expression in human muscle by moderate exercise. Am J Physiol 274:E304–E308

    CAS  PubMed  Google Scholar 

  27. Kraniou Y, Cameron-Smith D, Misso M et al (2000) Effects of exercise on GLUT-4 and glycogenin gene expression in human skeletal muscle. J Appl Physiol 88:794–796

    Article  CAS  PubMed  Google Scholar 

  28. Kusuhara K, Madsen K, Jensen L et al (2007) Calcium signalling in the regulation of PGC-1alpha, PDK4 and HKII mRNA expression. Biol Chem 388:481–488

    Article  CAS  PubMed  Google Scholar 

  29. Leick L, Hellsten Y, Fentz J et al (2009) PGC-1{alpha} mediates exercise-induced skeletal muscle VEGF expression in mice. Am J Physiol 297:E92–E103

    CAS  Google Scholar 

  30. Leick L, Lyngby SS, Wojtaszewski JFP, Pilegaard H (2010) PGC-1α is required for training-induced prevention of age-associated decline in mitochondrial enzymes in mouse skeletal muscle. Exp Gerontol 45:336–342

    Google Scholar 

  31. Leick L, Plomgaard P, Wojtaszewski JFP, Pilegaard H (2009) Endurance exercise induces mRNA of oxidative proteins in human skeletal muscle late in recovery. Scan J Sports Med (in press)

  32. Leick L, Wojtaszewski JF, Johansen ST et al (2008) PGC-1alpha is not mandatory for exercise- and training-induced adaptive gene responses in mouse skeletal muscle. Am J Physiol 294:E463–E474

    CAS  Google Scholar 

  33. Leone TC, Lehman JJ, Finck BN et al (2005) PGC-1α deficiency causes multi-system energy metabolic dearrangements: muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biol 3:e101

    Article  PubMed  Google Scholar 

  34. Lerin C, Rodgers JT, Kalume DE et al (2006) GCN5 acetyltransferase complex controls glucose metabolism through transcriptional repression of PGC-1alpha. Cell Metabol 3:429–438

    Article  CAS  Google Scholar 

  35. Lin J, Handschin C, Spiegelman BM (2005) Metabolic control through the PGC-1 family of transcription coactivators. Cell Metabol 1:361–370

    Article  Google Scholar 

  36. Lin J, Wu H, Tarr PT et al (2002) Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature 418:797–801

    Article  CAS  PubMed  Google Scholar 

  37. Lin J, Wu PH, Tarr PT et al (2004) Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice. Cell 119:121–135

    Article  CAS  PubMed  Google Scholar 

  38. Ling C, Poulsen P, Carlsson E et al (2004) Multiple environmental and genetic factors influence skeletal muscle PGC-1alpha and PGC-1beta gene expression in twins. J Clin Invest 114:1518–1526

    CAS  PubMed  Google Scholar 

  39. Michael LF, Wu Z, Cheatham RB et al (2001) Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1. PNAS 98:3820–3825

    Article  CAS  PubMed  Google Scholar 

  40. Neufer PD, Dohm GL (1993) Exercise induces a transient increase in transcription of the GLUT-4 gene in skeletal muscle. Am J Physiol 265:C1597–C1603

    CAS  PubMed  Google Scholar 

  41. O'Doherty RM, Bracy DP, Granner DK, Wasserman DH (1996) Transcription of the rat skeletal muscle hexokinase II gene is increased by acute exercise. J Appl Physiol 81:789–793

    PubMed  Google Scholar 

  42. Ojuka EO, Jones TE, Han DH et al (2003) Raising Ca2+ in L6 myotubes mimics effects of exercise on mitochondrial biogenesis in muscle. FASEB J 17:675–681

    Article  CAS  PubMed  Google Scholar 

  43. Pilegaard H, Ordway GA, Saltin B, Neufer PD (2000) Transcriptional regulation of gene expression in human skeletal muscle during recovery from exercise. Am J Physiol 279:E806–E814

    CAS  Google Scholar 

  44. Pilegaard H, Osada T, Andersen L et al (2005) Influence of substrate availability on transcriptional regulation of metabolic genes in human skeletal muscle. Metab 54:1048–1055

    Article  CAS  Google Scholar 

  45. Pilegaard H, Saltin B, Neufer PD (2003) Exercise induces transient transcriptional activation of the PGC-1alpha gene in human skeletal muscle. J Physiol 546:851–858

    Article  CAS  PubMed  Google Scholar 

  46. Puigserver P, Rhee J, Lin J et al (2001) Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPARgamma coactivator-1. Mol Cell 8:971–982

    Article  CAS  PubMed  Google Scholar 

  47. Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM (1998) A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92(6):829–839

    Article  CAS  PubMed  Google Scholar 

  48. Röckl KSC, Witczak CA, Goodyear LJ (2008) Signaling mechanisms in skeletal muscle: acute responses and chronic adaptations to exercise. Life 60:145–153

    PubMed  Google Scholar 

  49. Rodgers JT, Lerin C, Gerhart-Hines Z, Puigserver P (2008) Metabolic adaptations through the PGC-1α and SIRT1 pathways. FEBS Lett 582:46–53

    Article  CAS  PubMed  Google Scholar 

  50. Rodgers JT, Lerin C, Haas W et al (2005) Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434:113–118

    Article  CAS  PubMed  Google Scholar 

  51. Seale P, Kajumuras S, Yang W et al (2007) Transcriptional control of brown fat determination by PRDM16. Cell Metabol 6:38–54

    Article  CAS  Google Scholar 

  52. Seip RL, Mair K, Cole TG, Semenkovich CF (1997) Induction of human skeletal muscle lipoprotein lipase gene expression by short-term exercise is transient. Am J Physiol 272:E255–E261

    CAS  PubMed  Google Scholar 

  53. Silveira LR, Pilegaard H, Kusuhara K et al (2006) The effect of reactive oxygen species and antioxidants on basal and contraction-induced gene expression of PGC-1α, UCP3 and HKII in primary rat skeletal muscle cells. Biochem Biophys Acta 1763:969–976

    Article  CAS  PubMed  Google Scholar 

  54. St-Pierre J, Drori S, Uldry M et al (2006) Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 127:397–408

    Article  CAS  PubMed  Google Scholar 

  55. St-Pierre J, Lin J, Krauss S et al (2003) Bioenergetic analysis of peroxisome proliferator-activated receptor gamma coactivators 1alpha and 1beta (PGC-1alpha and PGC-1beta) in muscle cells. J Biol Chem 278:26597–26603

    Article  CAS  PubMed  Google Scholar 

  56. Sugden MC, Holness MJ (2003) Recent advances in mechanisms regulating glucose oxidation at the level of the pyruvate dehydrogenase complex by PDK's. Am J Physiol 284:E855–E862

    CAS  Google Scholar 

  57. Suwa M, Nakano H, Radak Z, Kumagai S (2008) Endurance exercise increases the SIRT1 and peroxisome proliferator-activated receptor gamma coactivator-1alpha protein expression in rat skeletal muscle. Metab 57:986–998

    Article  CAS  Google Scholar 

  58. Terada S, Goto M, Kato M et al (2002) Effects of low-intensity prolonged exercise on PGC-1 mRNA expression in rat epitrochlearis muscle. Biochem Biophys Res Commun 296:350–354

    Article  CAS  PubMed  Google Scholar 

  59. Vega RB, Huss JM, Kelly DP (2000) The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol Cell Biol 20:1868–1876

    Article  CAS  PubMed  Google Scholar 

  60. Wallberg AE, Yamamurra S, Malik D et al (2003) Coordination of p300-mediated chromatin remodelling and TRAP/mediator function through coactivator PGC-1α. Mol Cell 12:1137–1149

    Article  CAS  PubMed  Google Scholar 

  61. Wellen KE, Hotamisligil GS (2005) Inflammation, stress, and diabetes. J Clin Invest 115:1111–1119

    CAS  PubMed  Google Scholar 

  62. Wende AR, Huss JM, Schaeffer PJ et al (2005) PGC-1α coactivates PDK4 gene expression via the orphan nuclear receptor ERRα: a mechanism for transcriptional control of muscle glucose metabolism. Mol Cell Biol 25:10684–10694

    Article  CAS  PubMed  Google Scholar 

  63. Wende AR, Schaeffer PJ, Parker GJ et al (2007) A role for the transcriptional coactivator PGC-1α in muscle refueling. J Biol Chem 50:36642–36651

    Article  Google Scholar 

  64. Wenz T, Rossi S, Rotundo RL et al (2009) Increased muscle PGC-1alpha expression protects from sarcopenia and metabolic disease during aging. PNAS 106:20405–20410

    Article  CAS  PubMed  Google Scholar 

  65. Williams RS, Neufer PD (1996) Regulation of gene expression in skeletal muscle by contractile activity. In: Rowell LB, Shepherd JT (eds) The handbook of physiology. Exercise: regulation and integration of multiple systems. American Physiological Society, Bethesda, pp 1124–1150

    Google Scholar 

  66. Wright DC, Geiger PC, Han DH et al (2007) Calcium induces increases in peroxisome proliferator-activated receptor gamma coactivator-1alpha and mitochondrial biogenesis by a pathway leading to p38 mitogen-activated protein kinase activation. J Biol Chem 282:18793–18799

    Article  CAS  PubMed  Google Scholar 

  67. Wu H, Kanatous SB, Thurmond FA et al (2002) Regulation of mitochondrial biogenesis in skeletal muscle by CaMK. Science 296:349–352

    Article  CAS  PubMed  Google Scholar 

  68. Wu Z, Puigserver P, Andersson U et al (1999) Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98:115–124

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The PGC-1α-related work in the authors' laboratory is supported by the Lundbeck Foundation, the Novo Nordisk Foundation and the Danish Medical Research Council. The Centre of Inflammation and Metabolism is supported by The Danish National Research Foundation (grant 02-512-555). CIM is part of the UNIK Project: Food, Fitness and Pharma for Health and Disease, supported by the Danish Ministry of Science, Technology and Innovation. The Copenhagen Muscle Research Centre is supported by a grant from the Capital Region of Denmark.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henriette Pilegaard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olesen, J., Kiilerich, K. & Pilegaard, H. PGC-1α-mediated adaptations in skeletal muscle. Pflugers Arch - Eur J Physiol 460, 153–162 (2010). https://doi.org/10.1007/s00424-010-0834-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-010-0834-0

Keywords

Navigation