Skip to main content

Advertisement

Log in

Four-mode gating model of fast inactivation of sodium channel Nav1.2a

  • Ion Channels, Receptors and Transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Basic principles of the gating mechanisms of neuronal sodium channels, especially the fast inactivation process, were revealed by a quantitative analysis of the effects of the chemically irreversible modifying agent chloramine T. The compound is known to enhance the open probability of sodium channels by interfering with the inactivation process. The key for the deduction of structure–function relationships was obtained from the analysis of single-channel patch-clamp data, especially the finding that chloramine T-induced modification of inactivation occurred in four steps. These steps were termed modes 1–4 (four-mode gating model), and their temporal sequence was always the same. The kinetic analysis of single-channel traces with an improved two-dimensional dwell-time fit revealed the possible mechanism related to each mode. Similarities to the kinetics of the sodium channel mutant F1489Q led to the assignment of modes 1 and 2 to transient defects in the locking of the inactivation particle (hinged lid). In the third mode, the hinged lid was unable to lock permanently. Finally, in mode 4, the apparent single-channel current was reduced, which could be explained by fast gating, presumably related to the selectivity filter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

2D fit:

two-dimensional dwell-time fit

2D histogram:

two-dimensional dwell-time histogram

4M-model:

four-mode gating model

CT:

chloramine T

SNR:

signal-to-noise ratio

References

  1. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol (Lond) 117:500–544

    CAS  Google Scholar 

  2. Catterall WA (2000) From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron 26:13–25

    Article  PubMed  CAS  Google Scholar 

  3. Ulbricht W (2005) Sodium channel inactivation: molecular determinants and modulation. Physiol Rev 85:1271–1301

    Article  PubMed  CAS  Google Scholar 

  4. Patlak J (1991) Molecular kinetics of voltage-dependent Na+ channels. Physiol Rev 71:1047–1080

    PubMed  CAS  Google Scholar 

  5. Alzheimer C, Schwindt PC, Crill WE (1993) Modal gating of Na+ channels as a mechanism of persistent Na+ current in pyramidal neurons from rat and cat sensorimotor cortex. J Neurosci 13:660–673

    PubMed  CAS  Google Scholar 

  6. Crill WE (1996) Persistent sodium current in mammalian central neurons. Annu Rev Physiol 58:349–362

    Article  PubMed  CAS  Google Scholar 

  7. Ashcroft FM (2000) Ion channels and disease. Academic, San Diego, CA

    Google Scholar 

  8. Magleby KL, Weiss DS (1990) Estimating kinetic parameters for single channels with simulation. A general method that resolves the missed event problem and accounts for noise. Biophys J 58:1411–1426

    PubMed  CAS  Google Scholar 

  9. Magleby KL, Weiss DS (1990) Identifying kinetic gating mechanisms for ion channels by using two-dimensional distributions of simulated dwell times. Proc R Soc Lond B Biol Sci 241:220–228

    Article  CAS  Google Scholar 

  10. Korn SJ, Horn R (1988) Statistical discrimination of fractal and Markov models of single-channel gating. Biophys J 54:871–877

    PubMed  CAS  Google Scholar 

  11. Magleby KL (2001) Kinetic gating mechanisms for BK channels: when complexity leads to simplicity. J Gen Physiol 118:583–587

    Article  PubMed  CAS  Google Scholar 

  12. Zheng J, Venkataramanan L, Sigworth FJ (2001) Hidden Markov model analysis of intermediate gating steps associated with the pore gate of shaker potassium channels. J Gen Physiol 118:547–564

    Article  PubMed  CAS  Google Scholar 

  13. Schroeder I, Hansen UP (2007) Saturation and microsecond gating of current indicate depletion-induced instability of the MaxiK selectivity filter. J Gen Physiol 130:83–97

    Article  PubMed  Google Scholar 

  14. Ruiz M, Karpen JW (1999) Opening mechanism of a cyclic nucleotide-gated channel based on analysis of single channels locked in each liganded state. J Gen Physiol 113:873–895

    Article  PubMed  CAS  Google Scholar 

  15. Yellen G, Sodickson D, Chen TY, Jurman ME (1994) An engineered cysteine in the external mouth of a K+ channel allows inactivation to be modulated by metal binding. Biophys J 66:1068–1075

    PubMed  CAS  Google Scholar 

  16. Horn R, Vandenberg CA (1984) Statistical properties of single sodium channels. J Gen Physiol 84:505–534

    Article  PubMed  CAS  Google Scholar 

  17. Michalek S, Lerche H, Wagner M, Mitrovic N, Schiebe M, Lehmann-Horn F, Timmer J (1999) On identification of Na+ channel gating schemes using moving-average filtered hidden Markov models. Eur Biophys J 28:605–609

    Article  PubMed  CAS  Google Scholar 

  18. Keynes RD, Elinder F (1998) Modelling the activation, opening, inactivation and reopening of the voltage-gated sodium channel. Proc R Soc Lond B Biol Sci 265:263–270

    Article  CAS  Google Scholar 

  19. Schrøder RL, Jensen BS, Strøbæk D, Olesen SP, Christophersen P (2000) Activation of the human, intermediate-conductance, Ca2+-activated K+ channel by methylxanthines. Pflugers Arch 440:809–818

    Article  PubMed  Google Scholar 

  20. Draber S, Hansen UP (1994) Fast single-channel measurements resolve the blocking effect of Cs+ on the K+ channel. Biophys J 67:120–129

    PubMed  CAS  Google Scholar 

  21. Parzefall F, Wilhelm R, Heckmann M, Dudel J (1998) Single channel currents at six microsecond resolution elicited by acetylcholine in mouse myoballs. J Physiol (Lond) 512:181–188

    Article  CAS  Google Scholar 

  22. Benndorf K (1995) Low-noise recording. In: Sakmann B, Neher E (eds) Single channel recording, 2nd edn. Plenum, New York

    Google Scholar 

  23. Sigworth FJ, Sine SM (1987) Data transformations for improved display and fitting of single-channel dwell time histograms. Biophys J 52:1047–1054

    PubMed  CAS  Google Scholar 

  24. Huth T, Schroeder I, Hansen UP (2006) The power of two-dimensional dwell-time analysis for model discrimination, temporal resolution, multichannel analysis and level detection. J Membr Biol 214:19–32

    Article  PubMed  CAS  Google Scholar 

  25. Hinkley DV (1971) Inference about the change point from cumulative-sum tests. Biometrika 57:1–17

    Article  Google Scholar 

  26. Schultze R, Draber S (1993) A nonlinear filter algorithm for the detection of jumps in patch-clamp data. J Membr Biol 132:41–52

    PubMed  CAS  Google Scholar 

  27. Schroeder I, Hansen UP (2006) Strengths and limits of beta distributions as a means of reconstructing the true single-channel current in patch clamp time series with fast gating. J Membr Biol 210:199–212

    Article  PubMed  CAS  Google Scholar 

  28. Wall, MB (1996) A genetic algorithm for resource-constrained scheduling. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge

  29. Niemann P, Schmidtmayer J, Ulbricht W (1991) Chloramine-T effect on sodium conductance of neuroblastoma cells as studied by whole-cell clamp and single-channel analysis. Pflugers Arch 418:129–136

    Article  PubMed  CAS  Google Scholar 

  30. Nagy K (1987) Subconductance states of single sodium channels modified by chloramine-T and sea anemone toxin in neuroblastoma cells. Eur Biophys J 15:129–132

    Article  PubMed  CAS  Google Scholar 

  31. Benzinger GR, Tonkovich GS, Hanck DA (1999) Augmentation of recovery from inactivation by site-3 Na channel toxins. A single-channel and whole-cell study of persistent currents. J Gen Physiol 113:333–346

    Article  CAS  Google Scholar 

  32. Huang JM, Tanguy J, Yeh JZ (1987) Removal of sodium inactivation and block of sodium channels by chloramine-T in crayfish and squid giant axons. Biophys J 52:155–163

    PubMed  CAS  Google Scholar 

  33. Quinonez M, DiFranco M, Gonzalez F (1999) Involvement of methionine residues in the fast inactivation mechanism of the sodium current from toad skeletal muscle fibers. J Membr Biol 169:83–90

    Article  PubMed  CAS  Google Scholar 

  34. Kellenberger S, West JW, Scheuer T, Catterall WA (1997) Molecular analysis of the putative inactivation particle in the inactivation gate of brain type IIA Na+ channels. J Gen Physiol 109:589–605

    Article  PubMed  CAS  Google Scholar 

  35. Horn R, Lange K (1983) Estimating kinetic constants from single channel data. Biophys J 43:207–223

    Article  PubMed  CAS  Google Scholar 

  36. Chahine M, George ALJ, Zhou M, Ji S, Sun W, Barchi RL, Horn R (1994) Sodium channel mutations in paramyotonia congenita uncouple inactivation from activation. Neuron 12:281–294

    Article  PubMed  CAS  Google Scholar 

  37. Hansen UP, Cakan O, Abshagen-Keunecke M, Farokhi A (2003) Gating models of the anomalous mole-fraction effect of single-channel current in Chara. J Membr Biol 192:45–63

    Article  PubMed  CAS  Google Scholar 

  38. West JW, Patton DE, Scheuer T, Wang Y, Goldin AL, Catterall WA (1992) A cluster of hydrophobic amino acid residues required for fast Na+-channel inactivation. Proc Natl Acad Sci USA 89:10910–10914

    Article  PubMed  CAS  Google Scholar 

  39. Rothberg BS, Magleby KL (2000) Voltage and Ca2+ activation of single large-conductance Ca2+-activated K+ channels described by a two-tiered allosteric gating mechanism. J Gen Physiol 116:75–99

    Article  PubMed  CAS  Google Scholar 

  40. Zhao Y, Yarov-Yarovoy V, Scheuer T, Catterall WA (2004) A gating hinge in Na+ channels: a molecular switch for electrical signaling. Neuron 41:859–865

    Article  PubMed  CAS  Google Scholar 

  41. Wagner S, Lerche H, Mitrovic N, Heine R, George AL, Lehmann-Horn F (1997) A novel sodium channel mutation causing a hyperkalemic paralytic and paramyotonic syndrome with variable clinical expressivity. Neurology 49:1018–1025

    PubMed  CAS  Google Scholar 

  42. Bendahhou S, Cummins TR, Tawil R, Waxman SG, Ptacek LJ (1999) Activation and inactivation of the voltage-gated sodium channel: role of segment S5 revealed by a novel hyperkalaemic periodic paralysis mutation. J Neurosci 19:4762–4771

    PubMed  CAS  Google Scholar 

  43. Sirota FL, Pascutti PG, Anteneodo C (2002) Molecular modeling and dynamics of the sodium channel inactivation gate. Biophys J 82:1207–1215

    PubMed  CAS  Google Scholar 

  44. Wang GK, Wang SY (2002) Modifications of human cardiac sodium channel gating by UVA light. J Membr Biol 189:153–165

    Article  PubMed  CAS  Google Scholar 

  45. Blunck R, Cordero-Morales JF, Cuello LG, Perozo E, Bezanilla F (2006) Detection of the opening of the bundle crossing in KcsA with fluorescence lifetime spectroscopy reveals the existence of two gates for ion conduction. J Gen Physiol 128:569–581

    Article  PubMed  CAS  Google Scholar 

  46. Yi BA, Lin YF, Jan YN, Jan LY (2001) Yeast screen for constitutively active mutant G protein-activated potassium channels. Neuron 29:657–667

    Article  PubMed  CAS  Google Scholar 

  47. Berneche S, Roux B (2005) A gate in the selectivity filter of potassium channels. Structure 13:591–600

    Article  PubMed  CAS  Google Scholar 

  48. Ogielska EM, Aldrich RW (1998) A mutation in S6 of Shaker potassium channels decreases the K+ affinity of an ion binding site revealing ion-ion interactions in the pore. J Gen Physiol 112:243–257

    Article  PubMed  CAS  Google Scholar 

  49. Ogielska EM, Aldrich RW (1999) Functional consequences of a decreased potassium affinity in a potassium channel pore. Ion interactions and C-type inactivation. J Gen Physiol 113:347–358

    Article  PubMed  CAS  Google Scholar 

  50. Tabcharani JA, Rommens JM, Hou YX, Chang XB, Tsui LC, Riordan JR, Hanrahan JW (1993) Multi-ion pore behaviour in the CFTR chloride channel. Nature 366:79–82

    Article  PubMed  CAS  Google Scholar 

  51. Cordero-Morales JF, Cuello LG, Zhao Y, Jogini V, Cortes DM, Roux B, Perozo E (2006) Molecular determinants of gating at the potassium-channel selectivity filter. Nat Struct Mol Biol 13:311–318

    Article  PubMed  CAS  Google Scholar 

  52. Cordero-Morales JF, Cuello LG, Perozo E (2006) Voltage-dependent gating at the KcsA selectivity filter. Nat Struct Mol Biol 13:319–322

    Article  PubMed  CAS  Google Scholar 

  53. Zhao Y, Scheuer T, Catterall WA (2004) Reversed voltage-dependent gating of a bacterial sodium channel with proline substitutions in the S6 transmembrane segment. Proc Natl Acad Sci USA 101:17873–17878

    Article  PubMed  CAS  Google Scholar 

  54. Gibor G, Yakubovich D, Rosenhouse-Dantsker A, Peretz A, Schottelndreier H, Seebohm G, Dascal N, Logothetis DE, Paas Y, Attali B (2007) An inactivation gate in the selectivity filter of KCNQ1 potassium channels. Biophys J 93:4159–4172

    Article  PubMed  CAS  Google Scholar 

  55. Roux B, Allen T, Berneche S, Im W (2004) Theoretical and computational models of biological ion channels. Q Rev Biophys 37:15–103

    Article  PubMed  CAS  Google Scholar 

  56. Boehle T, Steinbis M, Biskup C, Koopmann R, Benndorf K (1998) Inactivation of single cardiac Na+ channels in three different gating modes. Biophys J 75:1740–1748

    Google Scholar 

  57. Boehle T, Benndorf K (1995) Multimodal action of single Na+ channels in myocardial mouse cells. Biophys J 68:121–130

    CAS  Google Scholar 

  58. Schmidtmayer J (1985) Behaviour of chemically modified sodium channels in frog nerve supports a three-state model of inactivation. Pflugers Arch 404:21–28

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We are grateful to S. Schnell and D. Gremelle for technical assistance. We thank W. A. Catterall and T. Scheuer for Nav1.2a and Nav1.2a F1489Q cDNA and W. Ulbricht for helpful discussions. This work was supported by the Bundesministerium für Bildung und Forschung (03F0261A) and the Deutsche Forschungsgemeinschaft (Ha 712/11-3 and Ha712/14-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Huth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huth, T., Schmidtmayer, J., Alzheimer, C. et al. Four-mode gating model of fast inactivation of sodium channel Nav1.2a. Pflugers Arch - Eur J Physiol 457, 103–119 (2008). https://doi.org/10.1007/s00424-008-0500-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-008-0500-y

Keywords

Navigation