Skip to main content
Log in

Flow modulates centriole movements in tubular epithelial cells

  • Cell and Molecular Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Kidney cysts are characterized by an abnormal tubular geometry that may result from loss of orientation and random cell divisions during renal development. Since cystic kidney disease is caused by mutations of ciliary proteins and cilia act as flow sensors in the kidney, we examined three polarized events in Madin Darby Canine Kidney cells under flow: cell division, cell migration, and centriole movement. We found that the mitotic orientation of dividing cells was not affected by flow and was randomly distributed in relation to the direction of the flow. Flow did not alter the direction and speed of cell migration in a wound-healing assay. However, flow resulted in increased motility of centrioles and biased centrioles to move along the axis of the flow. This effect was lost after flow-induced calcium signaling was abolished by a mutant polycystin 2. Our findings suggest that the cilium may translate fluid flow into altered centriole movements to provide tubular epithelial cells with the spatial orientation required to establish and/or maintain a normal tubular geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ADPKD:

autosomal dominant polycystic kidney disease

ARPKD:

autosomal recessive PKD

BBS:

Bardet Biedl Syndrome

NPHP:

nephronophthisis

MDCK:

Madin Darby Canine Kidney

PCP:

planar cell polarity

YFP:

yellow fluorescent protein

GFP:

green fluorescent protein

References

  1. Marshall WF, Nonaka S (2006) Cilia: tuning in to the cell’s antenna. Curr Biol 16:R604–R614

    Article  PubMed  CAS  Google Scholar 

  2. Davenport JR, Yoder BK (2005) An incredible decade for the primary cilium: a look at a once-forgotten organelle. Am J Physiol Renal Physiol 289:F1159–F1169

    Article  PubMed  CAS  Google Scholar 

  3. Kuehn EW, Walz G, Benzing T (2007) Von hippel-lindau: a tumor suppressor links microtubules to ciliogenesis and cancer development. Cancer Res 67:4537–4540

    Article  PubMed  CAS  Google Scholar 

  4. Dawe HR, Farr H, Gull K (2007) Centriole/basal body morphogenesis and migration during ciliogenesis in animal cells. J Cell Sci 120:7–15

    Article  PubMed  CAS  Google Scholar 

  5. Bartolini F, Gundersen GG (2006) Generation of noncentrosomal microtubule arrays. J Cell Sci 119:4155–4163

    Article  PubMed  CAS  Google Scholar 

  6. Etienne-Manneville S, Hall A (2001) Integrin-mediated activation of Cdc42 controls cell polarity in migrating astrocytes through PKCzeta. Cell 106:489–498

    Article  PubMed  CAS  Google Scholar 

  7. Feldman JL, Geimer S, Marshall WF (2007) The mother centriole plays an instructive role in defining cell geometry. PLoS Biol 5:e149

    Article  PubMed  CAS  Google Scholar 

  8. Nachury MV, Loktev AV, Zhang Q, Westlake CJ, Peranen J, Merdes A, Slusarski DC, Scheller RH, Bazan JF, Sheffield VC, Jackson PK (2007) A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis. Cell 129:1201–1213

    Article  PubMed  CAS  Google Scholar 

  9. Praetorius HA, Spring KR (2001) Bending the MDCK cell primary cilium increases intracellular calcium. J Membr Biol 184:71–79

    Article  PubMed  CAS  Google Scholar 

  10. Masyuk AI, Masyuk TV, Splinter PL, Huang BQ, Stroope AJ, LaRusso NF (2006) Cholangiocyte cilia detect changes in luminal fluid flow and transmit them into intracellular Ca2+ and cAMP signaling. Gastroenterology 131:911–920

    Article  PubMed  CAS  Google Scholar 

  11. Liu W, Xu S, Woda C, Kim P, Weinbaum S, Satlin LM (2003) Effect of flow and stretch on the [Ca2+]i response of principal and intercalated cells in cortical collecting duct. Am J Physiol Renal Physiol 285:F998–F1012

    PubMed  CAS  Google Scholar 

  12. Delmas P (2005) Polycystins: polymodal receptor/ion-channel cellular sensors. Pflugers Arch 451:264–276

    Article  PubMed  CAS  Google Scholar 

  13. Nauli SM, Alenghat FJ, Luo Y, Williams E, Vassilev P, Li X, Elia AE, Lu W, Brown EM, Quinn SJ, Ingber DE, Zhou J (2003) Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet 33:129–137

    Article  PubMed  CAS  Google Scholar 

  14. Wang S, Zhang J, Nauli SM, Li X, Starremans PG, Luo Y, Roberts KA, Zhou J (2007) Fibrocystin/polyductin, found in the same protein complex with polycystin-2, regulates calcium responses in kidney epithelia. Mol Cell Biol 27:3241–3252

    Article  PubMed  CAS  Google Scholar 

  15. Simons M, Walz G (2006) Polycystic kidney disease: Cell division without a c(l)ue? Kidney Int 70:854–864

    Article  PubMed  CAS  Google Scholar 

  16. Fischer E, Legue E, Doyen A, Nato F, Nicolas JF, Torres V, Yaniv M, Pontoglio M (2006) Defective planar cell polarity in polycystic kidney disease. Nat Genet 38:21–23

    Article  PubMed  CAS  Google Scholar 

  17. Jones C, Roper VC, Foucher I, Qian D, Banizs B, Petit C, Yoder BK, Chen P (2008) Ciliary proteins link basal body polarization to planar cell polarity regulation. Nat Genet 40:69–77

    Article  PubMed  CAS  Google Scholar 

  18. Schermer B, Ghenoiu C, Bartram M, Muller RU, Kotsis F, Hohne M, Kuhn W, Rapka M, Nitschke R, Zentgraf H, Fliegauf M, Omran H, Walz G, Benzing T (2006) The von Hippel-Lindau tumor suppressor protein controls ciliogenesis by orienting microtubule growth. J Cell Biol 175:547–554

    Article  PubMed  CAS  Google Scholar 

  19. Kuehn EW, Hirt MN, John A-K, Muehlenhardt P, Boehlke C, Pütz M, Kramer-Zucker AG, Bashkurov M, van de Weyer PS, Kotsis F, Walz G (2007) Kidney Injury Molecule 1 (Kim1) is a novel ciliary molecule and interactor of polycystin 2. Biochem Biophys Res Commun 364:861–866

    Article  PubMed  CAS  Google Scholar 

  20. Nagai T, Ibata K, Park ES, Kubota M, Mikoshiba K, Miyawaki A (2002) A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol 20:87–90

    Article  PubMed  CAS  Google Scholar 

  21. Kotsis F, Nitschke R, Boehlke C, Bashkurov M, Walz G, Kuehn EW (2007) Ciliary calcium signaling is modulated by kidney injury molecule-1 (Kim1). Pflugers Arch 453:819–29

    Article  PubMed  CAS  Google Scholar 

  22. Kuehn EW, Park KM, Somlo S, Bonventre JV (2002) Kidney injury molecule-1 expression in murine polycystic kidney disease. Am J Physiol Renal Physiol 283:F1326–F1336

    PubMed  CAS  Google Scholar 

  23. Mimori-Kiyosue Y, Shiina N, Tsukita S (2000) The dynamic behavior of the APC-binding protein EB1 on the distal ends of microtubules. Curr Biol 10:865–868

    Article  PubMed  CAS  Google Scholar 

  24. Jung AC, Denholm B, Skaer H, Affolter M (2005) Renal tubule development in Drosophila: a closer look at the cellular level. J Am Soc Nephrol 16:322–328

    Article  PubMed  CAS  Google Scholar 

  25. McGrath J, Somlo S, Makova S, Tian X, Brueckner M (2003) Two populations of node monocilia initiate left-right asymmetry in the mouse. Cell 114:61–73

    Article  PubMed  CAS  Google Scholar 

  26. Geng L, Okuhara D, Yu Z, Tian X, Cai Y, Shibazaki S, Somlo S (2006) Polycystin-2 traffics to cilia independently of polycystin-1 by using an N-terminal RVxP motif. J Cell Sci 119:1383–1395

    Article  PubMed  CAS  Google Scholar 

  27. Lin F, Hiesberger T, Cordes K, Sinclair AM, Goldstein LS, Somlo S, Igarashi P (2003) Kidney-specific inactivation of the KIF3A subunit of kinesin-II inhibits renal ciliogenesis and produces polycystic kidney disease. Proc Natl Acad Sci U S A 100:5286–5291

    Article  PubMed  CAS  Google Scholar 

  28. Pazour GJ, Dickert BL, Vucica Y, Seeley ES, Rosenbaum JL, Witman GB, Cole DG (2000) Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella. J Cell Biol 151:709–718

    Article  PubMed  CAS  Google Scholar 

  29. Nonaka S, Yoshiba S, Watanabe D, Ikeuchi S, Goto T, Marshall WF, Hamada H (2005) De novo formation of left-right asymmetry by posterior tilt of nodal cilia. PLoS Biol 3:e268

    Article  PubMed  CAS  Google Scholar 

  30. Mitchell B, Jacobs R, Li J, Chien S, Kintner C (2007) A positive feedback mechanism governs the polarity and motion of motile cilia. Nature 447:97–101

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Simone Braeg for expert technical assistance. We thank Yuko Mimori-Kiyosue for the EB1.GFP construct and A. Miyawaki for the YFP variant Venus. We thank the members of the Renal Unit for helpful discussions. This work was funded by DFG WA597 (GW) and SFB 592 Z2 (RN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Wolfgang Kuehn.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1 (AVI 3.2 MB)

ESM 2 (AVI 449 KB)

ESM 3 (AVI 2.5 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kotsis, F., Nitschke, R., Doerken, M. et al. Flow modulates centriole movements in tubular epithelial cells. Pflugers Arch - Eur J Physiol 456, 1025–1035 (2008). https://doi.org/10.1007/s00424-008-0475-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-008-0475-8

Keywords

Navigation