Skip to main content
Log in

Large Na+ influx and high Na+, K+–ATPase activity in mitochondria-rich epithelial cells of the inner ear endolymphatic sac

Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Fluid in the mammalian endolymphatic sac (ES) is connected to the endolymph in the cochlea and the vestibule. Since the dominant ion in the ES is Na+, it has been postulated that Na+ transport is essential for regulating the endolymph pressure. This study focused on the cellular mechanism of Na+ transport in ES epithelial cells. To evaluate the Na+ transport capability of the ES epithelial cells, changes in intracellular Na+ concentration ([Na+]i) of individual ES cells were measured with sodium-binding benzofurzan isophthalate in a freshly dissected ES sheet and in dissociated ES cells in response to either the K+-free or ouabain-containing solution. Analysis of the [Na+]i changes by the Na+ load and mitochondrial staining with rhodamine 123 showed that the ES cells were classified into two groups; one exhibited an intensive [Na+]i increase, higher Na+, K+–ATPase activity, and intensive mitochondrial staining (mitochondria-rich cells), and the other exhibited a moderate [Na+]i increase, lower Na+, K+–ATPase activity, and moderate mitochondrial staining (filament-rich cells). These results suggest that mitochondria-rich ES epithelial cells (ca. 30% of ES cells) endowed with high Na+ permeability and Na+, K+-ATPase activity potentially contribute to the transport of Na+ outside of the endolymphatic sac.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Curran PF, Solomon AK (1957) Ion and water fluxes in the ileum of rats. J Gen Physiol 41:143–168

    Article  PubMed  CAS  Google Scholar 

  2. Dahlmann A, Von During M (1995) The endolymphatic duct and sac of the rat: a histological, ultrastructural, and immunocytochemical investigation. Cell Tissue Res 282:277–289

    PubMed  CAS  Google Scholar 

  3. Despa S, Islam MA, Pogwizd SM, Bers DM (2002) Intracellular [Na+] and Na+ pump rate in rat and rabbit ventricular myocytes. J Physiol 539:133–143

    Article  PubMed  CAS  Google Scholar 

  4. Diamond JM (1964) The mechanism of isotonic water transport. J Gen Physiol 48:15–42

    Article  PubMed  CAS  Google Scholar 

  5. Diarra A, Sheldon C, Church J (2001) In situ calibration and [H+] sensitivity of the fluorescent Na+ indicator SBFI. Am J Physiol Cell Physiol 280:C1623–C1633

    PubMed  CAS  Google Scholar 

  6. Everett LA, Morsli H, Wu DK, Green ED (1999) Expression pattern of the mouse ortholog of the Pendred’s syndrome gene (Pds) suggests a key role for pendrin in the inner ear. Proc Natl Acad Sci USA 96:9727–9732

    Article  PubMed  CAS  Google Scholar 

  7. Everett LA, Belyantseva IA, Noben-Trauth K, Cantos R, Chen A, Thakkar SI, Hoogstraten-Miller SL, Kachar B, Wu DK, Green ED (2001) Targeted disruption of mouse Pds provides insight about the inner-ear defects encountered in Pendred syndrome. Hum Mol Genet 10:153–161

    Article  PubMed  CAS  Google Scholar 

  8. Friberg U, Bagger-Sjoback D, Rask-Andersen H (1985) The lateral intercellular spaces in the endolymphatic sac. A pathway for fluid transport? Acta Otolaryngol Suppl 426:1–17

    PubMed  CAS  Google Scholar 

  9. Fukazawa K, Matsunaga T, Fujita H (1990) Ultrastructure of the endolymphatic sac in the guinea pig; with special regards to classification of cell types of the epithelium and uptake of india ink particles into free floating cells and epithelial cells of the sac. Journal of Clinical Electron Microscopy 23:135–147

    Google Scholar 

  10. Furuta H, Mori N, Fujita M, Sakai S (1991) Ultrastructure of the endolymphatic sac in the mouse. Acta Anat (Basel) 141:193–198

    CAS  Google Scholar 

  11. Hallpike CS, Cairns H (1938) Observations on the pathology of Meniere’s syndrome. J Laryngol Otol 53:625–655

    Google Scholar 

  12. Hashitani H, Yanai Y, Suzuki H (2004) Role of interstitial cells and gap junctions in the transmission of spontaneous Ca2+ signals in detrusor smooth muscles of the guinea-pig urinary bladder. J Physiol 559:567–581

    Article  PubMed  CAS  Google Scholar 

  13. Hill BS, Hill AE (1978) Fluid transfer by Necturus gall bladder epithelium as a function of osmolarity. Proc R Soc Lond B Biol Sci 200:151–162

    Article  PubMed  CAS  Google Scholar 

  14. Ichimiya I, Adams JC, Kimura RS (1994) Immunolocalization of Na+, K+–ATPase, Ca2+–ATPase, calcium-binding proteins, and carbonic anhydrase in the guinea pig inner ear. Acta Otolaryngol 114:167–176

    PubMed  CAS  Google Scholar 

  15. Ikonomov O, Simon M, Fromter E (1985) Electrophysiological studies on lateral intercellular spaces of Necturus gallbladder epithelium. Pflugers Arch 403:301–307

    Article  PubMed  CAS  Google Scholar 

  16. Kimura R, Shuknecht H (1965) Membranous hydrops in the inner ear of guinea pig after obliteration of the endolymphatic sac. Pract Otorhinolaryngol (Basel) 27:343–354

    Google Scholar 

  17. Kimura RS (1976) Experimental pathogenesis of hydrops. Arch Otorhinolaryngol 212:263–275

    Article  PubMed  CAS  Google Scholar 

  18. Konishi T, Hamrick PE, Mori H (1984) Water permeability of the endolymph–perilymph barrier in the guinea pig cochlea. Hear Res 15:51–58

    Article  PubMed  CAS  Google Scholar 

  19. Lim DJ (1999) Ultrastructure of the endolymphatic duct and sac in normal and Meniere’s disease. In: Harris JP (ed) Meniere’s disease. Kugler Publications, pp 175–193

  20. Lundquist P (1965) The endolymphatic duct and sac in the guinea pig. An electron microscope and experimental investigation. Acta Otolaryngol Suppl 201:1–108

    Google Scholar 

  21. Miyashita T, Tatsumi H, Furuta H, Mori N, Sokabe M (2001) Calcium-sensitive nonselective cation channel identified in the epithelial cells isolated from the endolymphatic sac of guinea pigs. J Membr Biol 182:113–122

    Article  PubMed  CAS  Google Scholar 

  22. Mizukoshi F, Bagger-Sjoback D, Rask-Andersen H, Wersall J (1988) Cytochemical localization of Na–K ATPase in the guinea pig endolymphatic sac. Acta Otolaryngol 105:202–208

    PubMed  CAS  Google Scholar 

  23. Mori N, Wu D (1996) Low-amiloride-affinity Na+ channel in the epithelial cells isolated from the endolymphatic sac of guinea-pigs. Pflugers Arch 433:58–64

    Article  PubMed  CAS  Google Scholar 

  24. Mori N, Ninoyu O, Morgenstern C (1987) Cation transport in the ampulla of the semicircular canal and in the endolymphatic sac. Arch Otorhinolaryngol 244:61–65

    Article  PubMed  CAS  Google Scholar 

  25. Ninoyu O, Meyer Zum Gottesberge AM (1986) Ca2+ activity in the endolymphatic space. Arch Otorhinolaryngol 243:141–142

    Article  PubMed  CAS  Google Scholar 

  26. Peters TA, Tonnaer EL, Kuijpers W, Cremers CW, Curfs JH (2002) Differences in endolymphatic sac mitochondria-rich cells indicate specific functions. Laryngoscope 112:534–541

    Article  PubMed  Google Scholar 

  27. Royaux IE, Belyantseva IA, Wu T, Kachar B, Everett LA, Marcus DC, Green ED (2003) Localization and functional studies of pendrin in the mouse inner ear provide insight about the etiology of deafness in pendred syndrome. J Assoc Res Otolaryngol 4:394–404

    Article  PubMed  Google Scholar 

  28. Salt AN (2001) Regulation of endolymphatic fluid volume. Ann N Y Acad Sci 942:306–12

    Article  PubMed  CAS  Google Scholar 

  29. Shinomori Y, Spack DS, Jones DD, Kimura RS (2001) Volumetric and dimensional analysis of the guinea pig inner ear. Ann Otol Rhinol Laryngol 110:91–98

    PubMed  CAS  Google Scholar 

  30. Sziklai I, Ferrary E, Horner KC, Sterkers O, Amiel C (1992) Time-related alteration of endolymph composition in an experimental model of endolymphatic hydrops. Laryngoscope 102:431–438

    Article  PubMed  CAS  Google Scholar 

  31. Tatsumi H, Hirai K, Katayama Y (1988) Measurement of the intracellular calcium concentration in guinea-pig myenteric neurons by using fura-2. Brain Res 451:371–375

    Article  PubMed  CAS  Google Scholar 

  32. Teixeira M, Couloigner V, Loiseau A, Hulin P, Sterkers O, Planelles G, Ferrary E (1999) Evidence for apical K conductance and Na–K–2Cl cotransport in the endolymphatic sac of guinea pig. Hear Res 128:45–50

    Article  PubMed  CAS  Google Scholar 

  33. Ten Cate WJ, Curtis LM, Rarey KE (1994) Na,K–ATPase subunit isoform expression in the guinea pig endolymphatic sac. ORL J Otorhinolaryngol Relat Spec 56:257–262

    PubMed  CAS  Google Scholar 

  34. Usami S, Abe S, Weston MD, Shinkawa H, Van Camp G, Kimberling WJ (1999) Non-syndromic hearing loss associated with enlarged vestibular aqueduct is caused by PDS mutations. Hum Genet 104:188–192

    Article  PubMed  CAS  Google Scholar 

  35. Whittembury G, Hill A (2000) Coupled transport of water and solutes across epithelia. In: Seldin DW, Giebisch G (ed) The kidney, vol. 1. Lippincott Williams & Wilkins, pp 341–362

  36. Wu D, Mori N (1996) Outward K+ current in epithelial cells isolated from intermediate portion of endolymphatic sac of guinea pigs. Am J Physiol 271:C1765–1773

    PubMed  CAS  Google Scholar 

  37. Wu D, Mori N (1999) Extracellular ATP-induced inward current in isolated epithelial cells of the endolymphatic sac. Biochim Biophys Acta 1419:33–42

    Article  PubMed  CAS  Google Scholar 

  38. Yamakawa K (1938) Über pathologische Veranderungen bei einem Menieren Kranken. J Otolaryngol Soc Jap 4:2310–2312

    Google Scholar 

  39. Yamamoto Y, Fukuta H, Nakahira Y, Suzuki H (1998) Blockade by 18beta-glycyrrhetinic acid of intercellular electrical coupling in guinea-pig arterioles. J Physiol 511(Pt 2):501–508

    Article  PubMed  CAS  Google Scholar 

  40. Yamane H, Nakai Y (1988) Immunohistochemical localization of Na+–K+–ATPase in the endolymphatic sac. Adv Otorhinolaryngol 42:123–128

    PubMed  CAS  Google Scholar 

  41. Zahler R, Zhang ZT, Manor M, Boron WF (1997) Sodium kinetics of Na,K–ATPase alpha isoforms in intact transfected HeLa cells. J Gen Physiol 110:201–213

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Grants-in-aid for Scientific Research (#13671783 and #16591711 to N.M., #16791003 to T.M. and #16GS0308 to M.S.) from the Ministry of Education, Culture, Sports, Science and Technology of Japan and for General Scientific Research (#13480216 to M.S. and #14580769 to H.T.), Scientific Research on Priority Areas (#15086270 to M.S.) and a grant from Japan Space Forum (to M.S. and H.T.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takenori Miyashita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyashita, T., Tatsumi, H., Hayakawa, K. et al. Large Na+ influx and high Na+, K+–ATPase activity in mitochondria-rich epithelial cells of the inner ear endolymphatic sac. Pflugers Arch - Eur J Physiol 453, 905–913 (2007). https://doi.org/10.1007/s00424-006-0166-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-006-0166-2

Keywords

Navigation